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Abstract 

In this paper, using nonlinear state feedback, a novel general formula is proposed for 

the problem of Hopf bifurcation system control. This method does not increase 

dimensions of the system and keeps equilibria of the original system unchanged. The 

Rössler system is used as an example to illustrative the application of the method. Using 

Hurwitz criterion, the constraints of the parametric controller are derived. The idea of 

cylindrical algebraic decomposition (CAD) is employed to compute the constraints to find 

the parameter ranges of the designed controller, and the controller can be designed to 

stabilize the system using any feasible control parameters in the ranges. The designed 

controller not only can stabilize two non-symmetric equilibria but also can keep the Hopf 

bifurcations at the equilibria of the Rössler system. Computer simulation results are 

presented to demonstrate the theoretical results. 

 

Keywords: Parametric controller, Hopf bifurcation control, Cylindrical Algebraic 

Decomposition (CAD), Rössler system 

 

1. Introduction 

In the Hopf bifurcation control, the basic task is to change the system dynamics in 

order to achieve the desired properties, such as delaying the onset of an inherent 

bifurcation, changing the parameter value of an existing bifurcation point, stabilizing a 

bifurcated branch, modifying the shape or type of a bifurcation chain, optimizing the 

system performance near a bifurcation point, or a combination of some of these objectives 

[1-2]. 

The technique of Hopf bifurcation control has been widely applied to solve physical 

and engineering problems (including electronic circuits [3-5], power systems [6-7], 

chemical [8], etc.). The control of Hopf bifurcation system has become a prime subject in 

nonlinear dynamics and has been widely investigated in recent years [9-12]. Many 

techniques of Hopf bifurcation control have been found. For example, in [10], a small-

world network model with the delay feedback is considered and with the controller, one 

can change the critical value of bifurcation and thus enlarge the stable region. Paper [11] 

presents and discusses a methodology to include in the power system security assessment 

and control functions a module to deal with Hopf Bifurcations. All these studies are 

effective, but the Hopf bifurcation problems and the designed controllers are special. In 

some research, the design methods of Hopf bifurcation control have been discussed [13-

16]. The designed controller better than before, but they are still limited to general 

applications. This fact motivates our work for the paper.  

More notable is the works in [1, 20], using parameterization technology and nonlinear 

state feedback, a general explicit formula is derived for controlling Hopf bifurcations. The 

formula, which can be applied to many kind of dynamic systems, and not change the 

equilibria of the original system. In [1], the method is applied to the Hopf bifurcation 

control of the Lorenz equation and Rössler system, and the computer simulation results 
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are presented to confirm the analytical predictions. However, the controller designed by 

the method has its disadvantages: (i) the form is complex; (ii) the order is high; (iii) the 

controller parameter space has not been solved completely; (iv) the equilibria are included 

in the controller. In [20], the method in [1] has been improved, and the Rössler system is 

used as an illustrative example to present the new method. The form of designed 

controller is simplified, and the order is lower. The approach applies the graphical 

technique to find the stability boundaries of equilibrium points in parameter space, and 

then the parameters have been solved completely.  

Although the controller form in [20] is simpler than which in [1], it is still complex and 

the equilibria are also included in the controller. In [21], the further application has been 

done, but the paper does not improve the controller. Therefore, in this paper a novel 

parametric controller design method is proposed for Hopf bifurcation system. The 

designed controller is composed of the system functions and the polynomial of system 

states, and keeps the equilibria of origin system unchanged. Not included the equilibrium 

point of the system, the formula is general and it is simpler than the one in [20]. The 

stability constraints of the controller parameters at equilibria are obtained using the 

Hurwitz criterion, and the complete parameters space of the controller can be found using 

the graphical technique (Cylindrical Algebraic Decomposition, CAD). The Rössler 

system is used as an example to illustrative the application of the approach. 

In this work, the method of controller design for Hopf bifurcation systems and its proof 

is present in Section II. In Section III, using the Rössler system as an example, the process 

of the controller design is illustrated and the controller parameter space is solved. In 

Section IV, the computer simulation results are presented. Finally, the attained 

conclusions are presented in Section V. 

 

2. A General Function of Hopf Bifurcation System and Parametric 

Controller Design 

Before discussing the design of Hopf bifurcation control system, a general form for the 

system representation is presented. The proposed system description is not restricted to 

Hopf bifurcation, and it can be applied to study the control of other singularities or 

bifurcations such as zero bifurcations. To be more specific, consider the following general 

nonlinear system:  

( , )X F X                                                                (1) 

Where the dot denotes differentiation with respect to time t , 
 1 2, , ,

T

nX x x x
 is a n-

dimensional state vector, while R  is a scalar parameter, called bifurcation parameter 

(Note, generally, one may assume that   is an m-dimensional vector for 1m  .). 

 1 2( , ) ( , ), ( , ), , ( , )
T

nF X f X f X f X   
 is a matrix of nonlinear polynomial system 

that has Hopf bifurcations. Let 
*X  be an equilibrium of the system, i.e. 

*( , ) 0F X   , for 

any value of 


.  

In this paper, we design a Hopf bifurcation controller for the 3 dimensional system, 

then consider the following theorem. 

Theorem 1: A 3 dimension system can be considered as: 

1 1

2 2

3 3

( , )

( , )

( , )

x f X

x f X

x f X











                                                              (2) 

where, 1 2 3[ , , ]TX x x x
. Let 

det( ) 0J 
, J is the Jacobian at equilibrium 

*X  of system 

(2). The parametric controller can be designed as: 
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 1 2 3( , ) ( , ), ( , ), ( , )
T

u X a u X a u X a u X a
, 

Generally, only one of 1( , )u X a , 2 ( , )u X a  and 3( , )u X a  need to be designed, the others 

will be choose to zero. Here, the control can be written as: 

0

1

( , ) ( , ) ( , ) ( , )
n

j j k k

k

u X a g X a f X a c f X a


 
                                   (3) 

where 1,2,3j  , 1,2,3k  , k j , 
( , )ju X a

is composed of the system vector basis and 
2 2 2

1 2 1 3 2 1 2 1 3 2 2 1( , ) n n n n n ng X a c c x c x c x c x c x c x                             (4) 

0 1 2 2 1{ , , ,..., }k nc c c c R  , 3n   are the parameters of the designed controller. If the 

controller parameters can satisfy the constraints of the Hurwitz criterion, the system (2) 

can be controlled by selecting the controller parameter values. 

Proof:  

To be more simplifying, generally, the parametric controller can be designed as: 

2 2 01 1( , ) ( ) ( , ) ( , )u X g X f X c f X    
                                   (5) 

here, 
2 2

1 2 1 3 2 4 3( ) ( )g X c c x c x c x    , 01 1 2 3 4{ , , , , }c c c c c R , and 01c , 1c , 2c , 3c , 4c  are 

controller parameters.  

Add the controller (5), the system can be rewritten as: 

1 1

2 2 2

3 3

( , )

( , ) ( , )

( , )

x f X

x f X u X

x f X



 






 
   

for this closed loop system, the Jacobian is given as: 

1 1 1

1 2 3

21 22 23

3 3 3

1 2 3

f f f

x x x

J j j j

f f f

x x x

   
   
 
 
 
   
      

where,  

2 2 1
21 2 2 01

1 1 1

( )
f f f

j g X c f c
x x x

  
   
  

   

2 2 1
22 3 2 2 01

2 2 2

( , ) 2
f f f

j g X c f x c
x x x


  

   
  

   

2 2 1
23 4 2 3 01

3 3 3

( , ) 2
f f f

j g X c f x c
x x x


  

   
  

   

Let the system equilibrium is 
 0 10 20 30, ,X x x x

, then the system characteristic 

equation at the equilibrium can be given as: 
3 2

0 1 2 3( ) det( )G I J a a a a         
 

where,  

0 1a   

0

31 1 2 2
1 01 3 2 2

2 1 2 2 3

( , ) 2

X X

ff f f f
a c g X c f x

x x x x x




    
       

     
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3 3 31 2 1 2 2 2 1
2 2 2 4 3 2

1 2 2 1 3 2 2 3 2 2

3 3 3 31 1 1 1 2 1 1 2
3 2 2 01

3 1 3 2 3 2 1 2 1 3 2 1

31 2

3 1

( ) ( , ) 2

2 ( ) ( )

f f ff f f f f f f
a g X c f c x f

x x x x x x x x x x

f f f ff f f f f f f f
c f x c

x x x x x x x x x x x x

ff f

x x


         

     
         

          
      

           

 
 
 

0

3 32

3 2 2 3 X X

f ff

x x x x


 
 

    
 

3 3 3 3 31 2 1 2 1 2 1 2 1 2
3

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2

3 3 3 3 31 2 1 1 1 1
3 2 4 3 4 3 2

3 2 1 1 3 1 2 2 1 2 3

(

) ( , ) ( 2 2 2

f f f f ff f f f f f f f f f
a

x x x x x x x x x x x x x x x

f f f f ff f f f f f
g X c x c x c x c

x x x x x x x x x x x


              
     

              

         
     
          



0

3 3 3 3 31 1 1 2 1 2 1 2
3 2 2 2

3 1 3 2 1 2 3 1 3 2 2 1 3

3 3 31 2 1 2 1 2

2 3 1 3 1 2 3 2 1

2 )

X X

f f f f ff f f f f f f f
c x c f

x x x x x x x x x x x x x

f f ff f f f f f

x x x x x x x x x


           
   

            

       
   
         

 

here, 1 2 3( , , )i if f x x x , 1,2,3i  . 

It can be seen, when 0X X , the values of 

i

j

f

x




 and if  are fixed, here 1,2,3i  , 

1,2,3j  . Therefore, values and symbols of 1a , 2a  and 3a  can be changed by 01c , 1c , 2c , 

3c , 4c . According to the Hurwitz criterion, the constraints of the controller parameters 

can be written as the following: 

1

2

3

0

0
:

0

0

a

a

a

g








 



                                                              (6) 

here, 1 2 3g a a a 
. 

So, if the constraints   can be satisfied, the system (2) can be controlled by selecting 

the values of controller parameter 01c , 1c , 2c , 3c  and 4c . 

Remarks: By no means the control formula given in Eq. (3) and Eq. (4) are a unique 

control law. There are many other feasible controllers. 

As shown in the next section, as an example, the Rössler system will be applied to 

illustrate the effectiveness of the controller designed in Theorem 1. 

 

3. An Example 

The Rössler system can exhibit complex dynamics, including equilibria, limit cycles, 

and chaos. In this section, we will apply it as an example to demonstrate the calculation 

method of designed controller parameters and to prove the effectiveness of the controller.  
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3.1. Rössler System Description  

The Rössler system can be described as 

( )

x y z

y x ay

z b z x c

  


 
                                                              (7) 

where [ , , ]TX x y z , a , b , c  are adjustable parameters, and. Here, a  is selected as 

bifurcation parameter. We suppose that ( 0x , 0y , 0z ) is an equilibrium of the system (7), 

then 0 0y z  , 0 0x az . 

 

3.2. Controller Design  

According to equation (3), the controller of the Rössler system is designed as: 

2 2 01 1( , ) ( ) ( , ) ( , )u X a g X f X a c f X a   , 

where  
2 2

1 2 3 4( ) ( )g X c c x c y c z     

and 01c , 1c , 2c , 3c , 4c  are the parameters of the controller. 01c R , 1c R , 2c R , 

3c R , 4c R . To be more simplifying, here 01 0c c , 3 4 0c c   are considered, then 

2 ( , )u X a  can be rewritten as: 

2 1 2 0( , ) ( )( ) ( )u X a c c x x ay c y z                                         (8) 

The order of the designed controller (8) is 2. It is easy to see that the order in this paper 

is lower than the one in [20], where it is 3. 

Adding the controller 2 ( , )u X a  to original system (7), the new system with nonlinear 

state feedback controls is: 

2 ( , )

( )

x y z

y x ay u X a

z b z x c

  


  
                                                    (9) 

The controller (8) does not change the equilibria of the original system (7). In order to 

calculate the parameters of 2 ( , )u X a , evaluating the Jacobian of system (9) at the 

equilibrium yields:  

2

1 2 0 1 2 0 0 0

0 0

0 1 1

1

0

EJ c c az a ac c a z c c

z az c

  
 

      
 
    

which gives the characteristic polynomial : 
3 2

1 2 3( ) det( )EG I J a a a           
where  

2

1 2 0 1 0 0a c c a z a ac az c     
                                        (10) 

2 2 2

2 1 2 0 2 1 0 0 0 1 0 0 01a c c az c a b cac a z cc a z c az c z ac                      (11) 

3 2 0 1 2 0 0 12 2 2a c ab az c cc cc az z ac                                   (12) 

Using the controller parameter constraints (6), the stability conditions of the equilibria 

are  

0ja 
, 1, 2, 3j                                                          (13) 

and  
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0g                                                                     (14) 

The equation (13) must be satisfied, which imply that the static bifurcation does not 

exist in controlled Rössler system. In equation (14), 0g   is a system stability condition, 

at 0g   Hopf bifurcation occurs.  

 

3.3. System Constraints Calculation 

The Rössler system trajectories change significantly at various system parameters, 

considering the system parameters as 2 / 5a  , 2b  , 4c  . While without the controller 

in the system, the trajectory is in chaotic state at the equilibrium. In the following, the 

numerical results of the constraints based on the inequalities (13) and (14) are calculated 

as:  

1 0 1 2 0 0

18 2 4 2

5 5 25 5
a c c c z z    

 

2 0 0 0 1 1 0 2 2 0 0

2 3 4 8 2 29 3
4

5 5 25 25 5 25 5
a c c z c c z c c z z       

 

1 1 1 0 2 2 0 0

4 8 8 4
4 4

5 5 5 5
a c c z c c z z     

 
From system (7), the equilibria are 

4
(2 5, (5 2 5), 5 2 5)

5

(0.211145618, 0.527864045, 0.527864045)

eE     

   
4

(2 5, (5 2 5), 5 2 5)
5

(3.788854382, 9.472135955, 9.472135955)

eE     

   
Firstly, to satisfy the constraints in (13) and (14), the Hurwitz criterion parameters at 

equilibrium eE

 are  

1 0 1 2

0 1 2

2 4 8 4
(5 2 5) 5

5 25 5 5

0.4 0.08445824720 3.38854382

a c c c

c c c

      

   
 

2 0 1 2

0 1 2

4 1 8 42 4 26 58
(2 5) ( 5) ( 5) 5

5 5 25 25 5 5 25

3.788854382 0.5155417528 0.1088543820 0.0123222922

a c c c

c c c

        

   
 

3 1 2

1 2

8 32 16 8
5 ( 5) 5

5 5 5 5

3.577708764 0.7554175280 3.577708764

a c c

c c

     

  
 

1 2 3

2 2 2

0 1 2 0 1

0 2 1 2 0 1

2

1.515541753 0.08248668045 0.0036774601 0.8124334022

0.1715417528 0.03483340224 5.140879227 2.131893444

0.45013995857 1.414380124

g a a a

c c c c c

c c c c c c

c

    

   

   

 
 

Secondly, the Hurwitz criterion parameters at equilibrium eE

 are 

1 0 1 2

0 1 2

2 4 8 4
(5 2 5) 5

5 25 5 5

0.4 1.515541753 0.188854382

a c c c

c c c

      

   
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2 0 1 2

0 1 2

4 1 8 42 4 26 58
(2 5) ( 5) ( 5) 5

5 5 25 25 5 5 25

0.211145618 0.9155417530 3.468854382 10.38767771

a c c c

c c c

        

   
 

3 1 2

1 2

8 32 16 8
5 ( 5) 5

5 5 5 5

3.577708764 13.55541753 3.577708764

a c c

c c

      

   
 

1 2 3

2 2 2

0 1 2 0 1

0 2 1 2 0 1

2

0.084458247 0.1464866804 2.10287746 0.332433402

1.259541753 1.110033402 4.139120773 0.300106556

1.137060041 0.646380124

g a a a

c c c c c

c c c c c c

c

    

   

   

 
 

Then the constraints of the system from (13) can be given as:  

0

0

j

j

a

a





 


 , 1, 2, 3j  ;                                                  (15) 

It can be noted that if 2 0c  ; 3 0a   and 3 0a   will never occur at same time. 

Therefore, the condition of 2 0c  must be satisfied for the given design. From 3 0a   and 

3 0a  , following inequalities can be obtained: 

1 23.577708764 0.7554175280 3.577708764 0c c    and 

1 23.577708764 13.55541753 3.577708764 0c c    . 

These can be rewritten as: 

1 2

1 2

1.0 0.2111456180

1.0 3.788854383

c c

c c

  


                                                                                                     
(16) 

here, if 2 0c  , the two inequalities cannot be satisfied at same time. Therefore, 

2 0c   and 1 1c   . 

It is noted that, from the Cylindrical Algebraic Decomposition (CAD) theory, the 

problem of solving the controller parameters 1c , 2c and 3c  can be transformed into three-

dimensional space segmentation problem, and their characteristic polynomials are the 

dividing planes of the space. The divided sub-space is continuous and the characteristics 

of all points are consistent; therefore, a feature of any point in the subspace can explain 

the subspace features. The basic range of 1c  and 2c  have been identified in (16). In order 

to simplify the process, 2 2c    is chosen in this case. So the three-dimensional 

segmentation problem is converted into a two-dimensional space segmentation problem.  

Then conditions can be simplified to 

1 0 10.4 3.557770876a c c                                                  (17) 

2 0 13.788854382 0.5155417528 0.2300310562a c c                               (18) 

3 13.577708764 2.066873708a c  
                                        (19) 

2 2

0 1 0 1

0 1

1.515541753 0.08248668045 0.8124334022

5.483962733 2.201560248 0.4993903666

g c c c c

c c

   

  
                   (20) 

1 0 10.4 2.842229124a c c   
                                               (21) 

2 0 10.211145618 0.9155417530 3.449968946a c c                                (22) 
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3 13.577708764 23.53312630a c                                         (23) 
2 2

0 1 0 1

0 1

0.084458247 0.1464866804 0.3324334020

1.620037267 1.919960248 5.491009634

g c c c c

c c

   

  
                  (24) 

The stability boundaries of the system for the designed controller can be obtained from 

(17) ~ (24).  

 

3.4. Calculation of Parameters Using CAD 

In general, it is difficult to calculate the parameters fully from the conditions provided 

in equations (17) to (24). CAD is suitable for parameter range solving problems, and has 

been applied to the system design [17]. In this paper, CAD is used to solve the range of 

parameters 0c  and 1c . As 2 2c    is selected, in the designed controller there are two 

parameters ( 0c  and 1c ) that need to be calculated. A set of curves for the conditions (17) 

to (24) has been drawn on the 0 1c c  plane in Figure 1. Thereafter, the regions where the 

Rössler system can be controlled are extracted. The parameters 0c  and 1c  in each region 

are examined to identify the set of values that satisfy the criteria. Finally, region Q  is 

found, which is surrounded by 3 0a  , 0g  , 3 0a  , 0g  . 1L  is part of the curves of 

g 

 (from point A  to B ) and 2L  is part of the curves of g 

 (from point B  to C ).  
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Figure 1. System Constraints Curves in 0 1c c  Plane  

Point A , B , and C  are three specific points on 0 1c c  plane, where A  is the 

crossover point of conditions (20) and (23). From (20) and (23), 1 6.577708766c  , and 

0 2.698244265c 
 are obtained. B  is the crossover point of conditions (20) and (24). 

According to the two equations, the coordinate of B  can be obtained, and these are found 

as 1 2.061683145c   and 0 0.9048934015c  . C  is the crossover point of condition (19) 

and (24), and the values of parameters corresponding to this point are 

1 0.5777087640c   , 0 3.801520372c  . 
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4. The Simulations 

In this section, the parameters of the controller are calculated based on different cases 

of the system and the simulations will be done. The states of the selected Rössler system 

are in chaos state at the equilibria without the application of controller. After the addition 

of controller, the system states can be controlled within a stable range. There are four 

cases of dynamic situations near the two equilibria eE

 and eE

: (i) both the equilibria 

become stable without Hopf bifurcations; (ii) eE

 is stable while eE

 has a supercritical 

Hopf bifurcation; (iii) eE

 is stable while eE

 has a supercritical Hopf bifurcation; and (iv) 

both equilibria have Hopf bifurcations. 

In order to ensure that there is no bifurcation in all of the four cases, the conditions 

0ia   and 0ia   must be satisfied. The four cases are decided by g 

 and g 

. In fact, if 

0g   the system cannot be stabilized at eE

, and if 0g   the system cannot be 

stabilized at eE

. When 0g  , the system trajectory at eE

 is Hopf bifurcation, and limit 

cycle is stable. Similarly at eE

 the trajectory is Hopf bifurcation when 0g  .  

In the following, the values of 0c  and 1c  will defined for each of the four cases. 

Case (i): Both equilibria become stable without Hopf bifurcations. Both equilibria eE

 

and eE

 of the controlled system (9) are stable and no bifurcations occur. Then the 

following inequalities must be satisfied. 

0

0

g

g





 


  

For this case 0c  and 1c  should be selected in Q  only, avoiding any boundary. Here 

these are selected as 0 1.5c  , 1 2c   for simulation. 

Case (ii): eE

 is stable while eE

 has a Hopf bifurcation. For this case, following 

constraints must be satisfied:  

0

0

g

g





 


  

Here 0c  and 1c  should be selected on the line 1L  but it should not include A  or B . 

Hence, 0 1.5c  is selected, and 1 3.562109985c   is obtained from (20) and (24). 

Case (iii): eE

 is stable while eE

 has a Hopf bifurcation. Similar to the Case (ii), the 

following conditions should be satisfied. 

0

0

g

g





 


  

Where 0c  and 1c  should be selected on the line 2L  but it must not include B  or C . 

Hence, 0 1.5c   is selected, and 1 1.287395373c  . 

Case (iv): Both equilibria have Hopf bifurcations. Following condition must be 

satisfied.  

0

0

g

g





 


  
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This case only be satisfied at the crossover point of the curves 0g   and 0g  , 

where it is the point B  in Figure 1, resulting in 0 0.9048934015c   and 

1 2.061683145c  . At this case, the controller can keep the Hopf bifurcations from the 

equilibria of the Rössler system. 

Then the controller parameters have been calculated for all the four cases. Simulations 

have been performed in order to verify the effectiveness of the controller, and numerical 

results for the four cases are shown in Figures 2~5, where 2 / 5a  , 2b  , 4c  . 

Figures 2(a) and 2(b) show that both eE

 and eE

are stable when the conditions given 

in (41) are satisfied [Case (i)]. Where the selected controller parameter values are 

0 1.5c  , 1 2c  , 2 2c   ; with 0 0 0( , , ) (0.3, 0.5, 0.7)x y z   for (a), and 

0 0 0( , , ) (3.5, 9.5,11.0)x y z    for (b).  
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Figure 2. Trajectories of The Rössler System (12) when both eE

 and eE

 are 
Stable 
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Figure 3. Trajectories of The Rössler System (12) when eE

 is Hopf 

Bifurcation and eE

 is Stable 
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Figure 4. Trajectories of The Rössler System (12) when eE

 is Hopf 

Bifurcation and eE

 is Stable 

Figure 3(a) shows a stable limit cycle bifurcating from eE

, while 3(b) shows that eE

 

is still stable [Case (ii)]. Where the selected controller parameter values are 0 1.5c  , 

1 3.562109985c  , 2 2c   ; with 0 0 0( , , ) (0.4, 0.5, 0.5)x y z   for (a), and 

0 0 0( , , ) (3.5, 9.5,11.0)x y z    for (b).  

Figure 4(a) shows eE

 is stable, and 4(b) shows a stable limit cycle bifurcating from 

eE

 [Case (iii)]. Where the selected controller parameter values are 0 1.5c  , 

1 1.287395373c  , 2 2c   ; with 0 0 0( , , ) (0.3,0.5, 0.7)x y z   for (a), and 

0 0 0( , , ) (6.0, 9.0, 9.0)x y z    for (b). 
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Figure 5. Trajectories of The Rössler System (12) when both eE

and eE

 are 
Hopf Bifurcations 

Figures 5(a) and 5(b) show that both eE

and eE

 are unstable [Case (iv)], and they are 

surrounded by stable limit cycles. Where the selected controller parameter values are 

0 0.9048934015c 
, 1 2.061683145c 

, 2 2c  
; with 0 0 0( , , ) (0.3, 0.52, 0.52)x y z  

 for 

(a), and 0 0 0( , , ) (3.7, 9.5,10.5)x y z    for (b). 
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5. Conclusion 

In this paper a Hopf bifurcation controller design method is proposed for nonlinear 

systems. The designed controller does not affect the equilibrium of the original system. 

As an example, the Rössler system is used to demonstrate the controller design and 

parameter solving process of the proposed method. The range of the controller parameters 

is established using CAD. Furthermore, four set of parameter values are given for 

different cases of Hopf bifurcation at two equilibria of the system. The analytical 

predictions have been verified by numerical simulation. Results show that the proposed 

controller design method be effectively applied to stabilize the system states. When the 

system parameters are same, compared to the existing works, the form of the designed 

controller in this paper is simpler and the order lower. 
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