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Abstract 

This paper presents new robust adaptive L2-gain decentralized excitation controllers 

(C-L2-RADEC, K-L2-RADEC and OP-L2-RADEC) for the multi-machine power system. 

By the extended Kalman filter estimates of the state variables, the back-stepping and the 

linear matrix inequality method, the universal calculation formulae of the new excitation 

controllers are deduced. Meanwhile, the calculation of L2-gain control is simplified, and 

the over-parameterization problems in some adaptive methods are avoided. Simulations 

on a 4-machine power system demonstrate the proposed controllers can improve the 

robustness to disturbances, be adaptive to uncertain parameters and minimize the effect 

of disturbances by solving the linear matrix inequality to obtain the optimal control law. 
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1. Introduction 

In recent years, there has been an increasing interest in applying various advanced 

nonlinear methods in excitation to improve dynamic performance and stability of the 

power system [1-6]. Based on the differential geometry method, power system can be 

transformed into the linear models and the nonlinear control of the power system is 

realized by linear control methods [6]. However the exact feedback method is base on the 

exact knowledge of the mathematical model of the power system [7]. In order to 

overcome these limitations and enhance the robustness of the power system, advanced 

nonlinear control techniques have been used in the excitation control, such as Intelligent 

control [8-9], direct feedback linearization [10-11], Hamilton [12], sliding mode control 

[13], nonlinear robust control [14].  

Because there are many disturbances and uncertain parameters in the excitation system, 

such as the electromagnetic interference, the torque interference and the immeasurable 

damping coefficient, the robust adaptive excitation control (RAEC) has attracted 

considerable attention [14-18]. The RAEC, using dynamic estimate of unknown 

parameters, is more appropriate and attractive to solve the unknown-parameter problems. 

Indeed, a series of literatures have discussed robust adaptive decentralized excitation 

control (RADEC) of the power system [3-5, 8-11, 14, 19]. However, the optimal control 

usually is not considered in the traditional RADEC, the over-parameterized problem 

exists in some robust adaptive excitation control. Moreover the values of the state 

variables are usually obtained by the precise sensors or encoders, which increase the 

system cost and complexity. 

Motivated by the aforementioned observation, in this paper, the new universal robust 

adaptive L2-gain calculation formulas of strict parameter feedback system were deduced 
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and K-class functions were used in the control law, which overcome the over-

parameterized problem in some robust adaptive control and improve the convergence 

speed of the state parameters. Based this new L2-gain control method, new robust 

adaptive L2-gain decentralized excitation controllers (C-L2-RADEC, K-L2-RADEC and 

OP-L2-RADEC) for the power system are presented. The proposed controller is adaptive 

to the uncertain parameters, robust to disturbances and can be applied to minimize the 

impact of disturbances by solving the Linear Matrix Inequality (LMI) to obtain the 

optimal control law against the worst disturbances as well. In the new excitation 

controllers, the state parameter values of the excitation system are estimated by the extend 

Kalman filter (EKF). 

The rest of the paper is organized as follows: in Section 2, the excitation system model 

of power system is established; Section 3 presents new nonlinear robust adaptive 

excitation controllers and the state EKF estimate; Section 4 includes the simulation 

results; the conclusions are summarized in Section 5. 

 

2. Mathematical Model of Multi-machine Power System 

For a large scale power system consisting of n generators interconnected through a 

transmission network, the model for each generator with excitation control can be written 

as follows [4, 10, 19-23]: 

Mechanical equations: 
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By (1.6) and (1.8), we obtain: 

iqiqie IEP 
                                                 (1.10) 

Where, iδ  is the power angle of the ith generator in radian; iω  is the relative speed, in 

rad/s; iM
 is inertia constant; 0miP

 is the mechanical input power, assumed to be constant; 
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iD
 is damping constant; ieP

 is the active electrical power, in p.u.; iqI
is the quadrature 

axis current, in p.u.; 
'

iqE
 is the transient electromotive force (EMF) in the orthogonal axis 

of the generator, in p.u.; iTd0


 is the direct axis transient time constant, in s; idI
 is the direct 

current, in p.u.; idx
 is the direct reactance; 

'

idx
 is the transient direct reactance; will change 

slowly forthe saturation effect and are uncertain parameters; 1id
 and 2id

 are bounded 

model errors, represent external torque and electromagnetism disturbances, respectively; 

fiE
 is EMF in the excitation coil of the generator; ijG

 is conductance; ijB
 is susceptance. 

By (1.1)-(1.9), the excitation system of the multi-machine power system, with the 

uncertain parameters and the disturbances, can be rewritten as: 

0ωωδ ii 
                                                        (2.1) 
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Where iz
 is the regulation output; iq1  and iq2  are weighting constants to be 

determined. 

Because iD
 can not be measured accurately, idx

 and 
'

idx
 usually change slowly for the 

saturation effect, iD
, idx

 and 
'

idx
 are supposed as uncertain parameters.  

Firstly, we introduced the following coordinate transformation: 
T

000

T

321 ]/)(    []     [ ieimiiiiiiiii MPPωωωδδxxx x
 

Where 0iδ  and 0iω  are the initial power angle and the rated speed of the ith generator, 

respectively.  

By (1.10), we obtain: 
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. Obviously, 2id
 is 

bounded because 2id
 is bounded. 

In the new coordinate, the excitation system of the multi-machine power system can be 

expressed as:  

21 ii xx 
                                                         (4.1) 

12132 iiiii dxxx  
                                          (4.2) 
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2233 iiiii dvx  
                                           (4.3) 

T

2211 ]   [y iiiii xqxq
                                            (4.4) 

Where i

i
i

M

D
1

 is uncertain constant parameter. 

For System (4), the objective of the controller is to regulate fiE
 to drive the angle iδ  

and speed i  to a small neighborhood of a constant stable operating point. Our goal is to 

find 
),,( 321 iiiii xxxfv 
 and 

),,( 321 iiiijij xxxgθ 
, so that the following inequality holds:  

)( 0

2

0

2
2

0
xdy Vdtdt

T

ii

T

i   
                                      (5)  

Where 
0)( 0 xV

. 

Inequality (5) is the dissipative inequality of the system, which shows that the L2-gain 

of system (4) from disturbance id
 to output iy

 is less than or equal to i . 

 

3. Design of Robust Adaptive L2-gain Decentralized Excitation 

Controller  
 

3.1. New Robust Adaptive L2-gain Control Method 

Excitation system (4) of power system can be considered as the special case of the 

following parametric strict-feedback system form: 

11
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n

Rx  is the state vector; Ru  is the control input; if , ig
 ( ni 1,2, ) are 

smooth functions, 
0)0( if , 

0)( 1 ii x,xg 
; 

),( 1 ii xx φ
 is smooth vector field; 

pRθ  (
np 1

) represent unknown constant vector; i  ( ni 1,2, ) is the additive 

disturbance in 2L
 space. 

Step 1:  Let 11 xe  , using (6.1) to obtain: 
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Designing the virtual control 
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 is the K-Class function, 01 c  ; θ̂  is the 

estimate value of θ ; 
*

2x  represents the virtual control. 

When θθθ ˆ~
  and 

*xxe 222  , substituting (8) into (7) , using (6.2) and (6.1), we 

obtain: 
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Defining Lyapunov functions as: 
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Taking the derivative of (11) and (12) along (9) and (10), yields: 
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Designing virtual control 
*x3  as: 
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Step n:   
Defining Lyapunov function as:      
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The nonlinear robust adaptive control law u  and the adaptive law θ  are as follows: 
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Where 
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 is the K-Class function, 
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; f1u
 is additive 

variable. 

Substituting (24) and (25) into (23), we obtain:  
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Remark 1  

By the back-stepping method, we get the following closed-loop error system: 

121

T

1111

~
 egeme θφ

                                        (27.1) 





















1

1

*1

1

T
*

1-1-1

T ~~ i

j

j

j

i
i

i

j

j

j

i
iiiiiiii

x

x

x

x
egegeme θφθφ

             (27.i) 






















1

1

*

n
1

1

T
*

n1

21-1-

T

f1

~~ n

j

j

j

n

n

j

j

j

nnnnnnn •
x

x
•

x

x
beegueme θφθφ

          (27.n) 
T

1

1

T
*1

2

1

1

T
*

k
1

1

T )
)(

)((ˆ





















 

















Γφφφθ
n

j

j

j

n

n

n
n

n

k

k

j

j

j

k

n

j

jj
x

x

de

edf
ef

x

x
ee



          (28) 

When
0i , using (26), we get:  
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Remark 2 
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(27) can be stabilized by (31) and (28). Although the robust control and adaptive control 

of Sys (27) is realized by (31) and (28), the optimal control isn’t realized.  

Remark 3 
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Substituting (23) into (33), by (24) and (25), we can obtain: 
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By (37), we obtain 
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The integral of (38) is 
dtdtVV

TT 2

0

2
2

0
)0()(   εyx 

. Because 02)( n  VV x , we 

obtain 
)0(

2

0

2
2

0
Vdtdt

TT

  εy 
. So the robust adaptive L2-gain control of System (6) 

can be realized by (24), (25) and (36).  

Remark 4 

In this paper, a new nonlinear robust adaptive L2-gain control method is proposed and 

the universal calculation formulas are given as (24), (25) and (36), which can reduce the 

calculation difficulty of the L2-gain disturbance attenuation control. 

 

3.2. Robust Adaptive L2-gain Decentralized Excitation Control  

By the method introduced in Section 3.1, the robust adaptive L2-gain decentralized 

excitation control can be realized by following steps:  
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. 

By (42) and (4.3), we obtain: 
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 (47) 

By (47), the control law and the adaptive law can be designed as (48), (49):  

1f23321211

212221123

1

232
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ˆ)(ˆ

iiiiiiiii

iiiiiiiiiiiii

ubmxxmm

xθexmembeev



 






           (48) 

  
 222112211 )ˆ(ˆ

iiiiiiiii bxmmex  


                   (49.1) 

3222
ˆ

iiii b  


                                             (49.2) 

Where 
0)( 3333  iiii cefm

, 
)( 33 ii ef

 is the K-Class function, 
03 ic

. 

Substituting (48), (49) into (47), we obtain:  

 
1211223122f1

2

23

2

1

2

3 )ˆ( iiiiiiiiiiiii

j

ijiji dmmbdedebubmemV  




       (50) 

Substituting (48) into (44), we obtain 

1f231221223

1

2323 )
~

)(ˆ(
~

iiiiiiiiiiiiiiii ubmdxmmdbeee   
        (51) 

By the back-stepping method, we obtain the following closed-loop error system 

211211 iiiiii eemxxe  
                                   (52.1) 

1322212

~
iiiiiiii deemxee  

                               (52.2) 

1f231221223

1

2323 )
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  (52.3) 

Define: 
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             (53)  

Substituting (50) into (53), we can obtain: 
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         (54) 

Where 
)ˆ( 21321 iiiiii mmeeb  
. 

By (54), we can obtain: 
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                           (55) 

By (54) and (55), yield: 

0)
22

()
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())()(y(
2

1
 2312112

23

2

1

2222

3  
 






 iiii

ii

j

ijijii

edbd
bmemttVH 

 (56) 

By (56), we obtain 

222

3 )(y)(2 ttVi  
. Define the storage function 32)( ii VXV 

, yield: 
222

3 )(-)(2)( ttVXV ii yε 
                                (57) 
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The integral of (57) is 
dtdtVV

TT

ii

2

0

2
2

0
)0()(   εyx 

. Because 
02)( 3  ii VV x

, we 

obtain 
)0(

2

0

2
2

0
i

TT

Vdtdt   εy 
. So the robust adaptive L2-gain control of excitation 

system (4) can be realized by (48), (49) and (55). 

Remark 5 
The robust adaptive L2-gain controller of excitation system (4) can be realized by (48), 

(49) and (55). When ijij cm 
 and 

0)( ijij ef
 (j=1, 2, 3), this controller can be called 

constant-L2-gain-robust-adaptive-decentralized-excitation-controller (C-L2-RADEC). 

When 
0)( ijij ef

 (j=1, 2, 3), this controller can be called K-class-function-L2-gain-

robust-adaptive-decentralized-excitation-controller (K-L2-RADEC). When the values of 

ije
 are bigger, the value of ijijijijijij cekcefm  2)(

 will increase, so this K-L2-

RADEC will improve the control speed. However, the optimal excitation control isn’t 

considered in C-L2-RADEC and K-L2-RADEC. In Section 3.3, a new optimal K-class-

function-L2-gain-robust-adaptive-decentralized-excitation-controller (OP-L2-RADEC) 

will be introduced.  

 

3.3. Optimal Robust Adaptive L2-gain Decentralized Excitation Control 

If 





2

1

2
2

3
23

~

2

1

2 j

ij

ij

i
ii

e
VV 


, by (39)-(45), we will obtain: 
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   (58) 

By (40) and (4.3), we obtain: 
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(59) 

By (59), the control law and the adaptive law can be designed as (60), (61), 

respectively: 

1f333221

2212232112
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ˆˆ

iiiiiiiii

iiiiiiiiiiii

uemxxmm

xmmxθeemev










                      (60) 

         
 322112211 )ˆ(ˆ

iiiiiiiii exmmex  


                       (61.1) 

3322
ˆ

iiii e  


                                               (61.2) 

Where 
0)( 3333  iiii cefm

, 
)( 33 ii ef

 is the K-Class function, 
03 ic

. 

Substituting (60) into (44), we obtain 

 1f33122122323 )
~

)(ˆ(
~

iiiiiiiiiiiiii uemdxmmdee  
             (62) 

We obtain the following closed-loop error system: 

211211 iiiiii eemxxe  
                               (63.1) 

13222112

~
iiiiiiii deemxee  

                            (63.2) 
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    1f1213322122323
ˆ~ˆ~

iiiiiiiiiiiiiiiii udmmemxmmdee  
 (63.3) 

By (63), we obtain: 

211121 iiiiii eemezz  
                                 (64.1) 
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  (64.4) 

Where  01 iiiz  
; 02 iiiz  

; iiz 3 , 11 ii d
; 

2112322112
ˆ~

)ˆ(
~

iiiiiiiiii ddxx   
; 1id

, 2id
, 1i , 2i  and 2ix

 are in L2-space; 

21 Li 
 and 22 Li 

. 

By (64), we can obtain the state equation: 

121

1

2

1

3

2

1

21

3

13

2

1

     

1

0

0

1-    0

0      1

0     0

0       0      2-

1       0                              0

0       1                              0

iiiiii

i

i

i

i

i

i

iiii

i

i

i

v

v

z

z

z

mmmz

z

z

BεBZA

Z















































































































            (65)  

Theorem 1 

When iii ZCy 
, if the minimum value of iγ  (

0iγ ) can be found and System (64) 

satisfies 
dtγdt i

T

i

T

i )(
2

0

2

0

2
wy  

 ( 0T ), the optimal L2-gain control of System (64) 

is realized and the L2-gain will be less than or equal to iγ . The optimal control law and 

the worst disturbance are as follows:  

iiiiv ZPW
1

1


                                              (66) 

iii

i

i ZPBε
1T

12

1 


                                           (67) 

Where iW and iP  are the solutions of the following linear matrix inequality (68). 

0
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I C

IXB
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i

iii

iiiiiiiiii

-

i



            (68) 

By (66), (64.4) and (60), we can obtain iv
. The adaptive law is expressed by (61). 

Proof 

For (65), when iii ZCy   and the state feedback control law is iiiv ZK1 , we obtain  

iiiiiii εBZKBAZ 12 )( 
                           (69.1) 

iii ZCy 
                                      (69.2) 

Based on the linear H∞ theory, when 


iiεzT
, for (69), the Riccati Inequality (70) 

should be satisfied. Meanwhile, the optimal control law 2iv
 and the worst disturbance ε  

are (71) and (72), respectively. 
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             (70) 
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                                                    (72) 

Where iX
 is the positive define matrix; 0 . 

Substituting (71) into (70), we obtain:  

0)()( TT
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2T

22  

iiiiiiiiiiiiiii CCXBBXXKBAKBAX 
         (73) 

By the Schur theorem, (73) can be rewritten as: 
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                (74) 

When the left right multiplying matrix of (74) is 
 II,,X

1

idiag
, we can obtain: 

0
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-

                   (75) 

Where 
1 ii XP
is the positive define matrix; 

1 iii PWK 。 

By the Mincx command in Matlab, the minimum value of iγ  and the values of iW
 and 

iP
 can be resolved. So the OP-L2-RADEC can be realized by (66), (64.4), (60) and (61). 

Remark 6 

The OP-L2-RAEC can not only improve system robustness to disturbances and be 

adaptive to the dynamic uncertainties, but also can be applied to minimize the impact of 

disturbance by solving the linear matrix inequality to obtain the optimal control law.  

Remark 7 

In C-L2-RADEC and K-L2-RADEC, the control law and the adaptive law are: 
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In OP-L2-RADEC, the control law and the adaptive law are: 
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Where iie 1 , iiii me   12 , 22212133
ˆ

iiiiiiiii emxmxθexe 
, 

ieiei PPx  03 , ti

eidi
tiqi

V

Qx
VE




,  T321     iiii zzzZ , iiz 1 , iiz 2 , iiz 3 . 

In above mentioned control law and adaptive law of the generator i, all the variables 

and parameters are just related to the same generator, so it is clear that C-L2-RADEC, K-

L2-RADEC and OP-L2-RADEC are all decentralized control. 

In C-L2-RADEC, K-L2-RADEC and OP-L2-RADEC, it is necessary to obtain the 

values of qiI
, diI

 and qiI
. In this paper, these state values of the generator are estimated by 

EKF that is introduced in Section 3.4. 

 

3.4. State Variable EKF Estimate of Generator 

The relation between the rotor speed i  and the rotor position i  of the ith generator 

is: 

ii  


                                                    (76)  

For the high sampling frequency in the excitation control system, the rotor speed can 

be assumed to be constant in the sampling period, i.e.  

0i                                                      (77) 

In the d, q reference coordinate system, the flux linkage equation of the ith 

synchronous generator can be described as 

qdidd   iiiii iRu 
                            (78) 

dqqq   iiiiii iRu 
                            (79) 

qqaqq iiiiδ iL
                                      (80) 

fddfadd iiiiiiδ iL  
                          (81) 

qd iδiδiδ   
                                    (82) 

Where diu
， qiu

， dii ， qii  are the d-q axis stator voltages and currents, 

respectively; iR
 is the stator resistance; diL

， qiL
 are the d-q axis stator inductances; di

， qi  are the d-q axis stator flux linkage, respectively; fi  is the rotor flux linkage. 

From (78)-(82), the synchronous generator can be described by (83).  
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,  aii , bii , cii , aiu
, 

biu
 and ciu

 are instantaneous current and voltage values of the ith generator. 

For the fully digital implementation, the system model (83) can be re-written as: 

kkkk

kkkkkdk xxx

Wxxhy

VuDFx





)(

)()(1

                            (84) 

Where kV  and kW  are the zero-mean Gaussian random vectors, describing the model 

disturbance and the measurement disturbance, whose variance matrices are Q  and R , 

respectively, ))((1)( cc kTTxkd xfF  , ))((1)( cc kTBTxk xD  , Tc is the sampling period. 

1kx  can be estimated by EKF in following two steps. 

Step 1:  Prediction step 

kkkkk xxx uDFx )~(~)~(~
1  ; 111

~)~(~
  kkk xxhy ; QFPPFPP  )}{

~ T

c1 kkkkkk T  

Step 2: Innovation step 
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11111   kkkkk K yyxx ; 11111
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 are the Jacobian matrix. 

The values of qiI
 and diI

 by 
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, The value of qiI
 can 

be obtained by qdqqq )( xIRuI iiiiii 
. 

Meanwhile, The value of 
T

qd

T

4321 ]      [][ iiiδiδ  x  x  xx x
 can be estimated 

by EKF. 

 

3.5. L2- RADEC Based on Sensor-less State Tracking Estimation  

For the ith generator, the block diagram of C-L2-RADEC, K-L2-RADEC and OP-L2-

RADEC based on the state estimate is shown in Figure 1.  
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Figure 1. Block Diagram of L2-RADEC Based on Sensor-less State Tracking 
Estimation 

In Figure 1, the values of diδ
, qiδ

 and i  can be obtained by the EKF estimate. By 

q

d

iδ

iδ
i




 

, 1ie
 can be calculated.  Diu

, Qiu
, Dii  and Qii  can be obtained by the 3/2 

transformation of stator voltage and stator current (introduced in Section 3.4). 

diu
, qiu

, dii , qii can be obtained by the DQ/dq transformation of Diu
, Qiu

, Dii , Qii  

(introduced in Section 3.4). By qqdde iuiuP 
, dqqde iuiuQ 

, ieiei PPx  03 , 

tieiditiqi VQxVE 
,  iqiiiiiiq LiRuI )( dqq 

, the values of 1ie
, 2ie

 

3ie
, 3ix

, qiE
, qiI

, diI
 and qiI

 can be obtained and the OP-L2-RAEC can be realized 

(introduced in Section 3.3 and Section 3.4). 

 

4. Simulation and Experiment 

Simulation has been conducted on a 4-machine power system (see Figure 2).  
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Figure 2. Diagram of the 4-Machine Power System 

The system data is listed in Appendix A. In the simulation, the models of generators 

are same as (4) and the governor dynamic are neglected. The loads are represented by 

constant impedances. The value of the uncertain parameter is given as D=
5p.u.~3p.u.

. 

Parameters of AVR+PSS controllers are list in Appendix B. 
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4.1. Simulation on State Variables Estimate by EKF  

When there are the Gaussian white noise in System (83) and the loads of the 2th 

generator increase by 50% at 2.5 s, the actual, estimated values and the values with noise 

of d2δ
, q2δ

and 2  of the 2th generator are shown in Figure 3. The EKF program is list 

in Appendix C. 

 

  

(a) d2
                                  (b) 2                                    (c) q2

 

Figure 3. Comparison between Actual Values and Estimated Values  

As shown in Figure 3, although the transient estimated derivate the actual values, the 

estimated values will be convergent to the actual value. In the steady state, the values of 

the errors between the actual values and the estimated values are small, so the values of 

δq
, δd

 and 2  can be estimated accurately by EKF. So the values of δq

δdtan



 ar

, 

1ie
, 2ie

 3ie
, 3ix

, qiE
, qiI

, diI
 and qiI

can be obtained, and C-L2-RADEC, K-L2-RADEC 

and OP-L2- RADEC can be realized. 

 

4.2. Comparison between C-L2-RADEC, K-L2-RADEC, OP-L2-RADEC and 

AVR+PSS  

The 3-phase short fault happens on line 3-101 close to 101 at 5.3 s and the fault line 

trips at 5.4 s. When the auto voltage regulator and power system stabilizer (AVR+PSS) 

are all adopted, the state parameter dynamic curves of the power system are shown in 

Figure 4.  

 

3 4 5 6 7
15

20

25

30

35

40

45

50

55

t/s

 δ
 (

p
.u

.)

 

 
G1-Delta

G2-Delta

G3-Delta)

G4-Delta

3 4 5 6 7
0.8

0.9

1

1.1

1.2

1.3

t/s

V
t 

(p
.u

.)

 

 

G1-Vt

G2-Vt

G3-Vt

G14-Vt

3 4 5 6 7
-15

-10

-5

0

5

10

15

t/s

V
f 

(p
.u

.)

 

 

G1-Vf

G2-Vf

G3-Vf

G4-Vf

 

(a) Power Angle                    (b) Terminal Voltage             (c) Excitation Voltage 

Figure 4. Dynamic Curves of Generator State Variables by AVR+PSS 
Control  
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When the C-L2-RADEC is adopted and 
1321  iii mmm
，

2i , 
121  ii 

 

and 
12)( 33  ii eef

, the state parameter dynamic curves of the generators are shown in 

Figure 5. 
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(a) Power Angle                     (b) Terminal Voltage            (c) Excitation Voltage 

Figure 5. State Parameter Curves of Generators by C-L2-RADEC  

As shown in Figure 4 and Figure 5, when 3-phase short fault happens suddenly, 

comparing with the AVR+PSS control, the C-L2-RADEC can improve the convergence 

rate of the state parameters. At the same time, because the damp constant D is uncertain, 

Figure 5 shows that C-L2-RADEC can effectively increase robust performance of the 

uncertain excitation system. 

When 
1321  iii ccc
，

2

111 )( iii eef 
, 

2

222 4)( iii eef 
, 

4

333 5)( iii eef 
, 

121  ii 
, 

2i  and 
12)( 33  ii eef

, adopting K-L2-RADEC, state parameter dynamic curves are 

shown in Figure 6.  

As shown in Figure 5 and Figure 6，When the value of ije
 is bigger, the values of jm

 

will increases, so the convergence speed of state parameters will be improved. 
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Figure 6. State Parameter Curves of Generators by K-L2-RADEC 

When iii ZCy  , 
]1.0,4.0,1[diagiC
, 

4,12, 321  iii mmm
, 

2i , the LMI (75) can 

be resolved by the function Mincx in MATLAB LMI toolbox, we can get 



















3.1088    0.3604    0.5378    

0.3604    2.4947    0.9851-   

0.5378    0.9851-   1.7393     

iP

 and  2.1802-   2.9216-   10.0596iW . From (66) and (67), the 

optimal robust control law iv
 and the worst disturbances iε  are respectively as follows:  

 2.3005-)2.2234( )(7546.72.3005-2234.27546.7 00321  iiii zzzv
     (85) 
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0

0

0.7772    0.0901    0.1345 

0.0901-   0.6237-   0.2463  
iε

                     (86) 

Substituting (85) into (66), (60), we can get the control input vi. The adaptive law is 

expressed by (61). The curves of the state parameters are shown in Figure 7. 
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Figure 7. State Parameter Curves of Generators by OP-L2-NRADEC 

As shown in Figure 4, Figure 6 and Figure 7, when 3-phase short fault happens 

suddenly, comparing with the AVR+PSS control, the OP-L2-RADEC can improve the 

convergence rate of the state parameters. The OP-L2-RADEC can not only suppress the 

disturbance, stabilize the excitation system, be adaptive to the uncertain parameter, but 

also realize the optimal L2-gain disturbance attenuation. 

 

5. Conclusion 

New nonlinear robust adaptive L2-Ggain decentralized excitation controllers (C-L2-

RADEC, K-L2-RADEC and OP-L2-RADEC) are proposed in this paper. Because the K-

class functions are applied and the universal calculation formulae are deduced, the new 

controller can improve the convergence speed of the state parameters and overcome the 

over-parameterized problem in some robust adaptive excitation controller. In the new 

controllers, the values of state parameters are estimated by EKF. Simulations on the 4-

machine power system demonstrate that comparing with the AVR+PSS control, the new 

excitation controllers are all robust to external disturbance and adaptive to the uncertain 

parameters and OP-L2- RADEC can realize the optimal L2 gain control to minimize the 

effect of the disturbance. Meanwhile, the values of state parameters can be estimated by 

EKF. 
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Appendix 
 

Appendix A. Parameters of Generators and Transmission Lines 

Table 1. Parameters of Generators 

Parameters Generator #1 Generator #2 Generator #3 Generator #4 

dx
 

1.8 1.65 1.2 0.93 

dx
 

0.3 0.25 0.16 0.66 

qx
 

1.6 1.4 1.0 0.51 

d0T 
 

5.2 6.4 8.3 5.69 

M  9.0 10.2 11.2 14.3 

Table 2. Parameters of Transmission Lines 

Bus )p.u.(R  )p.u.(L  )p.u.(C  
Bus )p.u.(R  )p.u.(L  )p.u.(C  

1-10 0 0.15 0 101-18 0.0043 0.0475 0.7802 

2-20 0 0.10 0 18-120 0.0003 0.0059 0.0680 

10-20 0.0010 0.025 00.75 120-110 0.0010 0.025 00.75 

20-8 0.0003 0.0059 0.0680 120-12 0 0.10 0 

8-101 0.0043 0.0475 0.7802 110-11 0 0.15 0 

 

Appendix B. PSS Transfer Function  
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Appendix C. EKF Program 

syms phaid phaiq theta w  

x=[phaid;phaiq;theta] 

Q=10*eye(3) 

P=10*eye(3) 

RR=10*eye(2) 

xinitial=[1;0;0] 

for i=1:1:(dimension/substract_step) 

phaidEKFplot(i)=xinitial(1); 

phaiqEKFplot(i)=xinitial(2); 

thetaEKFplot(i)=xinitial(3); 

Fx=120*pi*[(-R/L1*phaid+phaiq*wEKF(i)+R/L1*(phaimdEKF(i)-ikdEKF(i)));(-R/L1*phaiq-

phaid*wEKF(i)+R/L1*(phaimqEKF(i)-ikqEKF(i)));wEKF(i)] 

Fd=[phaid;phaiq;theta]+tc*Fx 

B=[1 0;0 1;0 0]; 

D=120*pi*tc*B 

Hx=[(-phaid+phaimdEKF(i)-ikdEKF(i))/L1;(-phaiq+phaimqEKF(i)-ikqEKF(i))/L1] 

xkadd1=Fd+D*[udEKF(i);uqEKF(i)]; 

Fjacobi=jacobian(Fd,[phaid phaiq theta]) 

Hjacobi=jacobian(Hx,[phaid phaiq theta]) 

x=xinitial 

xkadd1Pred=subs(xkadd1,[phaid phaiq theta],x) 

yk=[(-xkadd1Pred(1)+phaimdEKF(i)-ikdEKF(i))/L1;(-xkadd1Pred(2)+phaimqEKF(i)-

ikqEKF(i))/L1]; 

F=subs(Fjacobi,[phaid phaiq theta],x) 

P=Q+F*P*F' 

H=subs(Hjacobi,[phaid phaiq theta],x) 

KKadd1=P*H'*inv(H*P*H'+RR) 

xinitial=xkadd1Pred+KKadd1*[idEKF(i)-yk(1);iqEKF(i)-yk(2)] 

P=P-KKadd1*H*P 
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