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Abstract 

The problem of L2-gain analysis  and anti-windup compensation gains design is studied 

for a class of discrete-time switched systems subject to actuator saturation via the 

multiple Lyapunov function approach. When a set of anti-windup compensation gains is 

given, a sufficient condition on tolerable disturbances is obtained, under which the state 

trajectory starting from the origin will remain inside a bounded set. Then over this set of 

tolerable disturbances, we obtain the upper bound of the restricted L2-gain. Furthermore, 

the anti-windup compensation gains and the switched law, which aim to determine the 

maximum disturbance tolerance capability and the minimum upper bound of the 

restricted L2-gain, are presented by solving a convex optimization problem with linear 

matrix inequality (LMI) constraints. Finally we give a numerical example to demonstrate 

the effectiveness of the proposed method. 

 

Keywords: L2-gain; anti-windup; switched systems; actuator saturation; multiple 

Lyapunov function; tolerable disturbances 

 

1. Introduction 

As an important class of a hybrid system, switched systems have attracted much 

attention in recent years for its theoretical [1-3] and practical [4-6] importance which 

consist of a set of continuous-time and/or discrete-time subsystems interacting with a 

logical or decision-making process. As [1] pointed out, stability of switched systems is of 

the most importance in analysis and design. Therefore, many approaches and techniques 

have been introduced to study the stability [7-11] and synthesis problem for such systems 

[12-17]. Among these methods, the common Lyapunov function is used to check the 

stability property under arbitrary switchings [8]. Although this property is a desirable 

property, not all or even most switched systems do not possess a common Lyapunov 

function. And even then, the switched system still is of stability under certain switching 

laws based on other methods. Among them, the multiple Lyapunov functions method [9]-

[10], the single Lyapunov function method [11, 12] and the average dwell-time technique 

[13, 14] are effective tools of choosing such switching laws. 

On the other hand, the system with exogenous disturbances is a familiar type of 

uncertain systems in practice. The L2-performance analysis has also an important 

influence on systems subject to disturbance, because it provide a kind of measure of the 

certain extent of the influence of disturbance. [14] investigated the disturbance attenuation 

properties of time-controlled switched systems by using an average dwell time approach 

incorporated with a piecewise Lyapunov function. Using multiple Lyapunov functions 

method, [15] investigated the L2-gain analysis of switched systems, which enables 

derivation of improved an L2-gain characterization and a method on switching law design. 

All the results mentioned above study continuous-time switched systems. However, from 
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a practical point of view, it makes more sense to study discrete-time switched systems 

with disturbances. Via multiple quadratic Lyapunov-like functions, [16] considered the 

exponential stability and L2 induced gain performance for a class of discrete-time 

switched systems. The L2-gain analysis and control synthesis for uncertain discrete-time 

switched systems were investigated by using the switched Lyapunov function method in 

[17]. 

In addition, due to physical constraints or safety limit input saturation appear in almost 

all practical systems. It can degrade performance of system and even make system 

unstable. Thus, study of control systems with input saturation has received a great deal of 

attention [18-22], which focus mainly on how to cope with saturation nonlinearity. There 

are many methods developed to study this kind of systems [23-26]. However, the anti-

windup approach is a far more practical approach for dealing with saturation nonlinearity. 

This method is to firstly design a linear controller that meets the performance requirement 

of the closed-loop system without considering actuator saturation and then to design an 

anti-windup compensator to reduce the effects of the actuator saturation [26]. For 

switched systems subject to actuator saturation, studying its property become more 

difficult. It is because that the saturation nonlinearities and switching are interacted on 

each other. The existing results of switched systems with actuator saturation are relatively 

few [27-31]. By using multiple Lyapunov functions method, the L2-gain analysis and 

control synthesis problem is addressed for a class of uncertain switched systems with 

saturating actuators in [27]. The design of switching scheme is considered for a class of 

switched systems in the presence of actuator saturation in [28]. In order to enlarge the 

domain of attraction of the linear systems, the idea of switching among multiple anti-

windup gains was explored based on the min function of multiple quadratic Lyapunov 

functions in [29]. For a class of uncertain switched discrete systems subject to actuator 

saturation, [30] addressed the problem of disturbance attenuation was via the multiple 

Lyapunov functions method. Via the multiple Lyapunov functions approach, the problem 

of disturbance tolerance/rejection is considered for a class of switched systems with 

actuator saturation in [31]. About study of the L2-gain analysis and anti-windup design 

problem of switched discrete systems on the strength of the multiple Lyapunov functions 

technique, to the best of my ability, there are nearly no results in the existing literature. 

That is our motivation. 

Based on the multiple Lyapunov function approach, the L2-gain analysis and anti-

windup compensation gains design are considered for a class of discrete-time switched 

systems subject to actuator saturation in this paper. Firstly, we obtain a sufficient 

condition of disturbance tolerance under which the state trajectory starting from the origin 

will remain inside a bounded set. Then, over the set of tolerable disturbances we analyzed 

the restricted L2-gain.Furthermore, in order to obtain the maximal disturbance tolerance 

capacity and the minimum upper bound of the restricted L2-gain over the set of tolerable 

disturbances, the problem of designing the anti-windup compensation gains and the 

switched law is formulated and solved as a convex optimization problem with LMI 

constraints. 

The rest of this paper is organized as follows: The system description and preliminaries 

are given in section 2. Section 3 and 4 analyze the disturbance tolerance capacity and L2-

gain respectively. The anti-windup synthesis problem is considered in section 5. An 

example is shown in section 6, followed by conclusions in section 7. 

 

2. Problem Statement and Preliminaries 

In this paper, the following discrete-time switched systems with actuator saturation are 

considered : 
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2

( 1) ( ) ( ( )) ( ),

     ( ) ( ),

      ( ) ( ),

x k A x k B sat u k E w k

y k C x k

z k C x k

  





   





                                (1) 

where k Z  , ( ) nx k R  is the state vector, ( ) mu k R  is the control input vector, ( ) py k R  

is the measured output vector, ( ) lz k R  is the controlled output and ( ) qw k R  is the 

external disturbance input. ( )k  is a switching signal which takes its values in the finite 

set {1, , }NI N L ; ( )k i   means that the i-th subsystem is active. 
1, , ,i i i iA B E C  and 

2iC  

are real constant matrices of appropriate dimensions. Due to the presence of actuator 

saturation, the L2-gain may not be well defined when the external disturbances is 

sufficiently large, because a sufficiently large external disturbance may drive the system 

state or output unbounded under any control input [20, 31]. Therefore, we assume that 

2

0

: : , ( ) ( ) ,q T

k

W w R R w k w k 







  
   
  

                                   (2) 

where   is some positive number that is aimed at representing disturbance 

tolerance capability of system. : m msat R R  is the vector valued standard saturation 

function defined as 
1( ) ( ), , ( ) ,

T
msat u sat u sat u   L                                       (3) 

   ( ) ( )min 1, , 1, , .j j j

msat u sign u u j Q m    L                  (4) 

Notice that here we have slightly abused the notation by using " ·)"(sat  to stand for 

both scalar and vector-valued saturation functions. It is generally known that it is 

without loss of generality to assume unity saturation level. The non-unity saturation 

level can always be transformed into unity saturation level by scaling the matrix   
iB  

and u  [25]. 

For system (1), suppose that a set of  
cn -order dynamic output feedback 

controllers are of the form 

( 1) ( ) ( ),

( ) ( ) ( ), ,

c ci c ci c

c ci c ci c N

x k A x k B u k

v k C x k D u k i I

  

   
                                (5) 

where ( ) cn

cx k R , ( ) ( )cu k y k  and ( ) ( )cv k u k  are the vector of state, input and 

controller output respectively. In this paper, we focus on L2-gain analysis and anti-windup 

gains design, so we assume that the dynamic compensators have been designed for the 

system (1) without actuator saturation, as commonly adopted in the literature (see, for 

example [26]). 

For the sake of weakening the undesirable effects of the windup caused by 

actuator saturation includes adding to the controller dynamics a "correction'' term of 

the form ( ( ( )) ( ))ci c cE sat v k v k . Then, the modified controller structure has the form 

( 1) ( ) ( ) ( ( ( )) ( )),

( ) ( ) ( ), .

c ci c ci c ci c c

c ci c ci c N

x k A x k B u k E sat v k v k

v k C x k D u k i I

    

   
               (6) 

Clearly, through adding such the correction terms, the dynamic controllers (6) go 

on operating in the linear domain without actuator saturation, which does not affect 

the systems performance. Then the controller state of the system with input  

saturation can be revised by using the anti-windup compensators which restore the 

system nominal performance as much as possible. 

Then, when we adopt the above controllers and anti-windup tactic, the closed-

loop system will be written as 
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2

1

1

( 1) ( ) ( ( )) ( ),

( ) ( ),

( ) ( ),

( 1) ( ) ( ) ( ( ( )) ( )),

( ) ( ) ( ), .

i i c i

i

i

c ci c ci i ci c c

c ci c ci i N

x k A x k B sat v k E w k

y k C x k

z k C x k

x k A x k B C x k E sat v k v k

v k C x k D C x k i I

   





    

   

                 (7) 

Now, define a new state vector 

( )
( ) ,

( )
cn n

c

x k
k R

x k
  

  
 

                                              (8) 

and the matrices 

1

1

0
, , ,

0
c

i i ci i i ci i

i i

nci i ci

A B D C B C B
A B G

IB C A

     
       

    

% %  

   1 2 2, , 0 .
0

i

i ci i ci i i i

E
K D C C E C C

 
   

 

%%  

Therefore, in combination with (7) and (8), the closed-loop system can be 

rewritten as 

2

( 1) ( ) ( ) ( ) ( ),

      ( ) ( ), ,

i i ci c i

i N

k A k B GE v E w k

z k C k i I

  



    

  

% % %

%
                             (9) 

where ( ), ( ) ( ).c i c c cv K k v v sat v     

In this paper, we design the switched law and the anti-windup compensation gains 

via multiple Lyapunov such that the largest disturbance tolerance level of the system 

(9) is obtained at the beginning , then the minimized upper bound of the restricted 

L2-gain is achieved. 

Definition 1 [20], [31]. Given 0  . The system (9) is said to have a restricted 

L2-gain less than  , if there exists a switching signal ( )k  such that the following 

condition is satisfied under the zero initial condition, 

2

0 0

( ) ( ) ( ) ( ),T T

k k

z k z k w k w k

 

 

   

for all nonzero 2( ) .w k W  

To develop the main results, we need the following lemmas. 

Lemma 1 [Schur's complements]. Given the symmetric matrix 11 12

12 22

,
T

A A
A

A A

 
  
 

 the 

following statements are equivalent: 

1): 0;A   

2): 1

11 22 12 11 120, 0;TA A A A A    

3): 1

22 11 12 22 120, 0.TA A A A A    

For a positive definite matrix ( ) ( )c cn n n n
P R

  
  and a scalar 0  , an ellipsoid 

( , )P   is defined as 

 ( , ) : .cn n TP R P    
     

Consider matrices ( )
, cm n n

i iK H R
 

  and define the following polyhedral set: 

 ( , ) : ( ) 1, , ,cn n j j

i i i i N mL K H R K H i I j Q 
       

where ,j j

i iK H  are the j-th row of matrices iK  and iH  respectively. 

Lemma 2 [26]. Consider the function ( )cv  defined above. If ( , )i iL K H  , then 

the relation 

( ) [ ( ) ] 0, ,T

i i i i NK J K H i I                                      (10) 
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holds for any matrix m m

iJ R   diagonal and positive definite. 

 

3. Disturbance Tolerance 

In this section, we derive a sufficient condition under the given anti-windup gain 

matrices 
ciE  via the multiple Lyapunov function method, which guarantees that the 

state trajectory of the system (9) starting from the origin will remain inside a 

bounded set for any disturbance satisfying (2). The approach obtaining the largest 

disturbance tolerance level by designing the switched law and the anti-windup 

compensation gains will be stated in Section5. 

Theorem 1 Suppose there exist positive definite matrices 
iP ,  matrices 

iH  and 

diagonal positive definite matrices 
iJ  and a set of scalars 0ir   such that 

1,

( ) 0

0,* 2 0 ( )

* *

* * *

,

N

T T

i ir r i i i i i

r r i

T

i i ci i

T

i i

i

N

P P P H J A P

J B GE P

I E P

P

i I


 

 
   
 
     
 
 

 

 

 %

%

%
               (11) 

and 

( , ) ( , ), .i i i i NP L K H i I                                         (12) 

Then under the switched law 

argmin{ ( ) ( ), },T

i Nk P k i I                                        (13) 

where { ( ) : ( )( ) ( ) 0, , },cn n T

i r i Nk R k P P k r I r i  
         any trajectory of the 

system (9) starting from the origin will remain inside the region 

1( ( , ) ( , ))N

i i i i iP L K H     for every 2w W . 

Proof.  By condition (12), if ( , )i iP    , then ( , ).i iL K H   Therefore, in 

view of Lemma 2, for ( , )i iP     it follows that           

( ( )) ( ) ( ( ))i i iK k K k sat K k      satisfies the sector condition (10). 

In view of the switching law (13), for ( ) ( , ) ( , ),i i i ik P L K H      the i-th 

subsystem is active. 

Then, we choose the following quadratic Lyapunov function candidate for the 

system (9) as 

( ) ( )( ( )) ( ( )) ( ) ( ).T

k kV k V k k P k                               (14) 

We split the proof into two parts. 

Case 1: when ( 1) ( )k k i    , for ( ) ( , ) ( , ),i i i ik P L K H      the 

difference of ( ( ))V k  along the solution of the closed-loop switched system (9) is 

( ( )) ( 1) ( 1) ( ) ( )

               [ ( ) ( ) ( ( )) ( )]

[ ( ) ( ) ( ( ))

               

               

   ( )] ( ) .

  

(

 

)

T T

i i

T

i i ci i i

i i i ci i

T

i i

V k k P k k P k

A k B GE K k E w k

P A k B GE K k

E w k k P k

    

  

  

 

    

   

  

 

% % %

% %

%

                     (15) 

Therefore, by using Lemma 2 and condition (12), we have 

( ( )) [ ( ) ( ) ( ( )) ( )]

[ ( ) ( ) ( ( ))

( )] ( )( ) ( ) 2 ( ( )) [ ( ( )) ( )],

T

i i ci i i

r i i ci i

T T

i i i i i i

V k A k B GE K k E w k

P A k B GE K k

E w k k P k K k J K k H k

   

  

      

    

  

   

% % %

% %

%

 

Case 2: ( ) , ( 1)k i k r     and i r , for ( ) ( , ) ( , ).i i i ik P L K H      Then 

using the switching law (13) gives 
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( ( )) ( 1) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( ).T T T T

r i i iV k k P k k P k k P k k P k                  

In view of Case 1 and Case 2, we get 

( ( )) [ ( ) ( ) ( ( )) ( )]

[ ( ) ( ) ( ( ))

( )] ( )( ) ( ) 2 ( ( )) [ ( ( )) ( )],

T

i i ci i i

r i i ci i

T T

i i i i i i

V k A k B GE K k E w k

P A k B GE K k

E w k k P k K k J K k H k

   

  

      

    

  

   

% % %

% %

%

 

or equivalently 

(

)

( ) ( (
( ( )) * ,

) 2 )

* *

( , ) .

T T

Ti r i i r i

i r iT

T i ci i i

T

i ci r i

T

i ci i ci r i

T

i r i

N N

A P A A P B
A P E

P GE H J

B GE P B
V x k

B GE J GE P E
w w

E P E

i r I I

 

 

  
 
  

           
     
       

 
 
 

  

% % % %
% %

% %

% %

% %

                     (16) 

Then, from Lemma 1, (11) is equivalent to 

1,

( )
( )

( ) (
* ( ) 0.

) 2

* *

N T

T Ti r i ci

i r i i ir r i i r iT

i ir r i

T

Ti ci r i

i ci r i

ci i

T

i r i

A P B GE
A P A P P P A P E

H J

B GE P B
B GE P E

GE J

E P E I


 

  
   

 
 

    
 
 

 
 
  


% %

% % % %

% %
% %

% %

              (17) 

Multiplying (17) from the left by [ ]T T Tx w  and from the right by [ ]T T T Tx w , we 

have 

1,

( ) ( 1) ( ) ( ) ( ) ( )( ) ( ),

N

T T

ir r i

r r i

V k V k V k w k w k k P P k  
 

                (18) 

Again by the switching law (13), we obtain 

1,

( )( ) ( ) 0,

N

T

ir r i

r r i

k P P k  
 

   

which in turn gives 

( ) ( 1) ( ) ( ) ( ).TV k V k V k w k w k                                 (19) 

Then, when we consider ( )V k  as the overall Lyapunov function of system (9), It 

follows that 

1( ) ( 1) ( ) ( ) ( ), ( ) ( ( , ) ).T N

i i iV k V k V k w k w k k P                    (20) 

Therefore, it follows 

0 0

( ) ( ) ( ),

k k

T

t t

V t w t w t

 

    

which indicates 

0

( 1) (0) ( ) ( ), 0.

k

T

n

V k V w n w n k



      

Due to (0) 0x   and 
0

( ) ( ) ,T

k

w k w k 





  we can obtain 

( 1) ,V k                                                    (21) 

which implies that the state trajectory of the system (9) starting from the origin will 

always remain inside the region 1( ( , ) )N

i i iP     for all times. Thus, this completes 

the proof. 
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In view of the above established result, we easily know that the disturbance 

tolerance capability is estimated firstly before we analyze the restricted L2-gain for 

the closed-loop system (9). Clearly, constant   provides a kind of measure of the 

system's disturbance tolerance capability. Thus, the largest  disturbance tolerance 

level *  is able to be determined by solving the following optimization problem, 

, , ,

sup

. . ( ) (11), ,

( ) ( , ) ( , ), .

i i i irP H J

N

i i i i N

s t a inequality i I

b P L K H i I







 

    

                              (22) 

Then, pre- and post-multiplying both sides of inequality (11) by block diagonal  
1 1 1{ , , , }i i rP J I P    and letting 1 1 1, ,i i i i i i iP X H P M J S     , it follows that 

1,

1

1

1

1

0

* 2 0 ( ) 0 0 0

* * 0 0 0
0.

* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *

N

T T

i ir i i i i i i i

r r i

T

i i i ci

T

i

r

i i

iN N

X X M X A X X X

S S B GE

I E

X

X

X







 





 
  
 
 

   
 

 
 

 
 
 
  

 %

%

%

O

(23) 

By using a similar method as in [31], the condition (b) is  guaranteed by 

1,

( ) ( ) ( ) 0,

N

j j T j j

i ir r i i i i i

r r i

P P P K H K H 
 

                         (24) 

where ,j j

i iK H  are the j-th row of matrices iK  and iH  respectively and 0ir  . 

Then from the lemma 1, (24) is equivalent to 

1,

( ) ( )
0,

*

N

j j T

i ir r i i i

r r i

P P P K H



 

 
   

 
 
 

                                     (25) 

where 1.     

Thus, pre- and post-multiplying both sides of inequality (25) by block diagonal  
1{ , }iP I  , we also have 

1,

1

1 1

1

* 0 0 0
0,

* * 0 0

* * * 0

* * * *

N

jT jT

i ir i i i i i i i

r r i

i

iN N

X X X K M X X X

X

X









 





 
  

 
 
  
 
 
 
 
 



O

                  (26) 

where j

iM  denotes the j-th row of iM . 

 

As a result, the optimization problem (22) can be formulated as 

, , , ,
inf

. . ( ) (23), ,

( ) (26), , .

i i i ir irX M S

N

N m

s t a inequality i I

b inequality i I j Q

 


 

   

                                    (27) 
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4. L2-gain Analysis 

The L2-gain which can measure the disturbance rejection capability is one of the 

important performance index for control systems. However, due to the presence of 

actuator saturation, the disturbance rejection capability of the system with actuator 

saturation is measured by means of the restricted L2-gain over a set of tolerable 

disturbances. Thus, we study the restricted L2-gain problem for the system (9) via 

the multiple Lyapunov function method in this section. Similarly, we suppose that 

the anti-windup compensation gains 
ciE  are given beforehand. 

Theorem 2. Consider switched systems (9). For given positive scalar *(0, ]   

and constant  , suppose there exist positive definite matrices ,iP  matrices 
iH , and 

diagonal positive definite matrices 
iJ  and a set of scalars 0ir   such that 

2

1,

2

( ) 0

* 2 0 ( ) 0
0,

* * 0

* * * 0

* * * *

,

N

T T T

i ir r i i i i r i

r r i

T

i i ci r

T

i r

r

N

P P P H J A P C

J B GE P

I E P

P

I

i I





 

 
   
 
 

    
 
 

 
  

 

 % %

%

%            (28) 

and 

( , ) ( , ), .i i i i NP L K H i I                                  (29) 

Then, under the switching law 

 arg min , ,T

i NP i I                              (30) 

the restricted L2-gain from w  to z  over 2W  is less than  . 

Proof. Using the similar method as for proving Theorem 1, we choose the same 

the multiple Lyapunov function candidate for the system (10) as 

( ) ( )( ( )) ( ( )) ( ) ( ).T

k kV k V k k P k                              (31) 

We still split the proof into two parts. 

 Case 1: ( 1) ( )k k i    , for ( ) ( , ) ( , ).i i i ik P L K H      Then, Computing 

the variation of ( ( ))V k  along the trajectory of the switched system (9), we have 

( ( )) ( 1) ( 1) ( ) ( )

[ ( ) ( ) ( ( )) ( )]

[ ( ) ( ) ( ( ))

( )] ( ) ( ).

T T

i i

T

i i ci i i

i i i ci i

T

i i

V k k P k k P k

A k B GE K k E w k

P A k B GE K k

E w k k P k

    

  

  

 

    

   

  

 

% % %

% %

%

 

Then, in view of Lemma 2 and condition (29), it follows that 

( ( )) [ ( ) ( ) ( ( )) ( )]

[ ( ) ( ) ( ( ))

( )] ( ) ( ) 2 ( ) [ ( ) ],

T

i i ci i i

i i i ci i

T T

i i i i i i

V k A k B GE K k E w k

P A k B GE K k

E w k k P k K J K H

   

  

      

    

  

   

% % %

% %

%

 

Case 2: ( ) , ( 1)k i k r    and i r , for ( ) ( , ) ( , ).i i i ik P L K H      Then 

applying the switching law (30), we obtain 

( ( )) ( 1) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( ).T T T T

r i i iV k k P k k P k k P k k P k                  

From Case 1 and Case 2, we have 

( ( )) [ ( ) ( ) ( ( )) ( )]

[ ( ) ( ) ( ( ))

( )] ( ) ( ) 2 ( ) [ ( ) ],

T

i i ci i i

i i i ci i

T T

i i i i i i

V k A k B GE K k E w k

P A k B GE K k

E w k k P k K J K H

   

  

      

    

  

   

% % %

% %

%

 

or equivalently 
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(

)

( ) ( (
( ( )) * ,

) 2 )

* *

.

T T

Ti i i i i i

i i iT

T i ci i i

T

i ci i i

T

i ci i ci i i

T

i i i

N

A P A A P B
A PE

P GE H J

B GE P B
V k

B GE J GE PE
w w

E PE

i I

 

  

  
 
  

           
     
       

 
 
 

 

% % % %
% %

% %

% %

% %

                    (32) 

Then, in view of Lemma 1, (28) is equivalent to 
2

2 2

1,

( )

( )

( ) (
* ( ) 0.

) 2

* *

T T

i i i i i i T

N Ti i i ci

i i iT
ir r i i i

r r i

T

Ti ci i i

i ci i i

ci i

T

i i i

A P A P C C
A P B GE

A PE
P P H J

B GE P B
B GE PE

GE J

E PE I







 

  
  
 
   
 
  
   

 
 

 
 
 
 
 



% % % %
% %

% %

% %
% %

% %

        (33) 

Multiplying (33) from the left by [ ]T T Tw   and from the right by [ ]T T T Tw  , we 

obtain 

2

1,

( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ).

N

T T T

ir r i

r r i

V k V k V k w k w k z k z k k P P k   

 

        (34) 

Again from the switching law (30), we have 

1,

( )( ) ( ) 0,

N

T

ir r i

r r i

k P P k  
 

   

which imply that 
2( ) ( 1) ( ) ( ) ( ) ( ) ( ).T TV k V k V k w k w k z k z k                      (35) 

Then, considering ( )V k  as the overall Lyapunov function of system (9), we obtain 
2

1( ) ( 1) ( ) ( ) ( ) ( ) ( ), ( ) ( ( , ) ).T T N

i i iV k V k V k w k w k z k z k k P  

            (36) 

Therefore, 

2

0 0 0

( ) ( ) ( ) ( ) ( ).T T

k k k

V k w k w k z k z k

  



  

                        (37) 

Then, 

2

0 0

( ) (0) ( ) ( ) ( ) ( ).T T

k k

V V w k w k z k z k

 



 

                         (38) 

Due to (0) 0V   and ( ) 0V   , we obtain 

2

0 0

( ) ( ) ( ) ( ),T T

k k

z k z k w k w k

 

 

                             (39) 

which implies that the system (9) has its restricted L2-gain from w  to z  over 2W  

less than  . Thus the proof is completed. 

In order to minimize the upper bound of the restricted L2-gain of the system (9), 

the optimization problem can be solved for given *(0, ]   as follows: 
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2

, , ,;
inf

. . ( ) (28), ,

( ) ( , ) ( , ), .

i i i irP H J

N

i i i i N

s t a inequality i I

b P L K H i I






 

    

                             (40) 

Applying a similar method as used in changing (22) into (27), we can convert the 

optimization problem (40) into an optimization problem consisting of LMIs. 

Therefore, the constraints (a) in (40) is equivalent to 

2

1,

1

1 1

1

0

(
* 2 0 0 0 0 0

)

0,* * 0 0 0 0

* * * 0 0 0 0

* * * * 0 0 0

* * * * * 0 0

* * * * * * 0

* * * * * * *

i

N T T T

i i i i i i i i

ir i

r r i

i i

i T

ci

T

i

r

i

N N

X

M X A X C X X X
X

S B
S

GE

I E

X

I

X

X









 





 
 
 
 
 
 

 
 

  
 
 
 

 
 
 
 
  


% %

%

%

O

       (41) 

where 2   and (b) in (40) is guaranteed by 

1,

1

1 1

1

* 0 0 0
0,

* * 0 0

* * * 0

* * * *

N

jT jT

i ir i i i i i i i

r r i

i

iN N

X X X K M X X X

X

X









 





 
  

 
 
  
 
 
 
 
 



O

                  (42) 

Then, the optimization problem (40) can be formulated as 

, , , ,
inf

. . ( ) (41), ,

( ) (42), , .

i i i ir irX M S

N

N m

s t a inequality i I

b inequality i I j Q

 


 

   

                           (43) 

5. Anti-windup Synthesis 

In fact, anti-windup compensation gains can be designed in order to further 

improve the closed-loop system (9) performance. Thus, the optimum solutions in 

section 3 and 4 can be obtained by anti-windup compensation gains design. 

Let .i ci iN E S  Then, (23) and (41) are respectively equivalent to 

1,

1

1

1

1

0

* 2 0 0 0 0

* * 0 0 0
0.

* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *

N

T T

i ir i i i i i i i

r r i

T T T

i i i i

T

i

i

i i

iN N

X X M X A X X X

S S B N G

I E

X

X

X







 





 
  
 
 

   
 

 
 

 
 
 
  

 %

%

%

O

   (44) 

and 
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2

1,

1

1 1

1

0

* 2 0 0 0 0 0

0.* * 0 0 0 0

* * * 0 0 0 0

* * * * 0 0 0

* * * * * 0 0

* * * * * * 0

* * * * * * *

i

N T T T

i i i i i i i i

ir i

r r i

T

i i

i T T

i

T

i

i

i

N N

X

M X A X C X X X
X

S B
S

N G

I E

X

I

X

X









 





 
 
 
 
 
 

 
 

  
 
 
 

 
 
 
 
  


% %

%

%

O

      (45) 

Therefore, the optimization problem which aims to obtain the largest disturbance 

tolerance level *  is formalized as follows: 

, , , , ,
inf

. . ( ) (44), ,

( ) (26), , ,

i i i i ir irX M N S

N

N m

s t a inequality i I

b inequality i I j Q

 


 

   

                        (46) 

and then, when any *(0, ]   is given, the minimum upper bound of the restricted 

L2-gain will be obtained by solving the following optimization problem, 

, , , , ,
inf

. . ( ) (45), ,

( ) (42), , .

i i i i ir irX M N S

N

N m

s t a inequality i I

b inequality i I j Q

 


 

   

                        (47) 

When these optimization problems (46) and (47) are solved, we can compute the 

anti-windup compensation gains 1

ci i iE N S  . 

 

6. An Illustrative Example 

In order to illustrate the effectiveness of the proposed method, we give the 

following example in the section. 

1

2

( 1) ( ) ( ( )) ( ),

     ( ) ( ),

      ( ) ( ),

i i c i

i

i

x k A x k B sat v k E w k

y k C x k

z k C x k y

   





                         (48) 

and the dynamic output feedback controllers with the anti-windup terms are given as 

1( 1) ( ) ( ) ( ( ( )) ( )),

     ( ) ( ) ( ),

c ci c ci i ci c c

c ci c ci i

x k A x k B C x k E sat v k v k

v k C x k D C x k

    

 
            (49) 

where 2( ) {1, 2}k I   , 

1 2 1 2

1.25 0 0.339 0 0 0
, , , ,

0 0 0 1.487 0.75 1.3
A A B B

       
          

       
 

1 2 11 21

0.3 0.02 0.6 0.35 0.345 0.17
, , , ,

0.44 0.04 0.55 0.1 0.69 0.3

T T

E E C C
       

          
       

 

12 22 1

0.058 0.019 0.1133 0
, , ,

0.030 0.017 0.0138 0.1143

T T

cC C A
     

       
     

 

2 1 2

0.0515 0 0.0209 0.0525
, , ,

0.0043 0.0309 0.0904 0.0286
c c cA B B

       
       

      
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1 2 1 2

2.3191 2.9468
, , 0.5437, 1.5199.

0.4768 1.5688

T T

c c c cC C D D
   

        
    

 

Firstly, we design the set of anti-windup compensation gains by using the proposed 

method in section 5 such that the capability of disturbance tolerance of the system (48)-

(49) is maximized via the multiple Lyapunov function method. Thus, solving the 

optimization problem (46), we obtain the optimal solutions as follows: 
* * * 1

1 20.0512, 19.5443, 100.6026, 49.0746,S S         

1

40.3865 3.7704 2.6631 3.5830

* 85.7636 7.8685 1.2099
,

* * 7.4896 0.0544

* * * 49.6998

X

   
 


 
 
 
 

 

2

43.3526 4.0234 2.8885 3.8178

* 85.7749 8.6503 1.3275
,

* * 7.4351 0.0541

* * * 49.6978

X

   
 


 
 
 
 

 

1 2

6.3077 7.3592
, ,

2.4807 1.1133
N N

   
    

   
 

 1 3.9531 37.9724 15.3169 0.2201 ,M      

 2 1.6823 11.9026 18.5000 0.3105 ,M      

1 1

1 1 1 2 2 2

0.0627 0.1500
, .

0.0247 0.0227
c cE N S E N S 

   
      

   
 

In addition, if we let 
1 2 0c cE E  , the obtained optimal solution is * 3.1756  , which 

implies the disturbance tolerance capacity of the system expanded under the effect of the 

anti-windup compensators. 

Finally, for any given *(0, ]  , we can obtain the minimum upper bound of the 

restricted L2-gain of the switched system (48)-(49) by solving optimization problem 

(47).The fig. 1 shows the relation of the restricted L2-gain   and different values 
*(0, ]   of the corresponding system. 

 

Figure 1.The restricted L2-gain of the switched system (48)-(49) for any 
*(0, ].   
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On the other hand, we apply the method in [32] to the considered system and find that 

all the optimization problems have no solutions, which is because the problem of 

disturbance tolerance/rejection is required to be solvable for every subsystem in [32]. 

However, it is easy to verify that in this example, the problem of disturbance 

tolerance/rejection for each subsystem is not solvable. 

 

7. Conclusions 

The problem of L2-gain analysis and anti-windup design has been investigated for a 

class of discrete-time switched systems subject to actuator saturation. We derive some 

sufficient conditions of disturbance tolerance and restricted L2-gain by using the multiple 

Lyapunov function method. Furthermore, we propose a method of designing the anti-

windup compensators of the considered system such that the disturbance tolerance 

capacity is maximized and the upper bound of the restricted L2-gain over the set of 

tolerable disturbances is minimized respectively. 

Compared with the existing results for switched systems subject to actuator saturation, 

there are three features of our results. First of all, the L2-gain analysis and anti-windup 

design problem are simultaneously addressed for discrete-time the switched systems with 

saturating actuator, while most existing works considered only the problem of stability; 

second, the multiple Lyapunov functions method is used to study the disturbance 

tolerance/rejection problem for discrete-time switched systems with actuator saturation 

for the first time and no solvability of the problem for subsystem is required, while in the 

existing literature, the problem has been investigated by using the switched Lyapunov 

function method which requires the solvability for each subsystem; third, the anti-windup 

compensators are designed within an LMI framework which possess better performance 

for switched systems with input saturation, while the existing literature either only 

conducts the analysis, not design, or studies the design issue using the switched Lyapunov 

function. 
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