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Abstract 

By combining the strength of the Rao-Blackwellized particle filter (RBPF) and 

extended information filter (EIF), this paper presents a novel Combined Filter SLAM 

algorithm which can be efficiently employed in large-scale scenarios. Local maps are 

effectively produced through RBPF-SLAM algorithm and then periodically fused into an 

EIF SLAM algorithm. A binary-tree based divide and conquer (D&C) strategy is also 

applied to further improve the computational efficiency in real time environment. 

Simulations and experiments using the Victoria Park dataset demonstrate the consistency 

and efficiency of our proposed Combined Filter SLAM algorithm in large-scale 

environment. 
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1. Introduction 

Simultaneous localization and mapping (SLAM) is a method to help robots explore, 

navigate, and map an unknown environment [1]. It is well known that traditional methods 

for SLAM based on the extended Kalman filter (EKF) suffer computational complexity 

problems when dealing with large-scale environments, as well as inconsistencies for non-

linear SLAM problems [2]. 

In recent years, SLAM related research has received extensive attention and endeavors 

to improve the consistency property and computational efficiency. The goal is being able 

to map large-scale environments in real time [3]. Combining the submap based idea with 

combined filters can make SLAM algorithms even more efficient. A number of such 

algorithms are available, e.g., by mixing PF with Gaussian filters [4], FastSLAM with 

EKF [5], RBPF with UKF [6] etc. However, enabling real time SLAM implementation in 

an increasingly unstructured large-scale environment is still a great challenge. 

In this paper, a new Combined Filter SLAM approach is presented to map large-scale 

environments. The algorithm is a judicious combination of RBPF and EIF, combined with 

a divide and conquer local mapping scheme. Being a local mapping algorithm, it can 

provide more consistent results, compared with submap based sparse EIF SLAM 

algorithm – Sparse Local Submap Joining Filter (SLSJF) SLAM [7], reported to have the 

same low cost, but computing an absolute map [8]. CF SLAM is also conceptually simple 

and rather easy to implement. 

This paper is organized as follows. The overall structure of the proposed algorithm is 

outlined in Section 2. Section 3 describes the probability distribution of RBPF-SLAM 

algorithm and its conversion, while Section 4 presents the binary-tree based Divide and 

Conquer scheme. In Section 5 we provide a brief review of the EIF SLAM algorithm for 

fusing local submaps into a global map. In Section 6 we use the Victoria Park dataset to 

test our algorithm with real data. Finally in Section 7 we draw the main conclusions of 

this work and discuss future directions of research. 
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2. The Overall Structure of Combined Filter SLAM 

The objective of local submap joining is to combine the local submaps and obtain a 

global map containing all the features. Similar to the sequential submap joining in [6], CF 

SLAM fuses the local submaps one by one. That is, first set local submap 1 as the global 

map, then fuse local map k (k ≥ 2) into the global map in sequence. 

It is assumed that a consistent local submap can be constructed by some SLAM 

algorithm and is expressed by 

 ,LL LM X P
                                                            (1) 

where X
L
 (here the superscript ‗L‘ here stands for the ―local‖ submap) is an estimation 

of the state vector which contains the final robot pose X
L 

r  = (x, y, α) and all the local 

feature positions which are shown as X
L 

1 , …, X
L 

n . That is to say, X
L 

can be represented as 

   1 1 1, , , , , , , ,L L L L L L L L L L

r n r r r n n

L X X X x y ,xX , y x y 
                          (2) 

and P
L
 is the associated covariance matrix.  

In real applications, the robot will start to build the (k + 1)th local map as soon as the 

kth local map is finished, thus the robot ending pose in the kth local map is exactly the 

same as the robot starting pose in the (k + 1)th local map. The overall structure of the 

proposed algorithm is outlined in the following flow chart.  

 

Data logging of sensors

Local mapping by 

RBPF SLAM

Devide and Conquer 

submap joining scheme

Map joining by EIF

New global map
 

Figure 1. The Overall Structure of the Proposed Algorithm 

The algorithm has three main highlights: 

a) Local mapping is carried out using the RBPF-SLAM to build a sequence of 

submaps. One important task is to convert the Gaussian Mixture Model of RBPF-SLAM 

into a single multi-dimensional Gaussian model for the following submap joining process 

through EIF.  

b) In contrast with sequential submap joining strategy followed by SLSJF, the D&C 

strategy is followed to decide when map joining takes place.  

c) Submap joining is carried out using EIF, keeping mobile robot positions from each 

local submap in the final map: this allows to exploit the exact sparse structure of the 

information matrix and the joining can be carried out in linear time with the final size of 

the map. 

 

3. Local Mapping 

In this section, we will address the Rao-Blackwellized particle filter based local 

submap building in detail, especially the probability distribution and its conversion. 

 



International Journal of Control and Automation 

Vol.10, No.3 (2017) 

 

 

Copyright ⓒ 2017 SERSC      131 

3.1. The SLAM Problem 

Consider the robot pose st, the map learned thus far mt, current observations zt, and 

control signal ut, here suppose all at time t. The set of observations and control signals 

from time 0 to t are defined as z
t
 and u

t
 respectively. Generally, our goal is to estimate the 

density 

 , ,t t

t tp s m z u
                                                          (3) 

As the set of observations and controls arrives over time, we define xt = {st, mt} be the 

complete state. Applying Bayes rule [9] on Equation (3) then we get  

   

     
     

-1 -1

-1 -1 -1

-1 -1 -1

,

, ,

,

t t

t t

t t

t t t t t t t

t t t t t t t

p x z u Bel x

p z x p x u x p x z u dx

p z x p x u x Bel x dx













                               (4) 

where η is a normalizing constant. 

Equation (4) allows us to recursively estimate the posterior probability of maps and 

robot pose if the two distributions p(zt | xt) and p(xt | ut,xt-1) are given. For SLAM, an 

analytical form for Bel(xt) is hard to obtain and as such the Bayes filter is not directly 

applicable. Instead we assume all the variables are Gaussian distributed and utilize a Rao-

Blackwellized particle filter based SLAM algorithm to realize Equation (4). 

 

3.2. Gaussian Mixture Model (GMM) of RBPF-SLAM 

In the case of SLAM, the posterior is factored as 

     

    

, , ,

, , ,

t t

t t t t t

n
t t t t t

t

k

Bel x Bel x m p s m z u

p s z u p m k s z u

 

 
                                       (5) 

This factored distribution is represented as a set of K particles, with jth particle P
j
 

consisting of an importance weight w
j
, a robot pose s

j
, and n Gaussian feature estimations 

described by their mean μ
j
 and covariance Σ

j
, and the form is as follows 

 1 1, , , , , ,j j j j j j j

n nP w s    
                                                (6) 

In order to represent the distribution of each particle as low-dimensional Gaussians, the 

particle can equivalently be represented as 

 , ,j j j j

t tP w S Q
                                                         (7) 

where S
j
 = [s

j
, μ

j 

1, …, μ
j 

n ] denotes the concatenation of the robot pose with all feature 

states, and Q
j
 denotes a block-diagonal covariance matrix which is constructed from the 

robot covariance and the covariance of each feature, which is shown as: 

1

1

0

j

j

j

Q

 
 

 
 
 

                                                            (8) 

The probability distribution of RBPF-SLAM algorithm is a Gaussian Mixture Model 

(GMM), while the EIF SLAM algorithm requires local submaps are subjected to the 

above distribution in the form of a single multi-dimensional Gaussian when they are 

fusing into a global map. Thus, the conversion from the Gaussian Mixture Model of 

RBPF-SLAM into a single multi-dimensional Gaussian model becomes a requisite task. 
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3.3. Conversion to a Single Multi-Dimensional Gaussian 

Through a moment matching procedure [10], a single multi-dimensional Gaussian 

model with mean Mt and covariance Ct can be gained from Gaussian Mixture Model by 
j j

t t t

K

M w S
                                                             (9) 

  
T

j j j j

t t t t t t t

K

C w C x x x x    
  

                                          (10) 

where w
j
 denotes the importance weight, C

j 

t  refers to the covariance of individual 

particle caused by sensor noise, and (x
j 

t -xt) (x
j 

t -xt)
T
 stands for the variation between 

particles caused by robot noise. 

Due to each particle of RBPF-SLAM possesses its own data association decision in 

real implementation, the number of features and corresponding ordering may vary from 

particles. In order to carry out Equations (9) and (10), an indispensable task is to track the 

correspondences between features of each particle. 

 

Algorithm 1 Obtain Single Multi-Dimensional Mean and Covariance 

1. Assign index to observation 

Augment each particle with a set of correspondence variables λ
j 

i,t (e.g. λ
j 

i,t = Θ refers to 

the ith feature in the jth particle corresponds to the Θth observation in the environment at 

time t). 

 1, 1 1 ,, , , , , , ,     j j j j j j j j j

t t t t ,t ,t n t n,t n,tP w S
 

2. Apply the maximum likelihood data association 

Use the data association results to implement particle updating and augmenting for 

each P
j 

t . 

3. Re-arrange and re-modify each particle to produce a common feature set 

The concatenation of the robot pose with all feature states in Equation (7) can be 

represented as: 

    1, , , ,
, , ,

t t

j j j j

t t j t n j t
S s

 
 

 
    where δ denote the reverse function of λ

j 

i,t and equation δt(Θ, j) = i refers to the Θth 

observation in the common feature set corresponds to the ith feature in the jth particle. 

Thus, the single multi-dimensional mean can be acquired via Equation (9). 

And the related covariance is: 

 

 

1, ,

, ,

0

t

t

j

j tj

t

j

n j t

Q




 
 

 
  
 
 
   

 

Through Algorithm 1, each particle can get a single multi-dimensional mean and 

covariance, hence a single Gaussian distribution can then be obtained by means of 

Equations (9) and (10). However, a common feature will be discarded as long as it has no 

corresponding feature in any particle. 

 

4. The Divide and Conquer Submap Joining Scheme 

After a sequence of local submaps with minimum size p is produced via the RBPF-

SLAM algorithm, we employ the Divide and Conquer (D&C) submap joining scheme to 

acquire a single final stochastic map. 

Unlike Local Map Sequencing strategy to join maps sequentially [11], D&C scheme 

joins local maps in a binary-tree hierarchical fashion, as shown in Figure 2(a). The leaves 
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of the binary-tree are the sequence of local submaps that produced via the RBPF-SLAM. 

And the in-between nodes refer to the maps derived from the submap joining procedures. 

As a result, the root of the binary-tree stands for the final global map. And the detailed 

D&C map joining process is vividly depicted in Figure 2(b). 

 

2p

p p p p p p

2p 2p

4p

n/2

n/4 n/4 n/4 n/4

n/2

n

P0

P1

F1

F2 X

Y

P1

X

Y

P2

F2

F3

P2

P3

F3

F4 X

Y

P3

X

Y

P4

F4

F5

P0

P1

F1

F2

P2
F3

X

Y

P2

P3

F3
F4

P4

F5

X

Y

P0

P1

F1

F2

P2

F3

X

Y

P3

F4

P4

F5

Local map 1 Local map 2 Local map 3 Local map 4

Current global map 12 Current global map 34

Current global map 1234  

(a) Binary-Tree Fashion of D&C Scheme    (b) The Detailed D&C Map Joining Process 

Figure 2. The Divide and Conquer Submap Joining Scheme 

Map Joining is carried out using EIF, and the leaves of the binary-tree denote the 

sequence of l local submaps of certain size p. Submaps are joined in pairs to compute l/2 

maps of their double size 2p, which will then be merged into l/4 maps of quadruple size 

4p, till ultimately local maps of size n=2 will be joined into one global map of size n.  

Utilizing a stack to store the intermediate local maps, the D&C scheme can easily carry 

out a post-order traversal of the binary-tree (see the following Algorithm 2).  

 

Algorithm 2 Traverse the Binary-Tree Using a Stack  

stack = new() 

l0 = rbpf_slam() 

stack = push(l0, stack) 

{ 

Main loop: post-order traversal of the 

binary-tree 

} 

repeat 

lk = rbpf _slam() 

while ¬ empty(stack) and then 

size(lk) ≥  size(top(stack)) do 

l = top(stack) 

stack = pop(stack) 

lk = join(l, lk) 

end while 

stack = push(lk, stack) 

until end_of_map 

{ 

Join all the submaps in stack for full 

map recovery 

} 

while ¬ empty(stack) do 

    l = top(stack) 

stack = pop(stack) 

lk = join(l, lk) 

end while 

return (lk) 

 

5. Local Map Joining Procedure by EIF 

EIF is an algebraic equivalent of EKF, in which the parameters of interest are 

information states and the inverse of the covariance matrix (information matrix) rather 

than the states and covariance. Initialization in the information space is easier than in 

Kalman filter and the update stage of the information filter is computationally simpler 

than the Kalman filter, for more details see [12]. 
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The EIF can also be used to achieve the submap joining procedures, as described in the 

Sparse Local Submap Joining filter (SLSJF) SLAM [13]. Generally, in submap joining 

with EKF, correspondences are created through assuming a perfect condition z = 0 and Q 

= 0. While covariance measurements 0 are not allowed for Q
-1

 is required in the 

information form. Thus, after joining two local submaps (μ1, Σ1) and (μ2, Σ2), the resulting 

map (ξ, Ω) is predicted with the information of the first submap, and an initial 0 from the 

second submap. The innovation is computed considering the second submap as a set of 

measurements for the current global map (zt =μ2, Qt =Ω
-1 

2 ), and the ultimate update 

procedure calculates the information state ξ and the information matrix Ω utilizing the EIF 

equations. 

 

Algorithm 3 Submap Joining using EIF 

1. Jacobians 

 
̂













g
G

      

 
̂













h
H

 
2. Initialization 

 1 2,    g
; 

1

0


  
   

  ; 

1 0

0 0

 
   

   

3. Innovation 

The measurement residual ν and covariance Q
-1 

are calculated as 

 2

1

2

   



  


 

h

Q
 

4. Update 

The final update step computes information state ξ, information matrix Ω and defined 

state μ. 

 
2

2  





 

    

   


  

T

T

H H

= H H

 
 

The information matrix resulting from the submap joining procedures utilizing EIF is 

wholly sparse if the robot positions are maintained in the final information state. This is a 

situation very similar to the full SLAM problem, only a fraction corresponding to the final 

robot positions in each local map. And there is an added calculation of the final state μ, to 

make it available for the possible joining procedures. The state vector recovery step can 

be actualized via a preordering of minimum degree of the information matrix and the 

Cholesky factorization is used to solve the sparse linear equation.  

 

6. Experiments and Analysis 

The performance of our method is examined in this section. In order to do so, we 

employ the Victoria Park dataset where a truck equipped with a range laser scanner was 

driven through the Victoria Park in Sydney, Australia (publicly available at http://www-

personal.acfr.usyd.edu.au/nebot/victoria_park.htm). The following experiments allowed 

us to check the validity, consistency and computational efficiency of the proposed 

algorithm compared to the conventional single-map-type EKF SLAM. 
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6.1. Simulation Environment 

The Victoria Park dataset describes a path through an area of around 197m × 93m. This 

sequence consists of 7247 frames along a trajectory of 4 kilometers, recorded over a total 

time of 26 minutes. The dataset contains sensor readings from steering and rear-axis 

wheel (odometry) and laser range finder (one 360 degrees scan per second) along with the 

data from a GPS. For the laser range data a tree detector function is provided together 

with the dataset. These Trees within Victoria Park are used as point features in the map. 

We assume that the data association is known and focus only on verifying the SLAM 

solution. The experiments are conducted on ThinkPad E450C with 2.7GHz Intel Core i5-

5200U Dual Core Processor, 4GB of RAM, and all programs are implemented in 

MATLAB R2013a. 

 

6.2. Experimental Results 

As shown in Figure 3, the feasibility and validity of the proposed CF SLAM algorithm 

is examined by joining 200 and 7000 local submaps.  

 

    
(a) Map Obtained by Joining 200 Local Maps     (b) Map Obtained by Joining 7000 Local 

Maps 

Figure 3. The Map Joining Results using CF SLAM for Victoria Park Dataset 

It has been suggested that local submap based schemes can enhance the consistency of 

SLAM by keeping the robot orientation error small [14]. The consistency of our method is 

examined through the map consistency analysis. Concretely speaking, the Normalized 

Innovation Squared (NIS) can be employed to analyses the consistency while the ground 

truth for the state variable is not known. 
-1 2

,1-

t

k k k rNIS v S v  
                                                    (11) 

Given the estimation of the innovation vector v and the innovation matrix S, the state 

(x
*
,P) estimation is consistent while NIS < χ

2 

r,1-α , or else the estimation will become 

inconsistent for over optimization. Here, r = dim(xk) is the degree of freedom, and usually, 

α is 0.05 denoting the desired significance level. In Figure 4, the dashed line represents 

the χ
2
 corresponding to each step, and the solid line refers to the NIS, which indicates that 

our approach performs inside the boundaries of theoretical consistency.  
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Figure 4. Consistency Test 

Regarding the computational cost, we tested the computational time of both standard 

EKF and our method by carrying out 30 Monte Carlo runs on the simulated experiment, 

as shown in Figure 5(a). We can see that the EKF computation time increases on a 

quadratic order to the number of features in the map, while our approach increases almost 

lineally. This improvement is also visible in Figure 5(b). The time per step of our 

approach is almost constant, while the time per step of EKF increases with the size of 

map. Also, the time per step of our approach has some peaks because of the submap 

fusion events. However, these peaks do not bring any drastic time delay, therefore the 

improvement of computation efficiency is considerable. 
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Figure 5. Time Required to Compute the Whole Mission 

 

7. Conclusion 

In this paper, the submap based Combined Filter SLAM approach, which combines the 

advantages of both RBPF and EIF, has been demonstrated to be suitable to consistently 

map large-scale scenarios. On the one hand, the RBPF-SLAM based local submap 

building improves the robustness of data association and the validity of estimation. On the 

other hand, the EIF-SLAM based submap joining globally allows uncertainty to be 

remembered over long robot trajectories. Finally, simulation and experiments using the 

publicly available Victoria Park dataset clearly demonstrate the consistency and efficiency 
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of the proposed algorithm. And more work is required to determine the best submap 

joining strategy, improve the robustness, and extend CF SLAM to 3D local submap 

joining. Research along these directions is underway. 
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