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Abstract 

The flush air data sensing technology, which is one of the most advanced flight 

parameters measuring strategies in the world, can be employed in the flight environments 

with high speed, large angle of attack, and fine aircraft stealth design. As the source of 

acquiring flight parameters, its measurement value quality will affect the control 

precision of aircrafts directly, and even threaten the safety. To enhance the reliability of 

flight parameters, a novel prototype of self-validating air data systems (SVADS) is 

proposed, in which the merits of flush air data system and self-validating sensors 

technologies are fully combined.  The SVADS not only can output the traditional flight 

parameters such as angle of attack, angle of sideslip, altitude and Mach number, but also 

can perform the fault self-detection, self-diagnosis and status self-estimation. The failure 

can be substituted by an optimal estimated value by means of fault recovery, and the 

working status identifier and dynamic uncertainty of above flight parameters are also 

described. A real experimental platform of SVADS was designed to acquire the output 

signals, and a part of self-validating functions based on wavelet kernel principle 

component analysis (WKPCA) has been implemented. Multiple faults can be detected by 

using redundancy information fully. 

 

Keywords: Air data systems; status self-validation; faults self-detection; wavelet kernel 

principle component analysis 

 

1. Introduction 

Recently National Aeronautics and Space Administration (NASA) has developed the 

flush air data sensing (FADS) system, which has replaced the traditional Pitot tube with 

distributed-mounted pressure points, in order to meet the needs of aircraft stealth 

capabilities, redundancy design, and high Mach number flight [1-2]. However, in real-

world flight, the FADS system cannot acquire its own working status which will directly 

decide whether the current raw measurements value (RWV) can apply to flying control 

system, i.e., the fault self-detection and self-diagnosis function is absent [3]. In addition, 

when faults occur, the RWV has deviated from the expected measurements. To ensure the 

temporary safety of aircrafts, humans hope that the faulty measurements can be 

substituted by best estimated value on line, which can scramble the valuable time to take 

emergency actions i.e., data recovery function under faults is also in shortage. Further, the 

measurements accuracy will be decline after numerous flights. If the accuracy or on-line 

uncertainty information is absent, the flying control and decision will be affected. Based 

on the uncertainty and faults diagnosis results, the system working information should be 

given, however, the status self-estimation function lacks.  

Aiming at the above shortcomings, a novel prototype of self-validating air data sensing 

(SVADS) systems is proposed to validate the output of the air data system and further to 

provide the reliability of the measurement value. Combined some previous work[4-7], the 
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functional architecture of traditional air data system and the proposed SVADS is proposed 

as shown in Figure 1 a) and b).  
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Figure 1. Comparison of Functional Architecture between SVADS System 
and Traditional Ones 

To sum up, the proposed SVADS system not only can output RMV of flight 

parameters such as angle of attack, angle of sideslip, altitude and Mach number, but also 

can perform the fault self-detection, self-diagnosis, self-recovery under faults situation, 

and status self-estimation on line. The faulty RMV can be substituted by an optimal 

estimated value which is called validated measurement value (VMV) by using fault 

recovery method, and the working status identifier and dynamic uncertainty of above 

flight parameters are also described to indicate the measurement value accuracy and 

reliability. Due to the limited length of paper, the fault self-detection strategy, which is 

one of three self-validating techniques in SVADS system, is emphasized here.  

There have been a lot of efforts devoted to performing fault self-detection of air data 

system in recent years. These algorithms are mostly on statistic model; signal analyzes 

technology, neural networks and so on. For example, the statistic model based adaptive 

estimation method has been proposed for the failure detection of air data sensors [8], the 

principle component analysis method has been put up for monitoring electrical 

consumption status of academic buildings [9], the neural networks (NN) based faults 

detection algorithm is studied for monitoring on-line temperature sensor[10]. However, 

the above methods have their own shortcomings in FDI field. Firstly, the statistic theory 

based fault detection model needs a large number of samples under different working 

situation, which refers to the combination of different angle of attack, angle of sideslip, 

altitude and Mach number in this paper. Secondly, the PCA can process linear data 

sample, but it has its own weak point on extracting the real-world non-linear faults 

features. Thirdly, the NN model can process the non-linear feature sample, but it needs a 

lager mount of samples and meanwhile the model is so complex that it would affect the 

real-time performance of SVADS system.   

 Aim at the above shortcomings, a better status self-validation model should be 

established for faults detection, in which it can have good fault detection accuracy under 

small sample problems, simple structure for model reconstruction, and favorable real-time 

capacity. Therefore, the wavelet kernel principle component analysis (WKPCA) 

algorithm is proposed for rapid faults detection of SVADS system. The wavelet kernel 

has high-resolution ability, which can detect the instantaneous failure such as impact and 

interference. The KPCA can map the non-linear faults feature in the low-dimension space 

into linear high-dimension one, which ensures the non-linear faults features processing 

performance in SVADS system. Their merits are combined in our proposed strategy for 

primary status self-validation of air data system. 
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2. Overview of SVADS System 
 

2.1. Structure Composition of SVADS System 

The SVADS system inherits the merits of both flush air data sensing (FADS) system 

and self-validating technology, which plays an important role in improving reliability of 

flight parameters measurement values itself and enhancing the safety in aerospace 

industry. Detailed description of the functional construction models is shown in Figure 2, 

which is composed of flush pressure ports mounted into top parts of aircrafts, windpipes, 

array of pressure sensors, signal pretreatment, input interface involving known auxiliary 

aerodynamics model and other historical information, and processor with implementing 

self-validating algorithms, and output interface. Main self-validation functions and the 

implementation flowchart will be explained as follows. 
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Figure 2. Construction Models of SVADS System 

 

2.2. Failure Self-Detection and Self-Diagnosis  

Once one or more pressure measurements are faulty, the corresponding flight 

parameter is invalid. At this time, it should give failure alarm; therefore, the key issue is 

how to judge measurement value unreliability with prompt solution.   

Failure detection, isolation and further diagnosis are a key part of SVADS system. If 

faults come, the incorrect measurements should be detected, identified and isolated to 

avoid its continuous propagation. A serious flight disaster can be occurred when the 

wrong air data are used in the flying control system.  By using the failure self-detection 

and self-diagnosis, the SVADS system can output the working status and the detailed 

failure information such as what type of, when, and where faults occur. This will benefit 

the further device maintenance, and can also be ready for latter data recovery under faults.  

 

2.3. Data Self-Recovery under Faults  

Data self-recovery under faults is a particular trait of the proposed SVADS system. 

When faults exist, the failure sources can be detected and identified, however, it is not 

enough for aircrafts. To maintain the reasonable control rule, the well-evaluated values of 

true flight parameters such as angle of attack, angle of sideslip, pressure-altitude and 

Mach number are essential to the flying control system, which can ensure the safety of 

aircrafts in the short time. In the SVADS system, the data recovery results are also called 

as validated measurement value (VMS), and they can be acquired by using the 

redundancy pressure ports knowledge. The data validation results are still expressed by 

electric signals of pressure sensors. 
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2.4. Status Self-Estimation Model  

Status self-estimation of SVADS system is mainly to estimate the on-line validated 

uncertainty (VU) of validated flight parameters measurements. And the uncertainty 

evaluation is used to reflect the accuracy of measurement value. Being different from the 

traditional static uncertainty evaluating method, the self-validating sensor is built on the 

dynamic process, in which each measurement should have its corresponding uncertainty 

estimation result. In the status self-estimation process, the difficulty lies in the real-time, 

dynamic estimation and small sample, in which the faults information can be fully 

employed.  No matter which faults, the best evaluated values of data recovery model can 

temporarily be served as the validated outputs. Its reliability under failures will become 

lower with the elapse of time, and the uncertainty will becomes higher correspondingly. 

Generally, the instantaneous faults last for only a short period, and the VU is small; 

however, the permanent faults always exist, and its value is larger to reflect the long-term 

negative effect.  

 

2.5. Implementation of Self-Validation Functions 

The proposed SVADS system centers on the reliability, and aims at resolving some key 

issues, how to evaluate its working status, how to improve its reliability level of 

measurements once it is faulty, and how to indicate its reliability level. The data 

validation process of flight parameters can be illustrated as shown in Figure 3. 
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Figure 3. Flowchart of Status Self-Validation Implementation 

From Figure 3, the raw data of all pressure sensors whose number is set by the pressure 

ports are first input into the faults detection model. When faults are detection, faults 

isolation model can further identify the number of failure and corresponding location of 

fault sources, and meanwhile the fault diagnosis model could diagnose the faults type 

such as the instantaneous impact or disturbance fault, constant bias faults or no output. 

After faults are identified and isolated, the wrong sensor output will be picked out, and it 

is replaced and validated by a best estimated value by using data recovery model. These 
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validated sensor outputs can be used to participate the following flight parameters 

reconstruction. When faults are not detected, the raw data will be processed simply by the 

low-pass filter, and the filtered sensors measurements are also employed to obtain the 

physical flight parameters. The outputs of signal construction model are exactly the 

validated flight parameters measurements. Based on the established signal reconstruction 

model and faults information, the uncertainty propagation law can be derived, and the 

corresponding the uncertainty estimation model can be built. The outputs of the 

uncertainty estimation model are the VU of flights parameters.  

 

3. Faults Self-Detection Methodology of SVADS System 
 

3.1. Faults Detection Overview of SVADS System 

The functional diagram of faults self-detection strategy is shown in Figure 4, in which 

the WKPCA algorithm is employed to detect the non-linear faults. The process mainly 

concludes off-line WKPCA based model establishment and on-line detection. The 

proposed WKPCA can efficiently compute principle components in high-dimensional 

feature spaces by means of integral operators and nonlinear kernel functions. It is the 

participation of kernels that can handle a wide range of nonlinearities, especially the 

wavelet kernel.  Compared to other nonlinear methods, the main advantage of WKPCA is 

that it does not involve nonlinear optimization; it essentially requires only linear algebra, 

making it as simple as standard PCA. In addition, WKPCA does not require that the 

number of components to be extracted be specified prior to modeling. Due to these merits, 

WKPCA has shown better performance than linear PCA in feature extraction and 

classification in nonlinear systems.  To capture the inner relationship in feature space and 

extend to the process monitoring, the monitoring chart of the squared prediction error 

(SPE) is generated. When the pressure measurements from all the pressure ports are 

confirmed to be fault free, the SPE value will be smaller than the setting threshold 

limitSPE which is computed off-line by using the normal data sample. However, once some 

faults are detected, the correlation among pressure values in the feature space is broken, 

the corresponding SPE will be larger than the limitSPE . Detailed WKPCA algorithm and the 

realization process will be discussed in Section B and C respectively. 
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Figure 4. Functional Block Diagram of WKPCA based Fault Detection 
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3.2. Faults Detection Strategy by Sing WKPCA Model 

Detailed explanation and introduction of KPCA theory can refer to [11], and its 

application to failure self-validation is emphasized in this paper. The faults detection 

procedures are follows: 

Firstly, construct the training samples
m n

train

X R  wherein the m represents the number 

of samples, and n is equal to the number of pressure ports.  The sample distribution is 

shown in Table I wherein Pi
m
 is the pressure measurement value at ith pressure port (i=11 

in this paper). 

Table 1. Distribution of Training Samples 

No. Sample vector Vector construction 

1 X1 [P1
1
 P2

1 
 … P11

1
] 

2 X2 [P1
2
 P2

2 
…  P11

2
] 

… …   … 
m  Xm [P1

m
 P2

m 
 …P11

m
] 

 

Secondly, build the WKPCA based faults detection model off-line. To remove the 

amplitude influence of sample data, the normalization is necessary. The normalized 

sample is then mapped into high-dimension linear feature space by using the Morlet 

wavelet kernel. After performing the mean centering in the high-dimensional space, the 

principle component space and residual space vectors can be obtained, and the further 

SPE can be established.  

Thirdly, compute the SPE threshold. Based on the scores of training sample in feature 

space, the threshold limitSPE  can be obtained. So far, the WKPCA based faults self-

detection of SVADS system model is built off-line. 

Fourthly, input the test sample 
k n

test

X R  wherein the k represents the series of 

samples, and its distribution is the same as the Table I, i.e., testX =[P1
k
 P2

k 
  … P11

k
]. After 

the test sample is input into WKPCA model, compute the monitor kSPE of kth test sample 

in feature space.  

Lastly, compare the monitoring value SPE. If kSPE  is larger than the prescriptive 

value limitSPE , it means that there are erroneous pressure measurements among current 

eleven pressure ports. In the process of establishing the WKPCA model, the training 

samples includes the different flight status, therefore, the dynamic changes of flight state 

cannot be distinguished as faults.  

 

4. Experimental Results and Analysis 

To verify the effectiveness of the faults self-detection strategy, the SVADS system 

experimental platform is designed and common faults coverage analysis is also stated. In 

this hardware platform, our proposed faults self-detection method will be implemented. 

 

4.1. Experimental Platform Setup 

Aiming at the cone-shape nose of the aerodynamic configuration based aircraft; a 

prototype of SVADS system has been preliminarily designed. The pressure ports layout 

employs eleven-point cross way, and the material thing of aircraft nose is shown in Figure 

5. The prototype design of SVADS system can be described by the electric and airflow 

connection shown in Figure 6. The designed prototype of SVADS system are consist of 

airflow pipes that control the flow of air (dynamic pressure) to pressure sensor, eleven 
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high-accuracy pressure sensors which use the vibration cylinder pressure transducer and 

output temperature-related analog and pressure-related frequency, the signal pickup and 

information processing unit which will be used to the measure pressure values and 

accomplish the self-validating algorithm, and 1553B based communication unit which can 

do data transmission to flying control system. 

 

 

Figure 5. Material Thing Type of Aircraft Nose 

Pressure sensor 1#

Pressure sensor 2#

Pressure sensor 

11#

air pipe

pressure sensor array
signal pickup and 

information processing 

analogue-

to-digital 

conversion

frequency-

to-digital 

conversion

communication 

unit

CPU

secondary 

power supply

data 

transmission

Flying control 

system

sensor power supply

power supply on 

aircraft

aircraft nose

Validated flight 

parameters

Airflow

 

Figure 6. Electric and Airflow Connection Design of SVADS System 

The prototype has been tested in the wind tunnel, in which the Mach number is from 

0.1 to 1.0, the angle of attack is from -15 degree to +15 degree, the angle of sideslip is 

also from -15 degree to +15 degree, and the altitude is from 0m to 10000m. Above test is 

done under normal working situation, and enrich experimental data have been obtained. 

Based on the prototype of SVADS system, the emulation platform can be built to study 

the detailed self-validating algorithm. And the platform is based on PC and the functional 

chart is shown in Figure 7. Once the status self-validation strategy is verified sufficiently 

on PC, and it would be transplanted to prototype of SVADS system. 
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Figure 7. Experimental Platforms for Studying Self-Validating Algorithm  

The platform mainly includes the multichannel DA card which produce the normal 

pressure signal, faults injection circuit which is used to produce the faulty signal and add 

the faults into the normal one, multichannel AD card which can pick up the final faulty 

signals, PC which controls the faults injection way. The normal experiment test of 

prototype can be simulated by using the air data calibrator which can output multichannel 

gas pressure. Due to the limitation of our laboratory resource, this paper has done 9-

channel pressure experiment at different Mach number, different angle of attack, and 

angle of sideslip.  

 

4.2. Failure Mode Analysis 

The research of self-validating algorithm needs faulty sample; however, real fault data 

is difficult to be captured or it takes some time to accumulate. The normal method is done 

by faults simulation based on above normal data sample, in which failure mode analysis is 

necessary. 

The faults of airflow pipes often includes: the blockage of pressure ports caused by ice 

and dust will lead into the no change dynamic pressure when flying condition changes; 

pipe pressure leak caused by ageing of pipe material and seal ring will lead into sudden 

change of vertical speed and difficulty building signal reconstruction model; pipe pressure 

delay caused by the long distance will result in the hysteresis of actual pressure 

measurements values. 

The faults of pressure sensors often includes: no output caused by inner broken wires 

and power failure will lead into the absence of frequency signals; large fluctuations 

caused by other residue or pollutants will result in larger fluctuations of frequency values; 

signal jump caused by lose effectiveness of vibration cylinder will lead into pressure 

jump; bias fault caused by the absence of temperature compensation will result in bias 

output.  

The faults of signal pickup and information processing unit often includes: analogue-

to-digital conversion circuit fault caused by incorrect control command and wrong data 

bus will output the erroneous temperature information and further pressure measurements 

accuracy becomes worse; frequency-to-digital conversion circuit fault caused by the 

disorder of sequencing control will output wrong frequency and further pressure 

measurements values becomes wrong; CPU reset faults caused by weaker surge 

characteristic will no output in a short time; secondary power supply fault caused by  the  

loss of power module will always lead into no output. 

 The faults of 1553B based communication unit faults include BC controller fault and 

RT terminal failure, which will not transmit the air data information to flying control 

system.   

To sum up, the abnormal pressure outputs types mainly consists of larger fluctuation, 

jump, bias and constant output as shown in Figure 8. 
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Figure 8. Common Types of Abnormal Pressure Outputs 

4.3. Experimental Results under Normal Steady Situation 

The experimental process to verify the ability in distinguishing from the normal 

situation is follows: 1)taken the flight state (altitude 10000m, angle of attack and sideslip 

0°， and Mach number 0.8) as an example, the nine-channel pressure can be simulated 

and outputted by using air data calibrator; 2) the prototype of SVADS system then pick up 

and acquire the above pressure information, the mean values of all channels are shown in 

Table II and the RAW of pressure ports are shown in Figure 9; 3) establish the faults 

detection model by using WKPCA algorithm based on fault free samples, and compute 

the monitoring threshold SPE; 4) based on the experimental simulation platform in Figure 

7, the data shown in Figure 9 can be obtained under normal situation, and then the 

proposed faults detection strategy can be verified.  

Table 2. Mean of Fault-Free Outputs of all Pressure Channels 

Chnanel P1 P2 P3 P4 P5 

pressure（kPa） 35.342 38.707 40.309 38.707 35.341 

Chnanel P6 P7 P8 P9 — 

pressure（kPa） 35.345 38.709 38.709 35.345 — 
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Figure 9. Distributed Pressure Outputs under Steady Flight Status 

By using the proposed faults self-detection method, the contribution ratio of principle 

components is larger than 95%, and the responding number is 6. In residual feature 

vectors space, the monitor SPE threshold is 4.553 when the confidence level of 
2 -

distribution is 99%.  The test sample in Figure 9 can be analyzed and the computation 

results of SPEs are respectively shown in Figure 10.  

 

 

Figure 10. Faults Detection Results under Steady Flight Status 

In Figure 10, the obtained SPE of normal test data is about 3.2, which is smaller than 

the threshold. The inner relationship among nine-channel pressures is not broken, and the 

distributed pressure signals under normal steady flight status can be distinguished from 

the faults validly. 

 

4.4. Experimental Results under Normal Flight Status Changes 

To distinguish the normal flight status changes from the true faults, the data sample can 

be obtained by using established experimental simulation platform show in Figure 11. The 
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corresponding status changes are from Mach number 0.5 to 0.7. The computation results 

of SPE can be further obtained by using the WKPCA model as shown in Figure 12.   

 

 

Figure 11. Distributed Pressure Outputs under Flight Status Changes 

 

Figure 12. Faults Detection Results under Flight Status Changes 

In Figure 12, the SPE in high-dimension survival space are all lower than the setting 

threshold of SPE by statistic model, which indicates no faults are detected. The changes 

of SPE values correspond to the moment of flight state changes that Mach number is from 

0.5 to 0.7. The above results show that the proposed faults detection strategy can 

distinguish the ‗fault-like‘ changes process of flight status.    

 

4.5. Experimental Results under Faults 

To further verify the ability in faults detection of WKPCA model, the fault injection 

experiments are done. Based on the normal test sample, some typical faults are simulated 

by using faults addition circuit. The detailed faults are follows: the periodicity disturbance 

are added to the channel 1 from the 1500th time point to simulate the large pressure 
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fluctuations, the pressure jump faults are added to the channel 4 from the 1000th time 

point to simulate pressure impact, the larger bias data are added to channel 7 from 1300th 

time point to simulate the analogue-to-digital conversion circuit fault, and normal 

pressure is broken from 1500th time point to simulate no output. Because the moments 

faults occur are different, it contains both the single failure and multiple faults. The above 

four faults can be output simultaneously to simulate multiple faults situation as shown in 

Figure 13. The faults detection results of SPE can be further obtained by using the 

WKPCA model as shown in Figure 14.   

 

 

Figure 13. Distributed Pressure Outputs under Faults 

 

Figure 14. Faults Detection Results under Faults  

In Figure 14, the SPE at 1000th time point is clearly higher than threshold of normal 

SPE, which is consistent with impact fault of pressure port 4, the abnormal SPE between 

1300 and 1400th time points are the circuit‘s faults of pressure port 7, and ones between 

1400 and 1500th time points are the failure with no pressure output of port 9. The sudden 

changes of SPE in Figure 14 also imply the number of abnormal faults at different 

moments. The two jumps in the high-dimension feature space is consist with the three 

simulated faults.   
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5. Conclusion 

This paper has proposed a new prototype of air data sensing system, which combines 

the merits of flush air data system and self-validating sensor technology fully. The 

SVADS system can improve the measurement value quality of the flight parameters and 

enhance their reliability, and the novelty lies in that the SVADS not only can output the 

traditional raw flight parameters, but also can perform the fault self-detection, self-

diagnosis, data recovery under faults and status self-estimation. The primary WKPCA 

based faults self-validation strategy is proposed particularly to implement the part of self-

validation functions, in which the high-resolution ability of the wavelet kernel can benefit 

the instantaneous failure detection and non-linear faults feature in the low-dimension 

space can be mapped into linear high-dimension one. Based on the detailed faults 

coverage analysis, a real experimental platform of SVADS was designed to acquire the 

enrich data sample, and verify the proposed faults detection algorithm. Results show that 

the proposed WKPCA model can distinguish the normal changes of flight status from the 

true faults, both single and multiple faults can be detected validly. Our future work is to 

study the other status self-validation algorithm, in order to further implement the faults 

self-diagnosis, data recovery under faults and status self-estimation.  
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