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Abstract 

This paper studies the H∞ tracking control problem for nonlinear fractional-order 

systems based on linear matrix inequalities (LMIs) method. Firstly, the stability analysis 

problem of the closed-loop systems is solved in terms of fractional-order Lyapunov theory. 

Then, our aim is to design an observer-based output feedback controller, such that though 

the unavoidable phenomenon of external disturbances and nonlinear items is fully 

considered, the resulting closed-loop system is asymptotically stable with a prescribed  

H∞ performance level. Algorithms based on properly formulated LMIs are established for 

the existence of an admissible controller and the observer-based output feedback 

controller parameters. Finally, a numerical example is provided to illustrate the 

effectiveness of the proposed method. 

 

Keywords: Fractional-order systems, tracking control, output feedback control, 
H  
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1. Introduction 

Fractional calculus has a history almost as long as classical calculus, but it was once 

thought of as a pure mathematical problem and therefore was not applied to engineering 

practice widely. Fractional-order (FO) calculus is now widely accepted taking benefit of 

the fractional operator capacity for modeling various physical phenomena, such as 

thermal systems [2], batteries [19], neurons [1], with less parameters then integer order 

systems. That is why efficient stability analysis and controller design methods have been 

developed to study their properties. Concerning stability, in terms of linear matrix 

inequality, the stability conditions have been given for continuous-time FO systems of 

order 0 1   in [20] and of order 1 2   in [21]. For FO-LTI systems with interval 

parameters, the stability and the controllability problems have been addressed for the first 

time in [16] and [4], respectively. Performances were also considered in [10], where a 

method to evaluate the H2 norm of a FO system. Furthermore, concerning the extension of 

H∞ theory [24] to FO systems, analysis results on the computation of H∞ norm for FO 

system have recently been published in [6]. The H∞ state feedback and output feedback 

controllers for FO systems were proposed in [7] and [13], respectively. With the extension 

of Youla-Kucera parameterization, the H∞ control problem for LTI FO system was 

addressed in [14]. Further researches for L∞ norm was considered in some of them as [6] 

and [8] as instance. 
On the other hand, design of robust tracking controller for uncertain nonlinear systems 

has aroused a growing interest in the past years. In general, tracking control design is 

more general and more difficult than the stabilization control design. Various systems 

including strict-feedback systems [23], networked control systems [15], neural networks 

[12], stochastic Lagrangian systems [5], etc., the tracking controller design methods have 
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been proposed. For tracking control problem with H∞ performance, reference [22] has 

discussed the fuzzy control design method for nonlinear systems with a guaranteed H∞ 

model reference tracking performance, and a novel neural-network-based robust H∞ 

control strategy is proposed for the trajectory following problem of robot manipulators in 

[25] and so on. But for FO systems so far, very few works exist for the problem of H∞ 

tracking controller design. 

In this paper, we consider the design of tracking controllers for nonlinear fractional-

order systems. The system to be considered is described by a state-space model with 

nonlinear function and external disturbance. The aim is to obtain a model reference based 

output feedback tracking control law. This one includes a observer-based output feedback 

controller and external disturbance attenuation based on an H∞ criterion. First the stability 

problem of the closed-loop system with the output feedback tracking controller is 

investigated. Then a tracking controller design method that yields closed-loop systems 

with H∞ performance specification is investigated. Algorithms based on properly 

formulated LMIs are developed for the above different cases. When these LMIs are 

feasible, an explicit of a desired observer-based output feedback tracking controller is also 

given. 

Notations: Throughout this paper, for real symmetric matrices X  and Y , the notation 

X Y  (respectively, X Y ) means that the matrix X Y is positive semidefinite 

(respectively, positive definite). The notation 
TM  represents the transpose of the matrix 

M . n nI   denotes the n n  identity matrix. In symmetric block matrices, "*"  is used as 

an ellipsis for terms induced by symmetry. Matrices, if not explicitly stated, are assumed 

to have appropriate dimensions. 

 

2. Preliminaries and Problem Formulation 

In this section, we first give the definition of fractional-order differentiation. There are 

several forms of definitions for fractional derivative, such as Riemann-Liouville (R-L) 

fractional derivative, Caputo fractional derivative, Grünald-Letnikov fractional derivative, 

and so on. In this paper, we adopt the following definitions for fractional derivative, the 

R-L derivative, on one hand, defined as [17] 

1

1 ( )
( )

0( ) ( )

n
RL

n a n

td f
D f t d

n a dt t

 


  

  

,                                (1) 

or the Caputo derivative on the other, defined as [18] 
( )

1

( ) 1 ( )
( )

0( ) ( )

a n
C

a a n

td f t f d
D f t

dt n a t

  

  
 

  
,                             (2) 

where n  is an integer satisfying 1n a n   , 
( ) 

 is the Gamma function and is 

defined by the integral 

1( )
0

t zz e t dt 


  
. 

Property 1: Between the two definitions, R-L and Caputo fractional derivatives, there 

are the following relations: 

( )

0

( ) ( ) (0), 1
( 1)

kn
RL C k

k

t
D f t D f t f n a n

k a


 





   
  


,                 (3) 
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( ) [ ( ) (0) ], 1
!
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D f t D f t f n a n
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.                    (4) 
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Let us consider the R-L fractional derivative of order  , then we have 

( ) ,
(1 )

RL at
D a









                                              (5) 

where   is a positive constant. 

    Considering the following fractional-order systems with external disturbances and 

the nonlinear functions: 

( ) ( ) ( ) ( ( )) ( ),0 1D x t Ax t Bu t f x t D t

      
               (6) 

( ) ( ),y t Cx t
                                                     (7) 

where   is the time fractional derivative order. ( ) nx t R  is the state, ( ) mu t R  is 

the control input, ( ) sy t R  is the measured output, ( ) st R   is a bounded external 

disturbance and 
( ( ))f x t

 is a nonlinear function. The system matrices , ,A B C  and 
D  

are known real constant matrices with appropriate dimensions. 

Assumption 1 The nonlinear function 
( ( ))f x t

 is assumed to satisfy the Lipschitz 

condition: 

ˆ ˆ( ( )) ( ( )) ( ) ( ) ,f x t f x t x t x t  
 

where   is the Lipschitz constant. 

    To derive an output control law, an additional observer is added. This one is based 

on the nominal model with nonlinear functions: 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( )) [ ( ) ( )],0 1D x t Ax t Bu t f x t L y t y t                (8) 

ˆ ˆ( ) ( ),y t Cx t
                                                  (9) 

where 
ˆ( ) nx t R  is the estimated state and L  is the observer gain. 

To specify the desired trajectory, consider the following reference model: 

( ) ( ) ( )r r rD x t A x t r t  
,                                      (10) 

where 
( )rx t

 is the reference state, rA
 is a specified asymptotically stable matrix, and 

( )r t
 is a bounded reference input. 

The attenuation of external disturbances is guaranteed considering the 
H  

performance related to the tracking error 
( ) ( )rx t x t

 as follows. 

Definition 1 The 
H  norm is given by 

( ) 0

( ) ( )
sup ,

( )

r

t

x t x t

t







                                          (11) 

where 0   is a positive number and 

( )
( ) .

( )

t
t

r t




 
  
   

Now, we consider the following output feedback controller for the FO system (6)-(7) 

ˆ( ) [ ( ) ( )],ru t K x t x t  
                                         (12) 

where K  is a constant matrix to be determined. 

    Let us introduce a new state variable 

ˆ( ) [ ( ) ( )] [ ( ) ( )] ( )
T

T T T

r rx t x t x t x t x t x t      
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then, combining the control law (12), the system (6)-(7) and the observer (8)-(9), one 

obtains, after some easy manipulations, the following closed-loop system: 

( ) ( ) ( ) ( ( ), ( )),D x t Ax t D t I x t x t

   
                               (13) 

where 

0 0 0

, ,

0 0 0

r

r

A LC D

A BK A BK A A D D I

A I



 

   
   

     
   
        

ˆ0 0 ( ( ) ( ( ))

0 , ( ( ), ( )) ( ( )) ( ( )) .

0 0 ( ( ))

r

r

I f x t f x t

I I I x t x t f x t f x t

I f x t



   
   

  
   
        

Note that, with the state vector 
( )x t

, (11) can be rewritten with 
 0 0 :H I

 

( ) 0

( )
sup .

( )t

Hx t

t






                                                (14) 

The objective now is to compute the gains K  and L  to ensure the asymptotic stability 

of the closed-loop system (13) guaranteeing the 
H  tracking performance (14) for all 

( )t
. 

 

3. Main Results 

In this section, we give solutions to the 
H  stability analysis and the tracking control 

problems formulated in the previous part. We first give the following results which will 

be used in the proof of our main results. 

Lemma 1 [9] Let 0x   be an equilibrium point for the nonautonomous fractional-

order system 

( ) ( ) ( , ), 0 1.RL CD x t D x t f t x                                   (15) 

Assume that there exists a Lyapunov function 
( , ( ))V t x t

 and class- k  functions 

( 1,2,3)i i 
 satisfying 

1 2( ) ( , ( )) ( ),x V t x t x  
                                         (16) 

and 

3 3( , ( )) ( ), ( , ( )) ( ).RL CD t x t x D t x t x     
                      (17) 

Then the nonlinear fractional-order system (15) is asymptotically stable. 

Lemma 2  (Schur Complement) [3] The following linear matrix inequality 

0,
T

Q S

S R

 
 

   

where ,
T T

R RQ Q  , is equivalent to 

(i) 0 0T -1Q> , R S Q S > ,  
or 

(ii) 0 0.-1 TR> ,Q SR S >  

Lemma 3 [11] Let a matrix 0 , a matrix X  with appropriate dimension such that 

0TX X  , and a scalar  , the following inequality holds: 
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2 1( )T TX X X X       . 

Now, we are in a position to present a solution to the 
H  tracking control problem for 

FO system (13). 

First, we will present a solution to the 
H  stability analysis for FO systems (13) with 

the order 0 1  . 

Theorem 1 The FO system (13) with 0 1   is asymptotically stable and its 
H  

norm is bounded by  , if there exists a symmetric positive definite matrix P  such that 

2 0 0

PD PI

I





 
 
   
                                                   (18) 

where 

0 0

2 , 0 .

0 0

T T TPA A P P H H



     



 
 

      
 
    

Then the stability of the closed-loop system (13) is ensured and the 
H  tracking 

control performance (14) is guaranteed with an attenuation level  . 

Proof. Consider the following candidate Lyapunov function: 

( ) 2 ( ) ( )TV t x t Px t ,                                             (19) 

where 0TP P   

Using Property 1, the fractional-order Caputo derivative of (19) is given by 

( )

0

( ) {2 ( ) ( ) [ (2 ( ) ( )) (0) ] 0}
!

kn
C RL T T k

k

t
D V t D x t Px t x t Px t k

k

 



  
, 

or equivalent to 

1

( ) [ ( ) ] ( ) ( ) [ ( )]

(1 )
2 [ ( )] [ ( )]

(1 ) (1 )

2 [ (0) (0)].

C RL T T RL

RL k RL k

k

RL T

D V t D x t Px t x t P D x t

D x t P D x t
k k

D x Px

  














 

 

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



         (20) 

Using equation (5), (20) can be modified as follows: 

1

( ) [ ( ) ] ( ) ( ) [ ( )]

(1 )
2 [ ( )] [ ( )]

(1 ) (1 )

2 [ (0) (0)].
(1 )

C RL T T RL

RL k RL k

k

T

D V t D x t Px t x t P D x t

D x t P D x t
k k

t
x Px

  


















 

 


    


 



          (21) 

For notational convenience of the results formulation, we replace R-L fractional 

derivative (21) by Caputo fractional derivative, then equation (21) can be rewritten as 

( ) [ ( ) ] ( ) ( ) [ ( )]

2 ( ) 2 [ (0) (0)]
(1 )

C C T T C

T

x

D V t D x t Px t x t P D x t

t
t x Px

  







 

  
                           (22) 
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where 

1

(1 )
( ) [ ( ( )]

(1 ) (1 )

RL k RL k

x

k

t D x t P D x t
k k










 
 

    
 ）] [

 
we can consider the following boundedness conditions: 

( ) ( ) ( ).T

x t x t Px t 
 

Since 

2 [ (0) (0)] 0
(1 )

Tt
x Px








   and substituting (13) into (22), one can easily 

obtain that 

( ) [ ( ) ( ) ( ( ), ( ))] ( )

ˆ( ) [ ( ) ( ) ( ( ), ( ))]

2 ( ) ( )

( ) ( 2 ) ( ) ( ) ( )

ˆ( ) ( ( ), ( )) ( ) ( ) ( )

( (

C T

T

T

T T T

T T T

D V t Ax t D t I x t x t Px t

x t P Ax t D t I x t x t

x t Px t

x t PA A P P x t x t PD t

x t PI x t x t t PD x t

x











 

 



 

 



  

  



   

 

 ˆ), ( )) ( ) ( )

( ) ( 2 ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ( ), ( )) ( ( ), ( ))

( ) ( 2 ( ) ) ( )

( ) ( )

T T

T T T

T T T T

T

T T T T

T

t x t PI x t

x t PA A P P x t x t PD t

t PD x t x t PI PI x t

x t x t x t x t

x t PA A P P PI PI x t

x t PD t







 



 

  



   

 



    

 ( ) ( ) ( ).T Tt PD x t
                   (23) 

Considering the 
H  condition in equation (14), we have 

2( ) ( ) ( ) ( ) ( ) 0C T T TD V t x t H Hx t t t      .                      (24) 

Using inequalities (23), (24) and the fractional direct Lyapunov method in Lemma 1, 

the sufficient condition can be written as 

1

2

( ) ( )
0,

( ) ( )

T
x t x tPD

t t



 

    
    

       
where 

2 ( )T T T TPA A P P PI PI H H        

By Schur complement Lemma, it is easy to have (18) in Theorem 1. This completes the 

proof. 

Then, the FO output feedback control problem for FO systems (13) with order 

0 1   is presented in the following Theorem. 

Theorem 2 Consider the FO system (13) with order 0 1   and let 
0 

 be a 

prescribed constant scalar. The 
H  problem is solvable if there exist nonsingular 

matrices 0N  , 1 0P 
, 3 0P 

, 
,Y

 Z and scalars  ,   such that the following 

conditions are satisfied 
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1 2

3 4

1

2 * * *

* *
0

0 *

ˆ 0 0 ( 1)T

NI

N I



  

 
 

 
  
  
 

                            (25) 

where 

1

0 0

0

0 0 0

I

BY D N

 
 

  
 
   , 

11

2 22

33

* *

0 *

0 ( )T T

rA A N 

 
 

  
 
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3

3

3

0

0 0

0

I P

I

I P

 
 

 
 
   , 

2

4

* *

0 *

0 0

I

I

I

 
 

   
 
  , 

 ˆ 0 0N N
. 

and 

11

2

11 1

1

22

33 3 3 3

11 1 1 1

,

0

2 ,

2 2 ,

( ) ( ) 2 .

T

T T T

T T

r r

T T

D P I

P I

NA AN Y B BY N

A P P A P I

P A LC A LC P P I

 



  

  

   
 

   
 
  

     

    

      
 

Then the asymptotic stability of the closed-loop FO system (13) with order 0 1   

is ensured and the H∞ tracking control performance (14) is guaranteed with an attenuation 

level  . Furthermore, if a solution exists, the gains K  and L  are obtained using: 
1 1

1, .K YN L P Z  
                                               (26) 

Proof. For a convenient design, let us assume that 1 2 3{ , , }.P diag P P P
 Equation (18) 

can be rewritten as 

11

21 22

31 32

41 42

* * *

* *
0

*

0

R

I

 
 
 
  
   
 
                                               (27) 

where 
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2 22
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P BK
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21

1 2
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T T
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D P D P 
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   
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22 2

2 2 *
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T T
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2 0
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I
R
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 
  
  , 

2

31

1

0

0

P

P
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   

  , 

3

32

0

0 0

P 
   

  , 

2

41

2

0

0

P

P

 
   

  , 
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3

0 0

0P

 
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and 
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22 2 2 2( ) ( ) 2 .T TA BK P P A BK P I I         
 

To rearrange the matrices involved in (27), a congruence with the full-rank matrix 

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
    

is made. Thus (27) is equivalent to 

11

21 22

31 32

41 42

* * *

* *
0

0 *

0 I

 
 
   
  
 

                                                (28) 

where 

11

11 2

1

*
TD P I 

 
   

  , 

1

21

2 2

0P

P BK P D

 
   

  , 

22

22

*

0

I 
   

  , 

2

31

2

0 ( )

0

T T

rA A P I

P

   
   

  , 

3 3 3

32 2

3

2 2 *T T

r rA P P A P I

P I

  



   
   

  . 

Then, pre- and post- multiplying the LMI (28) by 
diag{ }N N N N I I I I

 and 

its transpose, respectively, with 
1

2 1, , ,N P Y KN Z PL  
 one obtains: 

11

22

33

2

3

3

* * * *

0

0 0 0 ( )
0

0 0 0

0 0 0 0 0

0 0 0 0 0

T T

r

N N

BY D N

A A N

I P I

I I

I P I



 



  
 
      
      

 
    

  
 

        (29) 

where 

0 0

0 0 ,

0 0

N

N N

N

 
 


 
    

22 2 ( ) .T T T TNA AN Y B BY N N I N         
 

Now, applying Lemma 3 to 11N N
, it yields 
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2 1

11 112 .N N N     
                                      (30) 

Then, applying the Schur complement, (30) becomes 

11

22

2
0.

N I
N N

  
   

                                       (31) 

Substituting (31) into (29), we obtain the following inequality 

1 2

3 4

2 * *

* 0

0

NI 
 

  
 
                                           (32) 

where 

11

2 22

33

* *

0 *

0 ( )T T

rA A N 

 
 

  
 
     . 

Applying Schur complement to (32), the conditions of Theorem 2 hold. Finally, by 

Theorem 1, the FO systems (13) with order 0 1   is asymptotically stable and 

satisfying the H∞ performance under the tracking control scheme (8), (9) and (12), with 

the controller gain in (26). This completes the proof. 

 

4. Numerical Example 

In this section, we provide a numerical example to demonstrate the validity of the 

design method. 

Consider the tracking controller design for the fractional-order systems described in 

(6)-(7) with the following parameters: 

 
5 1 2 1 0

, , 1 1 , .
0 3 3 0 1

A B C D

      
        

        
After trials, the presented simulations are performed with the following tuning: 

(1) The reference model was arbitrary chosen with 

0 1

6 5
rA

 
  

    Hurwitz to set a 

desired dynamics to follow. 

(2) The values 
1, 10, 0.1, 100      

 were arbitrary chosen. 

(3) The solutions 1 3, , ,P P N Z
are computed (if feasible) by solving the LMI condition 

(25) given in Theorem 2 with classical Matlab LMI Toolbox. 

(4) Finally, the gain K  and L  are obtained from the directive change of variable 
1 1

1, .K YN L P Z  
 

Therefore, for the proposed example, the solutions of Theorem 2 are obtained using 

the Matlab LMI toolbox and are given by the gains  

 
77.6617

0.1937 0.4621 ,
116.4462

K L
 

   
   

and the matrices  
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 

1 3

52.3438 45.8596 5.7204 0.7685
, ,

45.8596 50.2918 0.7685 4.0639

3.4064 0.6698
, 0.3504 0.8201 ,

0.6698 2.0166

P P

N Y

   
    

   

 
  

   

3
9.4053

10 ,
9.4178

Z
 

   
   

and the minimum of 
H  performance 

0.9 
. 

The initial system state 
 (0) 0.01 0

T
x 

 and observed state 
 ˆ(0) 0 0.01

T
x 

 

for 
 ( ) 0.01sin ( ) 0.01sin ( )

T
r t t t 

. Note that the system is subject external 

disturbances 
 ( ) 0.01sin ( ) 0.01sin ( )

T
t t t  

 and the nonlinear function 

 ( ( )) sin( 0.3 0.1 ) ( ).f x t x t
 The simulation results are shown in Figure 1-Figure 4. 

Figure 1 depicts the state response of 1( ),x t
 the reference state response of 1( )rx t

 with 

0.8  ; the state response of 2( )x t
, the reference state response of 2( )rx t

 are shown in 

Figure 2 with 0.5  . In Figure 3, the error of 1 1( ) ( )rx t x t
 with 

0.5, 0.8, 0.9 
 are 

shown; and the error of 2( )x t
 and 2( )rx t

 are presented in Figure 4 with 

0.5, 0.8, 0.9. 
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Figure 1. State Response 1( )x t
 and 1( )rx t
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Figure 2. State Response 2( )x t
 and 2( )rx t
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Figure 3. Error of 1( )x t
 and 1( )rx t

 



International Journal of Control and Automation 

Vol.10, No.3 (2017) 

 

 

378   Copyright ⓒ 2017 SERSC 

0 5 10 15 20 25 30 35 40 45 50
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Time(s)

x
2
(t

)-
x

r2
(t

)

 

 

=0.5

=0.8

=0.9

 

Figure 4. Error of 2( )x t
 and 2( )rx t

 

 

5. Conclusions 

This paper investigates the H∞ tracking controller design problem for nonlinear 

fractional-order systems, in which the nonlinear function is assumed to satisfy the 

Lipschitz condition. By using a Lyapunov functional, some conditions have been 

established to ensure that the resulting closed-loop system is asymptotically stable with a 

prescribed H∞ performance level. An observer-based output feedback controller design 

method has been proposed for the existence of an admissible controller and corresponding 

controller parameters. A numerical example has been employed to show the effectiveness 

of our proposed controller design method. 
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