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Abstract

This paper presents new robust adaptive L2-gain decentralized excitation controllers
(C-L2-RADEC, K-L2-RADEC and OP-L2-RADEC) for the multi-machine power system.
By the extended Kalman filter estimates of the state variables, the back-stepping and the
linear matrix inequality method, the universal calculation formulae of the new excitation
controllers are deduced. Meanwhile, the calculation of L2-gain control is simplified, and
the over-parameterization problems in some adaptive methods are avoided. Simulations
on a 4-machine power system demonstrate the proposed controllers can improve the
robustness to disturbances, be adaptive to uncertain parameters and minimize the effect
of disturbances by solving the linear matrix inequality to obtain the optimal control law.

Keywords: state variables estimation; optimal robust adaptive back-stepping design;
optimal robust adaptive decentralized control; optimal adaptive L2 gain disturbance
attenuation

1. Introduction

In recent years, there has been an increasing interest in applying various advanced
nonlinear methods in excitation to improve dynamic performance and stability of the
power system [1-6]. Based on the differential geometry method, power system can be
transformed into the linear models and the nonlinear control of the power system is
realized by linear control methods [6]. However the exact feedback method is base on the
exact knowledge of the mathematical model of the power system [7]. In order to
overcome these limitations and enhance the robustness of the power system, advanced
nonlinear control techniques have been used in the excitation control, such as Intelligent
control [8-9], direct feedback linearization [10-11], Hamilton [12], sliding mode control
[13], nonlinear robust control [14].

Because there are many disturbances and uncertain parameters in the excitation system,
such as the electromagnetic interference, the torque interference and the immeasurable
damping coefficient, the robust adaptive excitation control (RAEC) has attracted
considerable attention [14-18]. The RAEC, using dynamic estimate of unknown
parameters, is more appropriate and attractive to solve the unknown-parameter problems.
Indeed, a series of literatures have discussed robust adaptive decentralized excitation
control (RADEC) of the power system [3-5, 8-11, 14, 19]. However, the optimal control
usually is not considered in the traditional RADEC, the over-parameterized problem
exists in some robust adaptive excitation control. Moreover the values of the state
variables are usually obtained by the precise sensors or encoders, which increase the
system cost and complexity.

Motivated by the aforementioned observation, in this paper, the new universal robust
adaptive L2-gain calculation formulas of strict parameter feedback system were deduced
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and K-class functions were used in the control law, which overcome the over-
parameterized problem in some robust adaptive control and improve the convergence
speed of the state parameters. Based this new L2-gain control method, new robust
adaptive L2-gain decentralized excitation controllers (C-L2-RADEC, K-L2-RADEC and
OP-L2-RADEC) for the power system are presented. The proposed controller is adaptive
to the uncertain parameters, robust to disturbances and can be applied to minimize the
impact of disturbances by solving the Linear Matrix Inequality (LMI) to obtain the
optimal control law against the worst disturbances as well. In the new excitation
controllers, the state parameter values of the excitation system are estimated by the extend
Kalman filter (EKF).

The rest of the paper is organized as follows: in Section 2, the excitation system model
of power system is established; Section 3 presents new nonlinear robust adaptive
excitation controllers and the state EKF estimate; Section 4 includes the simulation
results; the conclusions are summarized in Section 5.

2. Mathematical Model of Multi-machine Power System

For a large scale power system consisting of n generators interconnected through a
transmission network, the model for each generator with excitation control can be written
as follows [4, 10, 19-23]:

Mechanical equations:

0 =0~y (1.1)
.y D,
@; =—= (B —Py) ——- (0 —wy) +d;;
M M, (12)
Generator electrical dynamics:
E.i'q = #(Eif - Eiq) + d_iz
Tqoi (1.3)
Electrical equations:
Eiq = Ei,q + g (Xid - Xi,d) (1.4)
%y =i —9 (1.5)
P. =EG; + Ei’qzl E’,(G; cos &, + By sin &)
i=1
= (1.6)
Qe = _Ei’qz B + Ei’qz qu (Gij sin o; — By cos 5.,)
=l
I= .7
l, = ELG;i + > E},(G; cos 5; + By sin ;)
=1
1= (1.8)
ly =—E;B; +.le E!,(G; sins; —B; cos &)
j=1
I= (1.9
By (1.6) and (1.8), we obtain:
I:)ie = Eiqliq (1.10)

Where, 0 is the power angle of the ith generator in radian; @i js the relative speed, in

M P

rad/s; "' is inertia constant; "m0 is the mechanical input power, assumed to be constant;
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D, is damping constant; Pe is the active electrical power, in p.u.; i is the quadrature

axis current, in p.u.; By is the transient electromotive force (EMF) in the orthogonal axis
of the generator, in p.u.; Taoi is the direct axis transient time constant, in s; by is the direct
current, in p.u.; X is the direct reactance; X is the transient direct reactance; will change

slowly forthe saturation effect and are uncertain parameters; d; and d;, are bounded
model errors, represent external torque and electromagnetism disturbances, respectively;

Eq is EMF in the excitation coil of the generator; Gy is conductance; By is susceptance.

By (1.1)-(1.9), the excitation system of the multi-machine power system, with the
uncertain parameters and the disturbances, can be rewritten as:

0y =, — 2.1)
@y = (P = Pi)wo /M; — (0, =) D; /M, +dyy (2.2)
= 1 ' ’ 1 y

Ei=—= [Eiq + lig (Xig —Xig)]+=—E +d;,
dOi doi (2.3)
2,=[0,(6,-6) Gu(@-a,)] (2.4)
Where i is the regulation output; % and %i are weighting constants to be

determined.

Because D, can not be measured accurately, %is ang %o usually change slowly for the

saturation effect, Di, Xs and X are supposed as uncertain parameters.

Firstly, we introduced the following coordinate transformation:
x=[xy %, X31' =[6,-6, 0~y 0,,(Py—P)/M]T

Where io and 0 are the initial power angle and the rated speed of the ith generator,
respectively.
By (1.10), we obtain:

_ g (_Ei’qliq - Ei’q I'iq)

XiS M
_a)OEi'qI'iq _a)Oqu 1 ' ' 1 T
= + — E +1,(x,—x)]+—E, +d.
Mi Mi { Td,Oi [ iq |d( id id )] Td,Oi fi |2}
=V; + @30, +d;, ©)
VC N L L )
i iq ' ig ' ' i _ _y
Where M Tooi Tdoi is the new control, Oz = Xig ~ g is the
@oligliy ol +
Dizs =7 —, di, =- d;,
MiTqoi Mi " obviously, 92 is

uncertain constant parameter,

bounded because di, is bounded.
In the new coordinate, the excitation system of the multi-machine power system can be
expressed as:

X = Xiz (4.1)
Xip = Xiz — Oy %, +dyy (4.2)
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Xiz =Vi + 9,30, +d; (4.3)

Y =[0 X c1i2Xiz]T (4.49)

Where i is uncertain constant parameter.

0;

For System (4), the objective of the controller is to regulate Ey to drive the angle

and speed P 10 a small neighborhood of a constant stable operating point. Our goal is to

find Y = fi0% X2 %) ang 0= 950 X2 Xa) g4 that the following inequality holds:

T 2 T 2
jo ly:] dt < »? jo o | dt+V (x,) )
Where V(%) ZO.

Inequality (5) is the dissipative inequality of the system, which shows that the L2-gain

of system (4) from disturbance d to output Yi'is less than or equal to 7

3. Design of Robust Adaptive L2-gain Decentralized Excitation
Controller

3.1. New Robust Adaptive L2-gain Control Method

Excitation system (4) of power system can be considered as the special case of the
following parametric strict-feedback system form:

% = F,(%) + 9, (X)X, + o (%,)0+&, (6.1)

X, = T, (X, %) + 0, (X, X, ) X5 + 0, (X, %,)0 + &, 62)
X = £ (O %) F G0 Xy X)X T 07 (X X )0 + & 63)
Xy = B0 (Koo %)+ G (K XU+ 07 (X X, )0+, (6.4)

Where X € R" is the state vector; U € R s the control input; fi, 9 (i :1,2,---n) are
smooth functions, f(0)=0 , 9i(%....%) #0 ;O (... %) is smooth vector field;
0<RP (1< p= My represent unknown constant vector; &i (i =1,2,---n) is the additive
disturbance in L, space.

Step 1: Let & =X, using (6.1) to obtain:

& ="Ff+09X +0 0+s ™

Designing the virtual control X as:

X, = (=1, _¢1Té_ mlel)/gl (8)

Where m, = fl(|el|) +C > 0 , f1(|e1|) C, > 0

is the K-Class function, : 0 is the
estimate value of 0; X2 represents the virtual control.

When @ =0—0 and & =% % substituting (8) into (7) , using (6.2) and (6.1), we
obtain:

& :_m1e1+¢1T§+gleZ+gl (9)
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*

e’2=>'(2—)'(;=fz+gzx3+¢20——2(f + 0% + 9/ aXzé*‘gz
% o (10)
Defining Lyapunov functions as:
2
v =2
2 (12)
Taking the derivative of (11) and (12) along (9) and (10), yields:
rnlel +€ ¢ 10 + €0.€, +€& (13)
0.6, + f2+gzx3+¢20— .
7 2 Th * * 6X2
V,=—me’ +e . 0+e, ox ; +e¢ +6,6, -6, —=¢
E(f+ 9%+ 24
X 0
' (14)

Designing virtual control X5 as:

. 1 8X X,
X; =—[-0,6 — (02 2(f+glx +¢10)+620 m,e, ]
9. 0 (15)

Where M, = f2(|e2|)+c2 >0, f2(|e2|) is the K-Class function, ¢, >0 : %5 is the
virtual control.
When & =% =% substituting (15) into (10), (14), we obtain:
OX, X,
e, =—Mm e2+§020+9263 9,6, — (010"' 2 _281
:_Zm € +Ze (DJTH"'Ze —82 % (010"'929293 ez%gl
% (17)
Step i:
1 ez
V=1
2 (18)
i-1 a * i
€ =-me +¢, 9+9| i+1 gi—lei—l_z T0+ Z— -
= O, (19)
i k-1 an i an
V= ijeJ +Ze 9] 6?+ZejgJ d e 0+gI ,e,+1+ZZek—g
k=2 j=1 an k=2 j=1 8X- (20)
Step n:

Defining Lyapunov function as:
V. =V, +[f%(e,)+0"I0]/2

(21)
el olfOI (CHIN.
e,
Where & =0
Taking the derlvatlve of (21) by (19) and (20) we can obtain:
V.=V, f(e)OI Ce L5719
& (22)
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. n-1 n-1 n-1 k-1 n-1 k-1 *
V=Y me+Yee +Ze¢ 1-5S e, 2 pi-0 -5 S e, X
j=1 j=1 k=2 j=1 8X- k=2 j=1 axj
n-: 16)( * .
b0, .6 b +f +gu+ef+e - v (f;+9;x J+1+(p10+5)— ]
RN (23)
b, = f (e,) (%)
Where €n

The nonlinear robust adaptive control law U and the adaptive law ¢ are as follows:
n-1

1 _ X (7X ~
uzg_[_gnlenlenbzl f, (0n (%:0 m,b, ufl+z f+gj m"’(”}'”}

" H % (24)
N
R n-1 n-1 k-1 8X df e
| Sew -2 50 2o o) LS S
=L k=2 j=1 aX e, (25)
Where M, = f“(|e”|)+C“ >O, fr (|e"|) is the K-Class function, G >0; U js additive
variable.
Substituting (24) and (25) into (23), we obtain:
n-1 n-1 n-1 k-1 n
V==Y met-mbi+Y e, +hye, - ZZek Ko b, 3% pu,
j=1 j=1 k=2 j=1 i j=1 8X (26)
Remark 1
By the back-stepping method, we get the following closed-loop error system:
€ =-me +¢ 0+ gle +& (27.1)
~ 1
& =—-me +¢ 0+0e, —09.€, z Ta +& z_ '
=1 O j (27.1)
. Ty -1 < S aXn
€, =—M.¢e, tUy +o, 0 — gn-len-lenb z Z ox gj
= 1= (27.n)
n-1 T n-1 k-1 ax* T
= Q0 =D D> &0 —f (&)
=1 k=2 j=1 ax en 28)
whené =0, using (26) we get
—Zm -m[1e) T b,
(29)
When Urz = KD, (K> 0) sing (24) and (26), we can obtain:
n-1
V,=—> mef —(m +K) b <0
= (30)
u:i ~g,.8 eb'—f —p8—(m +K) b, +Z (f;+9;x J+l+(0j
g, = J (31)

Remark 2
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_Kf (e )df(e)
When f.qe.\)zo m, =c; >0 (j:]_,z,...n_]_), dt (K>0),
V.=V += f(e)+ L0 V <0
, by "n = we can know the closed-loop error System

(27) can be stablllzed by (31) and (28) Although the robust control and adaptive control
of Sys (27) is realized by (31) and (28), the optimal control isn’t realized.

Remark 3
when M = fi(e;)+c, (=120 f;(e;)

fi(ep= \k‘ej)ufl—ov =Va- +1f(e)+ ”Fl‘”ov <0

is the K-class functions (for example

, It is same that
the closed-loop error System (27) can be stabilized by (31) and (28) When the value of

i s bigger, the values of M and (31) will increases, so the convergence speed of
System (27) will be improved.

When i * 0 and the L2-gain from disturbance ¢ to output Y of System (6) is 7, the
following inequality should be hold:

T 2 T2
b a7 [ lef deev )

(32)
The L2-gain control of System (6) can be calculated by following methods.
Define
2 n
H =V, +2 ||y(t [ =7l = Z (4°) —7—283
2% (33)
Substituting (23) into (33), by (24) and (25), we can obtain:
n-1 df( ) n-1 n-1 ax df( ) )/2
H=-Yme’-m[f(e —k_ —g.——g? +
;‘” L) de, ;{ kﬁlk Y de, ox; [ 2
f(en)d]:j(e)n L +1qux] “te d‘:j( )
e 2 24 e, (34)

By (34), we obtain:
2 n

n-1 n-1 7/ bl b]_Z }/g b 1
H=-Yme’-mb?-Y (-2 R o e x)2=bu
Z:;, i€ — My, JZ;, \/—7/ (\/— \/—7/) 2 H(qj J) Uty )

n-1 *
b =e, - z axk OX,,
k 2 8X
Where o X, i,

By (35), we can obtain:

1] b? 1
T . 0
2 = (36)
By (33) and (35), yield:
n-1 n-1 b
H=-)me -mbh? y‘ by Ay e % yqg
,Z_;” 22-1:\/_\/_7 R (37)

a2
By (37), we obtain <y Hg(t)H —Hy(t H . Define the storage function V(X)=2V, , yield:

Wl 38)
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T2 2 (TP
V)=V +[ [y de<y*[ Jef ot V(X) =2V >0

The integral of (38) is n=", we

2 2
[ <] Jef dt+v () _ _

obtain 0 . So the robust adaptive L2-gain control of System (6)
can be realized by (24), (25) and (36).

Remark 4

In this paper, a new nonlinear robust adaptive L2-gain control method is proposed and
the universal calculation formulas are given as (24), (25) and (36), which can reduce the
calculation difficulty of the L2-gain disturbance attenuation control.

. Because

3.2. Robust Adaptive L2-gain Decentralized Excitation Control

By the method introduced in Section 3.1, the robust adaptive L2-gain decentralized
excitation control can be realized by following steps:

Step 1:
€= Xil, Xi2 =M€ gng &2 =%z~ Xi?, using (4.1) and (4.2), we obtain
€1 =Xy =X, =—Mye,; +6, (39)
€2 = Xip _Xi*z = Xi3 — 0%, +dil+milxi2 (40)
Where My = f‘1(|e‘1|) +C > 0, fi1(|e‘1|) is the K-Class function, Cin > O.
Step 2:
e’ 2 g2
. Vilz_ll Vizzi*'(i2 . - V. V.
Define 2 2 2 Taking the derivative of “it and ‘iz along (39) and
(40), yields:
Vio =848 +628, = _milei21 +€,5 (8 011X + X3 + My Xip) +,,0; (41)
Designing the stabilizing function Xs.
X; =€ + 0, X, —M;y X, —M;,€;, (42)
Where "2~ fia() +c: >0, fiz(leio) is the K-Class function, %2 ~ 0, O is
the estimate value of ‘9“.
When =% "X by (42) and (40), we obtain
€p =—€; — Oy X, — M€, + €5 +d;, (43)
€3 = Vi T (0, + Oip — My + 8, =0y + (=00 + My + M) (=6, %, + Xig + i) + My, X, (44)
Vip = €6 +8,6, =~ — M85 —01%81, +€,85 +8,0; (45)
Step 3:
ee) o 1 5
Vig=Vip + 2 : "'22_ ij2 V
Let %P5 By (45), taking derivative of 'i3, yields:
. ~ 1 ~ & 1 ~ A .
Vig =M€l — M8, —0X,€, +€,8, 8,0y —— 0,6, —— 6,0, + biz(xis - Xi3)
Pu Pi (46)
Where Bz = f(&g)df (6;5)/deys .

By (42) and (4.3), we obtain:
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4
€8sl TV + 930, +dy -

: i L

vis = _Z mije§ — O X8, + 8,05 — 0;1;9 910 +hy,| M8, +8, = 9,1X,2 + MM X, +
i1 i1 i2
(=0, + My + My, ) (=0, %, + X + )
1 1 2 172 3 1 (47)
By (47), the control law and the adaptive law can be designed as (48), (49):
V, = —€,€,b; — §0i3éi2 +my (e — M%) — €, + éilxiz -

(=0 + My + M) (=6, X, + Xi3) —Migby, — Uy, (48)

61 = pu [_ Xi2€;p — (=01 + My +M;;) X,b;, (49.1)

G, = Pibipis (49.2)

Where Mis = f‘3(|ei3|) +Cis > 0, f‘3(|e‘3|) is the K-Class function, Cis >0 .

Substituting (48), (49) into (47), we obtain:

2
V|3 = _Z mijei? - mi3bi22 - uiflbiZ + eizdil + eiSdiZ + biz(_‘9il +my, + miz)dil
- (50)
Substituting (48) into (44), we obtain
€3 = €850, + 16, + Uy — (=6, + My +M,) (0%, —diy) = Mgy, — Uy, (51)
By the back-stepping method, we obtain the following closed-loop error system
€1 = Xig = Xip = —M,€,; + €,

(52.1)
€, =—€; —O X, —M,e, +e;+d; (52.2)
€5 = €850, + 930, +dy — (_é. + My +M;, ) (6%, —diy) —Mpby, — Uy, (52.3)
Define:
. 1 . 1 2 2 2
Hy =Vig + = (YO = 7@ ) =Vio + = Y (a2x)) -2 d?
2 2 =i 2 =t (53)
Substituting (50) into (53), we can obtain:
b
H = ml el ml b|2 ul bl (j/dll —L)% -
JZ j i 3Mi2 f1™~i2 \/_ \/_7/
7’d 1 G 2, b21 e'2 Z
i i i i3 - (q
2 2
Where bil =€, t+ eis(_gi +m, + miz) _
By (54), we can obtain:
1| bj+e’
uifl:F|: > Z(quxlj) J
12 (55)

By (54) and (55), yield:
1 2 b
M=V QO 1ot =~ mes -mitf - (- Dy (- e <0
j=t

; 2 2 2
By (56), we obtain N <y Hg(t)H —HY(t)H . Define the storage function Vi(X)= 2Vi3, yield:
2
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T2 2 (TP
The integral of (57) is )=, (O)+-[° I dt<7 '[0 e Vi(x) =220

2 2
[ <[ o] d+vic0) | | .

obtain 0 . So the robust adaptive L2-gain control of excitation
system (4) can be realized by (48), (49) and (55).

Remark 5

The robust adaptive L2-gain controller of excitation system (4) can be realized by (48),
(49) and (55). When i =i ang fy (‘e” ‘) 0 (i=1, 2, 3), this controller can be called
constant-L 2-gain-robust-adaptive-decentralized-excitation-controller (C-L2-RADEC).

f.(le.))=0 . ) . .
When Y (‘ ”‘) (i=1, 2, 3), this controller can be called K-class-function-L2-gain-
robust-adaptive-decentralized -excitation-controller (K-L2-RADEC). When the values of

;= fey)+cy =k ef +

. Because » WE

i are bigger, the value of i will increase, so this K-L2-
RADEC will improve the control speed. However, the optimal excitation control isn’t
considered in C-L2-RADEC and K-L2-RADEC. In Section 3.3, a new optimal K-class-
function-L2-gain-robust-adaptive-decentralized-excitation-controller ~ (OP-L2-RADEC)
will be introduced.

3.3. Optimal Robust Adaptive L2-gain Decentralized Excitation Control

V., V,2+ +z

ij

If Zpu , by (39)-(45), we will obtain:
via = —m,e; —m,e;, _é1xizei2 +€,8, 16,0, by Oob, + eiS(XiB - Xl*s)
Pir Piz (58)

By (40) and (4.3), we obtain:
€tV + 90, +dy —Mye, +e, +

j : 2 _p éléil ézéuz A
Vg = _Z M€ — 6, X,81, +€;,0; — +8;5) (=0, + My +M,) (=0, X, + X3 +diy) +
j=1 i1 Piz B
MM X, = 01X, (59)
By (59), the control law and the adaptive law can be designed as (60), (61),

respectively:
vV, =—€, +m,€6,, —¢€ _¢i39i2 + (9iXi2 — My M5 X,

i2

— (=0, + My, +M,) (=X, + Xi3) — Mia€is —Uyey (60)
O, = pil[_ Xi2€p — (=6 + My + My ) X585 (61.1)
0., = Pi2€i3Pi3 (61.2)

Where iz = fis(es) +cis >0 fiz(les))
Substituting (60) into (44) we obtam
€5 = € +(0|39|2 +dy — (-6, +m, + m.z)( — ;) — M€ — Uiy (62)

is the K-Class function, c

We obtain the following closed-loop error system:
€y = Xy = X, = —M;€;; + €, (63.1)

€2 = —€; — G X, — M8, +€5+dyy (63.2)
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€3 =€, + Pt +d2i _(_éi + My + My B Xip —Mig8is +(_éi My + My Py —Uigy (63.3)
By (63), we obtain:

(64.1)
2, =—My€, +6, = (m|21 _1)3i1 - (mil +M, i, +€3 =X, +dy =73 +&; (64.2)

. A A« 2 . . .
Lz = ailxiz + eilXiZ + (mil _1kl - (mil +M;; B, +65
3 —
= (=M +2my + M) 2y +V, + &, (64.3)

Vip = (m|21 +mf +mym;, — 2)3i2 — Uy — (M +my, +mig e + X, (64.4)

Where Z; =0, =0 - T TG0y . Zig = @, o G di ,
8i2 = Hil(eilxiZ _Xi2)+¢i39i2 _Hildil +di2 : dily di2 , gil, 0i2 and Xi2 are in LZ_Space;
&y €y and %z € L,

By (64), we can obtain the state equation:

z, 0 0|z 0 0 0
. pos
Z,=2,|=0 0 1z,|+1 0{”}0%
&
Z;3 -my+2my+m, 0 0]z, 0 -1 1
=AZ;+Byg + B,V (65)
Theorem 1
When i :Cizi, if the minimum value of /i (yi >0) can be found and System (64)

T T
Jy IilFet <7 [ (lw [yt

satisfies (T > O), the optimal L2-gain control of System (64)

is realized and the L2-gain will be less than or equal to " The optimal control law and
the worst disturbance are as follows:

G -1
v, =W,R~Z, (66)
& = i2 BiIPiilzi
Vi (67)
Where Wiand i are the solutions of the following linear matrix inequality (68).
(A+ BiZKi)TXi + Xi(Ai +B,K;) X;By CiT
BiIXi -yizl 0 |<0
(68)
By (66), (64.4) and (60), we can obtain Vi The adaptive law is expressed by (61).
Proof
For (65), when Vi =CiZi and the state feedback control law is Vit = KiZi , We obtain
Z,=(A+B,K\)Z +Byg (69.1)
yi =CiZ, (69.2)

Zigi

<
o 7, for (69), the Riccati Inequality (70)

should be satisfied. Meanwhile, the optimal control law Vi2 and the worst disturbance
are (71) and (72), respectively.

Based on the linear H, theory, when
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XA+ AiTxi +7/i_2xiBilBiIxi _,U_zxiBizBiszi +CiCiT <0

(70)
_ 1 T
Vi =K Z; =— 2 Bi, X Z;
24 (71)
& = iz BiT1 X Z;
Vi (72)
Where Xi is the positive define matrix; #>0
Substituting (71) into (70), we obtain:
Xi (A +B,K)+(A +B,K)" X; +7,°X;B,B; X; +C,C <0 (73)
By the Schur theorem, (73) can be rewritten as:
(A +B,K)" X+ X (A +B,K) X;By, Cf
BiIXi -;/izl 0 |<0
(74)
. -1
When the left right multiplying matrix of (74) is diag {xi 11 } we can obtain:
AP +BW, +(AP +BW)" B, PCS
B -¥21 0 |<0
C,P, 0 -1
(75)
_y-1 _ -
Where P =X is the positive define matrix; K =W;P 10

By the Mincx command in Matlab, the minimum value of Vi and the values of Wi and

P can be resolved. So the OP-L2-RADEC can be realized by (66), (64.4), (60) and (61).
Remark 6
The OP-L2-RAEC can not only improve system robustness to disturbances and be
adaptive to the dynamic uncertainties, but also can be applied to minimize the impact of
disturbance by solving the linear matrix inequality to obtain the optimal control law.
Remark 7
In C-L2-RADEC and K-L2-RADEC, the control law and the adaptive law are:

Vi =- eEeia '(Diséiz + My (8 -M;,%;,) - €5 +éilxi2 -
2
(-6 + My + M) (-6 X, + Xi3) - Mighy, - Uiy , 0, = 'Pil[xizeiz + (-6, + My + M, ) X0, ,
0., = Pizbi2¢i3_

In OP-L2-RADEC, the control law and the adaptive law are:
_ _ 2 2 - A
vV, =W,PZ, U, = (M + My +mym;, -2)e;, -V, - (mil +Mm;, + miS)ei3 +0X,

e.e . A
1 Vi =- I; 12 - Pia0hp + My (8 - M, Xi,) €, + 0, -
V= [-4Eﬁ+fpei-5;q|'iq} L .
2H, | Ty Tqoi , (-G + My + My ) (-0, X, + Xi3) - Mighy, - Uy,

A

éil = pil[' Xi2€is - (_éil + My + M, ) X85 , O = Pi2€i3Pis .
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Where Sit = AS, &= Aw, +M;AG o Bis = X & 0, Xz + My X, + M€, ,
£V, + Q0 .
' - PIeO F)Ie th [le |2 |3]T Z _A§ Z - A(() Z —_— Aa)—

In above mentloned control Iaw and adaptive Iaw of the generator | all the varlables
and parameters are just related to the same generator, so it is clear that C-L2-RADEC, K-
L2-RADEC and OP-L2-RADEC are all decentralized control.

In C-L2-RADEC, K-L2-RADEC and OP-L2-RADEC, it is necessary to obtain the

values of l : lis and l . In this paper, these state values of the generator are estimated by

EKF that is introduced in Section 3.4.

3.4. State Variable EKF Estimate of Generator

The relation between the rotor speed “i and the rotor position 0 of the ith generator
is:
= (76)
For the high sampling frequency in the excitation control system, the rotor speed can
be assumed to be constant in the sampling period, i.e.

& =0 (77)
In the d, q reference coordinate system, the flux linkage equation of the ith
synchronous generator can be described as

Piszy = Uig + Riljy + D, D

(78)

(biaq = Ui, + Riiiq — WPy (79)
Disq = Piaq = Liqiiq (80)
Pioa = Praa + P = Ligha + @& (81)
Dis = Pisa T Pisq (82)

Where i Yiq , M e are the d-q axis stator voltages and currents,
respectively; R, is the stator resistance; Lig , 9 are the d-g axis stator inductances; Pia

, P are the d-q axis stator flux linkage, respectively; Pi s the rotor flux linkage.
From (78)-(82), the synchronous generator can be described by (83).
x=f(x)+B(x)U

y:[ID IQ]T:h(X) (83)
—1 _1 _1 iial
I|D — g 2 2 |
T Vel T o 3 0 ﬁ _E ilb

Where X=[X X, X3 X,]' =[@ Pisq O ] , L 2 2 |- ,

1ot _ _ - _

{Uio}_\F 2 2 u'a i,] [cosd —sind i, u,] |cosf —sind [y
S B Y o 1 N B R
2 5 [ al [sing cos@ |LQ q _smﬁ cosd Q
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X — X =P .
—zcos@i—l—@'fsmei

_ Xiq id 3 B
o=, X -0, = cosd, —siné

—Zsing, — 21— cos 6, B(x)=| _ _ .

Xig Xid sind, cosé, U=[up Ul

.
R. R. R.
f(X):I:_IX1+X2X4__I§0if — Xy = XX, X, O:| . . .

Xig Xig Xiq ha lip lic Ui

Uio and Uic are instantaneous current and voltage values of the ith generator.
For the fully digital implementation, the system model (83) can be re-written as:
Xia = Fg (X)X, + DX )u, +V

Y =h(X) %, +W, (84)

Where Y« and Wx are the zero-mean Gaussian random vectors, describing the model

disturbance and the measurement disturbance, whose variance matrices are Q and R,
respectively, Fo (%) =1+T T (X(KT)) - DO4) =1+TB(X(KT)) 1 js the sampling period.

X1 can be estimated by EKF in following two steps.

Step 1: Prediction step

Xy = F(X)%, + D(X)u, : Vi = N(Xi.0) ikﬁ; ﬁkﬂ =P +T{FRP +RF)}+Q

Step 2: Innovation step

K = |5k+1HkT+1[Hk+1§k+1HkT+1 + R]A; X = Xea + Kl Vi = Vil : Pt = 5k+1 - Kk+1Hk+1§k+1
LA, 0

Fk X=Xy K OX . .
Where OX , * gre the Jacobian matrix.

{Iid} cosd  —sinb PD}
| la] |sing cosg o

The values of l and ' by , The value of lq can
g = (uiq + Rl _a)|¢i&i)/xq .

be obtained by

_ T _ n T
Meanwhile, The value of X=D4 % X3 X1 =0u ¢ 6 @] can be estimated

by EKF.

3.5. L2- RADEC Based on Sensor-less State Tracking Estimation

For the ith generator, the block diagram of C-L2-RADEC, K-L2-RADEC and OP-L2-
RADEC based on the state estimate is shown in Figure 1.
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/ The L2-RADEC Based On The Sensor-less State Tracking Estimation \

A B C N
Sensor-less State
Ta & —_—

g=artn 8 |2 T8 R Estimation ",

‘psl b 1)

_ o % | Dp 2,

g i ! i

T = b, D“
ahc 7 L

@ ||
I A A N
3 . L2RADEC S
4 @ 1 | (C-L2-RADECY K- | —y ——" IGBT rectifier Generator
s LI-RADECY OF- B (i)
By fet x, L3-RADEC)

Figure 1. Block Diagram of L2-RADEC Based on Sensor-less State Tracking
Estimation

In Figure 1, the values of Pisd , Pioa and 0 can be obtained by the EKF estimate. By
S = Pisd _ .
. ) . U: . l .
Pisq &1 can be calculated. U'D, Q. lio and ' can be obtained by the 3/2
transformation of stator voltage and stator current (mtroduced in Section 3.4).
Uig Uiq iid uiQ o Tig

(introduced in Section 3.4). By R =Ugly +Ugly Qo =Ugly —Ugly Xi3 =R —Fe

By ~Vy +%4Qq /Vy I.' = (U;, + Ryi; _C‘)'Q’ia"d)/l—

I
"4 can be obtained by the DQ/dq transformation of

, the values of ! ei2
€is Xi3 By I‘q, b and I'q can be obtained and the OP-L2-RAEC can be realized
(mtroduced |n Section 3.3 and Section 3.4).

4. Simulation and Experiment
Simulation has been conducted on a 4-machine power system (see Figure 2).

20 3 101 13 120
1 10 110 11

G3

G1

2 Load1l Load2 12
G2 G4
Figure 2. Diagram of the 4-Machine Power System
The system data is listed in Appendix A. In the simulation, the models of generators
are same as (4) and the governor dynamic are neglected. The loads are represented by

constant impedances. The value of the uncertain parameter is given as D= 3p.u.~ 5p.u..
Parameters of AVR+PSS controllers are list in Appendix B.
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4.1. Simulation on State Variables Estimate by EKF

When there are the Gaussian white noise in System (83) and the loads of the 2th
generator increase by 50% at 2.5 s, the actual, estimated values and the values with noise

of Paa , P2 and & of the 2th generator are shown in Figure 3. The EKF program is list
in Appendix C.

1.1 500 ] D
— - — - PhaidKF Values Actusl Values 005 Phaig Actual Values
108 Phaid Actual Values 4m * Estimated values ' — — Phaig EKF Values
. . ) 0.1 Phaiy Yalues with Moise
—_ Phaid “alue with Moise - —
. 3 Z s
= & o
S o5 5 5 02
. [ 100 ]
;
) i 03
0
0.85 . . . 035 . . s
0 1 2 3 3 4 i B 0 1 2 3
s s
(a) P2 (b) 2 (c) 72

Figure 3. Comparison between Actual Values and Estimated Values

As shown in Figure 3, although the transient estimated derivate the actual values, the
estimated values will be convergent to the actual value. In the steady state, the values of
the errors between the actual values and the estimated values are small, so the values of

5=artan

%‘1, Ped and 0, can be estimated accurately by EKF. So the values of Paq :
e”, iz 6‘3, X‘3, Eq‘, I"‘, li and lq can be obtained, and C-L2-RADEC, K-L2-RADEC
and OP-L2- RADEC can be realized.

4.2. Comparison between C-L2-RADEC, K-L2-RADEC, OP-L2-RADEC and
AVR+PSS

The 3-phase short fault happens on line 3-101 close to 101 at 5.3 s and the fault line
trips at 5.4 s. When the auto voltage regulator and power system stabilizer (AVR+PSS)
are all adopted, the state parameter dynamic curves of the power system are shown in
Figure 4.

55 13 15
sol — G1-Delta GLVt - GLVf
— G2-Delta 10 — G2Vf
45 — G3-Delta) ——— G3-Vf
Qo A G4-Delta L0 o | cav

. / g of i
s
5
-10
0.8 ; - - -15 ;
3 4 5 6 7 3 4 5 6 7
tls tls

(a) Power Angle (b) Terminal Voltage (c) Excitation Voltage

Figure 4. Dynamic Curves of Generator State Variables by AVR+PSS
Control
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When the C-L2-RADEC is adopted and M1 =Mz =Ms =17 =2 p,=p, =1
f(e;)=2e,+1

and , the state parameter dynamic curves of the generators are shown in
Figure 5.
55 1.25 15
— G1-Vf
. e | an o —
45 ——— G3-Delta e
G1-Delta 5 T Gavt
H E -
s s
5
-10
15 0855 4 5 6 7 g 4 5 6 7
4 'Z 6 7 tls t/s
(a) Power Angle (b) Terminal Voltage (c) Excitation Voltage

Figure 5. State Parameter Curves of Generators by C-L2-RADEC

As shown in Figure 4 and Figure 5, when 3-phase short fault happens suddenly,
comparing with the AVR+PSS control, the C-L2-RADEC can improve the convergence
rate of the state parameters. At the same time, because the damp constant D is uncertain,
Figure 5 shows that C-L2-RADEC can effectively increase robust performance of the
uncertain excitation system.

When Cy=C,, =G :1’ fi1(|ei1|) = eizl’ fi2(|ei2|) = 4ei22 , fi3(|ei3|) = 5eii>’ Pi1 = Piz :1,
vi=2 and f(es)=2e,+1
shown in Figure 6.

, adopting K-L2-RADEC, state parameter dynamic curves are

As shown in Figure 5 and Figure 6, When the value of i is bigger, the values of !
will increases, so the convergence speed of state parameters will be improved.

55 prrerr e T r s s T s e s 1.3 15
= — Gl-Delta G1-Vt | G1-Vf
— G2-Delta 120 vt 10F f“ G2-vf
45 — G3-Delta G3-Vt I — G3-vf
4 A ~ G4-Delta 11 — Gawt 5¢ “‘}J, G4-Vf
Sy 1 3" 3 %
as® A i & g o0 ‘
© 30 s >
I 5F
25 " y ] ‘
20F ‘uj ] -10¢
15 0.8
4 5 6 7 4 5 6 7 15 - - -
tls tls 8 4 'f_ 6 !
(a) Power Angle (b) Terminal Voltage (c) Excitation Voltage

Figure 6. State Parameter Curves of Generators by K-L2-RADEC

When % =CiZ: C; =diag[10.40.1] m;, = 2,m,=1m, :4’ v, = 2’ the LMI (75) can

be resolved by the function Mincx in MATLAB LMI toolbox, we can get
1.7393 -0.9851 0.5378

P=| -0.9851 24947 0.3604
05378 0.3604 31088 | 4 W,=[10.0596 -29216 -2.1802] Erom (66) and (67), the

optimal robust control law Vi and the worst disturbances i are respectively as follows:
V, =7.75462, +2.22342,, - 2.30057; = 7.7546(5 = &,) + 2.2234(w— ) -2.30056> (g5
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5-6,
[ 0.2463 -0.6237 -0.0901}
& = —

| 0.1345 0.0901 0.7772 “o
(86)
Substituting (85) into (66), (60), we can get the control input v;. The adaptive law is
expressed by (61). The curves of the state parameters are shown in Figure 7.

55 pre e e T T T S T T e 1.3 15
50 — Gl-Delta — Gl-Vt | — GIVf
— G2-Delta 12 — G2-vt|] 10 | — G2Vf
45 —— G3Delta —— 3Vt 1 —— G3Vf
40 \ -~ G4-Delta - ] .8 ‘[“L N AV
e — - ‘ = .
by e ‘ s ‘
25 ‘ . ]
20l \'/ ~_ ] : -10
15 : : : 0.8 : : : -15 : : :
3 4 5 6 7 3 4 5 6 7 3 4 5 6 7
tls t/s tls
(a) Power Angle (b) Terminal Voltage (c) Excitation Voltage

Figure 7. State Parameter Curves of Generators by OP-L2-NRADEC

As shown in Figure 4, Figure 6 and Figure 7, when 3-phase short fault happens
suddenly, comparing with the AVR+PSS control, the OP-L2-RADEC can improve the
convergence rate of the state parameters. The OP-L2-RADEC can not only suppress the
disturbance, stabilize the excitation system, be adaptive to the uncertain parameter, but
also realize the optimal L2-gain disturbance attenuation.

5. Conclusion

New nonlinear robust adaptive L2-Ggain decentralized excitation controllers (C-L2-
RADEC, K-L2-RADEC and OP-L2-RADEC) are proposed in this paper. Because the K-
class functions are applied and the universal calculation formulae are deduced, the new
controller can improve the convergence speed of the state parameters and overcome the
over-parameterized problem in some robust adaptive excitation controller. In the new
controllers, the values of state parameters are estimated by EKF. Simulations on the 4-
machine power system demonstrate that comparing with the AVR+PSS control, the new
excitation controllers are all robust to external disturbance and adaptive to the uncertain
parameters and OP-L2- RADEC can realize the optimal L2 gain control to minimize the
effect of the disturbance. Meanwhile, the values of state parameters can be estimated by
EKF.
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Appendix
Appendix A. Parameters of Generators and Transmission Lines

Table 1. Parameters of Generators

Parameters | Generator #1 | Generator #2 | Generator #3 | Generator #4
Xq 1.8 1.65 1.2 0.93
X 0.3 0.25 0.16 0.66
Xq 16 14 1.0 0.51
T/, 5.2 6.4 8.3 5.69
M 9.0 10.2 11.2 14.3

Table 2. Parameters of Transmission Lines

Bus | R(p.u) | L(p.u) | C(p.u) Bus R(p.u) | L(p.u) | C(p.u)

1-10 0 0.15 0 101-18 | 0.0043 | 0.0475 | 0.7802

2-20 0 0.10 0 18-120 | 0.0003 | 0.0059 | 0.0680

10-20 | 0.0010 0.025 00.75 | 120-110 | 0.0010 0.025 00.75

20-8 | 0.0003 | 0.0059 | 0.0680 | 120-12 0 0.10 0

8-101 [ 0.0043 | 0.0475 | 0.7802 | 110-11 0 0.15 0

Appendix B. PSS Transfer Function

Generator 1:
30 0.05s+1 3s+1

Gl(s) =
0.0155+10.025+15.45+1
Generator 2:
21 0.03s+1 2.4s+1
Gz (S) =
0.0155+10.0155+13.2s+1
Generator 3:
43 0.06s+1 3.4s+1
Ga (S) =
0.015s+10.0425+14.2s+1
Generator 4:
50 0.34s+1 3s+1
G4 (S) =

0.015s+10.126s+13.2s+1
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Appendix C. EKF Program

syms phaid phaiq theta w

x=[phaid;phaiq;thetal

Q=10%eye (3)

P=10%*eye (3)

RR=10%*eye (2)

xinitial=[1;0;0]

for i=1:1: (dimension/substract step)

phaidEKFplot (i)=xinitial (1) ;

phaigEKFplot (i)=xinitial (2);

thetaEKFplot (i)=xinitial (3);

Fx=120%pi*[ (-R/L1*phaid+phaig*wEKF (i) +R/L1%* (phaimdEKF (i) -ikdEKF (i) )) ; (-R/L1#*phaiq—
phaid#wEKF (i) +R/L1% (phaimqEKF (i) —ikqEKF (i))) : wEKF (i) ]
Fd=[phaid;phaiq;theta]+tc*Fx

B=[1 0;0 1;0 0];

D=120*pi*tc*B

Hx=[ (-phaid+phaimdEKF (i) ~ikdEKF (i)) /L1; (-phaiq+phaimqEKF (i) ~ikqEKF (i)) /L1]
xkadd1=Fd+D*[udEKF (i) ; uqEKF (i) ] ;

Fjacobi=jacobian (Fd, [phaid phaiq theta])

Hjacobi=jacobian (Hx, [phaid phaiq thetal])

x=xinitial

xkadd1Pred=subs (xkaddl, [phaid phaiq thetal], x)

yk=[ (-xkadd1Pred (1) +phaimdEKF (i) ~ikdEKF (i) ) /L1; (~xkadd1Pred (2) +phaimqEKF (i) -
ikqEKF (1)) /L1];

F=subs (Fjacobi, [phaid phaiq thetal, x)

P=Q+F*P*F’

H=subs (Hjacobi, [phaid phaiq theta], x)

KKadd1=P*H’ *inv (H%P*H’ +RR)
xinitial=xkadd1Pred+KKadd1#*[idEKF (i) -yk (1) ; iqEKF (i) -yk (2)]

P=P-KKadd1:*H*P
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