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Abstract 

Articular cartilage is composed by fiber reinforced solid phase and free flowing liquid 

phase, the study aimed to establish an articular cartilage two phase model with respect to 

the structural characteristics of articular cartilage. According to the Helmholtz strain 

energy function, the hyperelastic property of solid phases is defined, the liquid phase is 

defined as an ideal fluid. The model can describe the non-linearity, incompressibility and 

permeability of articular cartilage. The balance equation of the finite element based on 

the v-p variable was obtained by the Galerkin weighted residual approach, using finite 

difference method to calculate the equilibrium equation, the computation program was 

compiled in Microsoft Visual Studio 2012. Finally, the stress and strain data obtained 

from the simulation of the articular cartilage model were compared with the 

corresponding experimental data, the results show that the two phase model based on the 

hyperelastic solid phase can meet the accuracy requirements of the clinical application of 

cartilage model. 

 

Keywords: articular cartilage; two phase model; nonlinear; hyperelastic solid phase; 
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1. Introduction 

Articular cartilage is composed of water and complex organic matter. Complex organic 

matter mainly includes collagen and proteoglycan. Interstitial fluid contains mostly water, 

the flow of the fluid not only has an important influence on cartilage mechanical 

properties, also has a close relationship with the vascular tissue nutrient transport [1]. At 

the same time, articular cartilage has a very low coefficient of friction, which plays a good 

role in lubrication [2]. The lubrication effect of articular cartilage has a very important 

significance for the ability of dynamic joint movement and bearing load. Therefore, 

studying on the mechanical properties of articular cartilage is very important for the 

development of medical research, clinical diagnosis and new biological material [3,4]. 

The finite element method was used to study the biomechanics of orthopedics, the 

numerical simulation method was also used to analyze the complex mechanical behavior 

of articular cartilage [5]. 

In the early stage of articular cartilage mechanical modeling study, the cartilage was 

considered as isotropic linear elastic single-phase material. In 1976, Hori and Mockros 

regarded cartilage as viscoelastic material and remeasured shear modulus [6]. Hayes 

considered cartilage as a homogeneous isotropic material, and a generalized Kelvin model 

was established, and the shear modulus was obtained [7]. During this time, the researchers 

accept the viscoelastic single-phase articular cartilage model, however, the simulation 

results are always different with the true cartilage properties and the experimental data. In 

1980, Mow and Lai proposed a two - phase medium model based on mixture theory, 
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which regarded cartilage as an incompressible mixture consisting of linear elastic solid 

and non-viscous liquid [8,9], Mow got the experimental data obtained by the compression 

experiment, which was very close to the simulation results, the model is widely used in 

next 20 years. But, this model still has some limitations, the theory of viscoelasticity was 

developed by Li and Armstrong, the viscoelastic behavior of cartilage was described by a 

two phase model, and the conditions of creep and stress relaxation were also presented. In 

1999, the performance of cartilage was studied by means of finite element method, by 

Yan Bo Chongqing University [10]. In these studies, the solid phase of cartilage is also 

considered as linear elastic material, and the linear elastic model is only effective for 

small deformation. Aiming at the problem that the articular cartilage in the process of 

bearing load can produce large deformation, the finite deformation two order model of 

solid phase was established by Mow and Holmes [11]. 

In this study, articular cartilage was described as a two phase mixture consisting of 

incompressible non-viscous liquid phase and hyperelastic, transversely isotropic solid 

phase, and under the condition of deformation, the permeability of cartilage tissue can be 

changed. The stress-strain relationship of solid phase was defined by the Helmholtz strain 

energy function. The balance equation of finite element system based on v-p variable is 

obtained by Galerkin weighted residual method, finite difference method is used to solve, 

the finite element analysis program is compiled in Microsoft Visual Studio 2012. 

 

2. The Establishment of the Control Equation of the Articular Cartilage 

Two Phase Model Based on the Mixture Theory 
 

2.1. Establishment of Two Phase Model of Articular Cartilage 

In this study, articular cartilage is regarded as a two phase medium mixture, which 

is composed of a hyperelastic solid phase and an ideal fluid phase, and each phase 

has its own movement rules. The solid phase is expressed by s, and the liquid phase 

is expressed by f. The initial volume fraction of each phase is s0 , f0 , the initial 

density of each phase is 
r

s0ρ , r

f 0ρ , and uniformly distributed. 

The formula of the volume fraction under saturated state as follows: 

                                                         s f 1  
                                                  (1) 

Mass balance equation is as follow: 

 s s f f 0v v   
                                               (2) 

In the quasi-static problem, the momentum balance equation is transformed into 

the static equilibrium equation, and the acceleration a is zero. In the two-phase 

mixture, the momentum exchange formed by the friction resistance which is brought 

when the interstitial fluid flows through the porous solid is Ps and Pf , the 

relationship between them is as follow:  

                                           
 s f f sP P K v v   

                                              (3) 

In the formula, K is the diffusion resistance coefficient. 

 
2

fK





                                                       (4) 

sσ  and fσ  are solid phase Cauchy stress tensor and liquid phase Cauchy stress 

tensor respectively, the momentum balance equation of the cartilage in the current 

configuration is: 
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s 0P  sσ                                                         (5) 

                                                 f 0P  fσ                                                        (6) 

The mechanical constitutive equations of elastic solid and non-viscous fluid are 

obtained by the incompressibility and mechanical properties of cartilage: 

s s ep   I
                                                    (7) 

                                                  f f p  I
                                                        (8) 

 p is the pressure, eσ  is the effective stress of the solid phase. 

The mass balance equation (2), momentum balance equation (5)(6) and 

constitutive equation of two phase mixture (7)(8) are obtained by the above 

deduction, thus the governing equations for the mechanical analysis of articular 

cartilage are formed. 

The relationship between the second Piola-Kirchhoff stress tensor and elastic 

stress tensor is: 

                                            
1

e

T TJ  σ FSF FSF
                                               (9) 

The S is second Piola-Kirchhoff stress tensor. The parameter is solved in 2.3, and 

the hyper elastic two-phase model of articular cartilage can be obtained through the 

connection of the parameters. 

In the deformation, the change of object space position before and after bearing 

load is considered, when t=0, the space region 0V occupied by the object is the initial 

configuration, at the current time t, the spatial region V occupied by the object is the 

current configuration. 

The initial configuration is the reference configuration, can get the change of 

volume element and surface element in deformation, therefore, volume of the 

element in the current configuration and the volume in reference configuration have 

the following relationship. 

                                                   0dV JdV                                                         (10) 

Articular cartilage is regarded as incompressible material, i.e., the density of 

material has no change before and after deformation, therefore, the area of element 

in the current configuration and the area in reference configuration have the 

following relationship. 

1

0 0nd Jn d  F
                                                (11) 

Γ  represents the area of boundary region at current time, 0Γ represents the area of 

the boundary region at the initial moment, n represents the unit normal vector of the 

boundary area in the current configuration. n0 represents the unit normal vector of 

the boundary area in the initial configuration. 

By using the right Cauchy-Green strain tensor C, the above formula can also be 

expressed as follows: 

0d J d                                                         (12) 

                                   
1 1

0 0 0 0J J n C n n C n 

  
                                         (13) 
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2.2. The Establishment of Hyperelastic Model 

The hyperelastic model of articular cartilage is represented by the Helmholtz 

strain energy function [12], as follows:   

   1 1 2 23 3

0

3

I I
e

I

 




  

 

                                                    (14) 

 

2.3. The Solution of Second Piola-Kirchhoff Stress Tensor S 

Hyperelastic solid phase of articular cartilage, the relationship between stress and 

strain is no longer linear, the elastic matrix is related to the strain tensor, The 

constitutive relation of stress and strain tensor of the second Piola-Kirchhoff stress 

S and Green strain E, in an instantaneous deformation process, is: d dS D E.  

Green strain tensor E is: 

                                                   

11 12 13

21 22 23

31 32 33

E E E

E E E

E E E

 
 


 
  

E

                                              (16) 

 

 

 

 

1 2 22 33 2 12 2 13

2 12 1 2 33 2 23

2 13

11

222 23 1 2 11

2 4 1 8 8

8

=

2 4 1 8

8 8 2 4 1

E E E E

E E E E

E E E E

   

   

   

    

    

   










 
 
 
  

S
E

(17) 

Elastic tensor D can be expressed as: 

332

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 121

2

2

ij

ijkl

kl

D D D D D D

D D D D D D

S D D D D D D
D

D D D D D DE

D D D D D D

D D D D D D






 









 
 
 
 
                       (18) 

 1 2 22 332 4 1 E E G    
 

 1 2 11 222 4 1 E E H    
 

 1 2 11 332 4 1 E E J    
 

Then: 

2

2 2 2 23 2 13 2 12

2

2 2 23 2 13 2 12

2

2 23 2 13 2 12

2 2 2 2

2 23 2 2 13 23 2 12 23

2 2 2

2 13 2 2 13 12

2 2

2 12 2

4 4 8 8 8

4 8 8 8

8 8 8
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64 8
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D

E E E E E

sym E E E

E

    

   

  

   

  

 

    

   

  
 







 
 
 
 
 
 
 
 
 

(19) 

Articular cartilage can also cause the change of tissue permeability under the 

condition of deformation. By cartilage quasi incompressibility knows that 3 1I  , 
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cartilage permeability is expressed as 0
0

0

L

s s

f f

 
 

 

 
   

 

. Where L is constant, the 

subscript "0" represents the initial configuration before the deformation.  

 

2.4. The Establishment of Control Equation Based on v-p Variable 

In this study, the velocity and pressure are selected to establish the v-p variable 

finite element equation, solving the two phase model of articular cartilage. In order 

to eliminate the velocity of the fluid phase, first, the formula (3) and the formula (8) 

are brought to the formula (6), it can obtained by formula (4): 

                                                   
 f f sv v p    

                                           (20) 

Under the condition of formula (1), formula (20) is brought into the formula (2), 

the equation which contain solid phase velocity is obtained: 

 s 0v p   
                                            (21) 

Simultaneous momentum conservation equations (5) (6) and constitutive 

equations (7) (8) can get that: 

  0p  eσ I
                                               (22) 

Equation (21) and Equation (22) constitute the finite element control equation that 

based on v-p variable. 

 

3. Establishment and Simulation of the Articular Cartilage Mechanical 

Equilibrium Equation 

 

3.1. Boundary Conditions 

Fluid flux is defined as follows:  f f sQ v v n p n        , The control conditions 

of the governing equations are: 

 
sss u, ,uu x t x 
                                                 (23) 

                                        
 , , Tx t n T x   

                                                   (24) 

                                            
 , , ppp x t x 

                                                    (25) 

                                         
, Qp n Q x    

                                                  (26) 

Where su  is a known solid phase displacement, T is the total load force, p  is 

known pressure, n is the outer normal vector of the boundary Γ , p  and Q  

represent the boundary of liquid phase volume domain f , respectively, 
su and T  

respectively represent the boundary of the solid phase volume domain C, and the 

boundary satisfies the following conditions: 

  s su T s u T     ，
                                          (27) 

                                           p Q f p Q     ，
                                              (28) 
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3.2. The Establishment of System Equilibrium Equation 

Mesh types in this study are tetrahedral elements. The interpolation function of 

the tetrahedral element is constructed. By means of the governing equations based 

on the v-p variables and boundary conditions, the finite element equilibrium 

equation is established by using Galerkin weighted residual method. Select the 

shape function as the weighting function of differential equations and boundary 

conditions, weight functions NJ and -NJ are introduced, by the Gauss divergence 

theorem and the definition of the total traction force, the simplified weighted 

residual integral expression is obtained:  

                                     

  J e J s J J

J J

T Q

T T T T

T T

v p p d

Td Qd




 

         

     



 

N σ N N N

N N

             (29) 

The problem domain is discretized into the form of the element, and the velocity 

and pressure are interpolated: 

ev vN                                                      (30) 

                                                         ep pN                                                      (31) 

The matrix form of the weighted residual expression on a grid in the reference 

configuration is: 

   
s

ee e

n n n n

ee e

0
=

0

T v TG M

p QG H

        
       

       

e e e e

                       (32) 

Where, en is a unit vector, because en is a nonzero constant vector, so it can 

directly eliminate. 

We supposed 
0

e J 0

TG d


    N N ，  
0

e J 0

T TG d


    N N ，
0

e J 0

TH d


    N N ，  
0

s

e 0 J 0

T
M tr d



   
  N FS ，

0

J 0

T

TT TJ d


  N ，
Q0

J 0

TQ QJ d


  N
, Then: 

                                         

s
ee e

ee e

0
, , ,

T v

p

      
         

     

TG M
Y v M f

QG H 0                               (33) 

The equilibrium equation of the finite element system is obtained as follows: 

Yv +M = f                                            (34) 

 

3.3. Solution of Equilibrium Equations for Nonlinear System 

The finite difference method is carried out to calculate the equilibrium equation 

of the nonlinear system. Firstly, the incremental method is used in the time domain, 

and the time t is discretized into a number of time points, i.e. 

0 1 n n+1 N0 t t t t t t     
                         (35) 

Time increment is expressed as: 

  n+1 n+1 nt t t  
                                           (36) 

Complete Lagrange method is adopted, the reference configuration does not 

change with time. At time 1nt   equation (34) can be expressed as follow: 
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                                               n+1 n+1 n+1 n+1 Y v M f                                               (37) 

By the Newton-Raphson method, the linear form of M is obtained by the 

following recursive form: 

  

       
s

1 1n+1

n+1 n+1 n+1 n+1 n 1
0

s i s i s i s iM
M M K u

 



 
    
 

M ，

                         (38) 

Where Kn+1 is the tangent stiffness matrix of the solid phase, the 0 vector is equal 

to the velocity of the liquid phase or the pressure degree of freedom, i represents the 

number of iterations. 

The recursive relation of iterative displacement is determined by the trapezoidal 

method: 

                                           
1

n+1 n+1 n+1 n+1

i i i iu u u t v     
                                (39) 

Where   is the specified time integral parameter, 0 1   , and when 1 2  , it 

is an implicit integral, and the equation is unconditionally stable.  

The increment of speed is expressed as: 

1

n+1 n+1 n+1

i i iv v v 
                                              (40) 

In the i times iteration of speed, equation (34) can be written as follows: 

                                                
1 1

n+1 n+1 n+1 n+1

i i i i  Y v M f
                                           (41) 

From the above equation can obtain that: 

 1 1 1 1 1 1

n 1 n 1 n 1 n+1 n 1 n 1 n+1

i i i i i i it v     

         Y K f Y v M
                          (42) 

In the n 1t   time step, repeated iterative, until the velocity increment n 1

iv   satisfies 

the convergence criterion. In a time step, the convergence criterion is  as follows: 

4, 10

i

i

v
TOL TOL

v




 

                                       (43) 

The solution is updated as the initial value to the next time step when iterative 

convergence occurs, and repeat iteration until convergence occurs again. Numerical 

calculation process is compiled in Visual Studio 2012. 

 

4. Verification and Discussion of the Two Phase Model of Articular 

Cartilage 
 

4.1. Simulation and Validation 

The parameters of hyperelastic model and permeability equation 

are: 0 1 20.1084Mpa 0.592Mpa 0.0846Mpa    ， ， ,  15 4

0 00.2 2.519 10 m / Nss    ， , 0.0848L  . In this 

study, we took a small piece of long rectangular cartilage model, which is 12mm long, 

3mm wide, and 2mm high, and generate volume mesh. Boundary condition is setted as 

moving in Y direction, other degrees of freedom are 0, vertical downward uniform load is 

imposed at the top of the model, as shown in Figure 1(a), load increment 0.2NF  , 

totally 17 steps are loaded, the stress-strain relationship of cartilage was obtained by 

simulation, the stress are derived from the second Piola-Kirchhoff stress S, meanwhile the 

strain is derived from Green strain E. In order to verify the accuracy of the model, 
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compared the simulation results with the compressible experimental results of articular 

cartilage provided by the Department of Orthopedics of the Second Hospital Affiliated of 

Suzhou University [13], the contrast curve is shown in Figure 1(b). It can be seen from 

the figure that under the condition of low stress, change rate of the strain is very small, 

with the increase of stress, the modulus of elasticity is increasing too, this shows that with 

the increase of stress, the ability to resist elastic deformation is larger. The trend of two 

curves is coincident, and the stress-strain curve is close to the nonlinear exponential 

relation, although there is a certain error in the value, but the error range is acceptable. 
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e
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 Experimental data 

 The finite element analyzed data 

           (a) Cartilage compression tests              (b) Comparison curves of stress-strain  

Figure1. Cartilage Compression Tests and Comparison Curves of Stress-
Strain 

For the same piece of articular cartilage model, uniaxial compression experiment 

was conducted. Placing the cartilage model on the plane, and load  F is applied to 

the top of the model, as shown in Fig. 2(a), per step load increment 0.2NF  , the total 

of 20 steps, and calculate the speed of the highest point of the curve.  
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(a) Cartilage uniaxial compression tests       (b) Comparison curves of stress-speed  

Figure 2. Uniaxial Compression Tests and Compression Curves of Stress-
Speed  
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The following finite element analysis procedure is carried out within a time 

step 1t , supposing that 1 1 0 1st t t    , time integral parameter 0.6  , each time step 

reflects the changing process of load at this moment, the relationship between stress 

and velocity was calculated, as shown in Fig.2 (b). The simulation results are 

compared with the results that used the penalty finite element method, and the 

experimental data obtained by the Spilker and Holmes et al . in Rensselaer 

Polytechnic Institute [14], the contrast curves are shown in Fig.2 (b). It can be seen 

from the figure that with the increase of the stress, the value of the velocity 

decreases, i.e. when the pressure on the cartilage surface increases, the  ability to 

resist the external force of cartilage is also increasing, and the rate of deformation is 

gradually reduced. The overall trend of the three sets of curves is similar. In the 

initial stage of loading, the results of stress and velocity of three sets have small 

differences. The error increased with increases in the values of stress. The method 

proposed in this study is closer to experimental results. 

 

5. Conclusions 

In this study, based on the hyperelastic solid phase model, a two phase model of 

articular cartilage was established, and v-p variable control equation of articular 

cartilage was built up, meanwhile, the finite element equilibrium equation of 

articular cartilage was established by using the Galerkin weighted residual method. 

The finite difference method was used to calculate the equilibrium equation of a 

nonlinear system. The cartilage compression results of experiment and simulation 

was compared, the accuracy of the proposed model of articular cartilage was 

verified. Through the finite element simulation of the single axis compression of 

cartilage, the simulation method was verified. 
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