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Abstract 

In this paper, we describe a method for the attitude of a quadcopter UAV using image 

information of a moving object like a walking human. This method combines the observed 

position from GPS sensors and the estimated position from the images captured by a 

UAV’s camera to localize a walking human. Using the a priori known path of a 

quadcopter UAV in world coordinates and a perspective camera model, we derive the 

geometric constraint equations which represent the relation between image frame 

coordinates for a moving object and the estimated quadcopter UAV's attitude. The 

proposed method utilizes the error between the observed and estimated image coordinates 

to localize the quadcopter UAV. The Kalman filter scheme is applied for this method. The 

performance of proposed algorithm is verified by the computer simulation and the 

experiments. 
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1. Introduction 

As the minimization of unmanned aerial vehicles (UAVs) and performance 

improvement of sensors have made headway in recent times, research and 

commercialization also followed suit in various fields of application such as physical 

distribution services, disaster relief, observation work, and entertainment. Owing to the 

vertical mobility and hovering characteristics of small quadcopters, they are autonomous 

and able to fly indoors [1, 2].  

To perform these functions, sensor-based position control is considered as an important 

research subject for quadcopter environment monitoring, position prediction, and tracking 

control. However, because UAVs such as small quadcopters cannot predict their own 

location based on the odometer information in their wheels (in contrast to land robots), 

this work has performed a basic study on the location estimation method based on the 

acquisition of images to solve these issues. An image sensor was installed in a UAV to 

acquire images of objects and obtain test results that estimate the location of a quadcopter 

position based on the acquired images in terms of uncertainty [3,9]. 

In this study, the subjects (walking human) were recognized through image processing 

in order for the quadcopter to move closely alongside them, and the subject, camera 

status, and geometric constraints between the image coordinates were applied to calculate 

the location. The route was predicted using a Kalman filter to determine an effective 

tracking method. The subjects performed color-recognition tasks from a camera installed 

in the quadcopter, and the location and distance were acquired. The Kalman filter, which 

is a nonlinear status estimator, was used to estimate the subject linear speed [4]. The 

linear speed and angular velocity of the moving objects were used in estimating the 

trajectory of the subjects; thus, they were effectively tracked [4-6] as the quadcopter 

moved along the tracked trajectory. 

The system of the quadcopter used for the tracking experiments in this study was 

constructed as shown in Figure 1, and the mechanical parts were divided into the driving, 
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sensor, and control units. Some information on the system in this study were composed as 

shown in Figure 1.   

 

Image I/O

Pre-Processing
1. Human Recognition

/Detection
2. Feature Extraction

      Recognition
  1. Walking Human
  2. Direction

U

V

 

Figure 1. Process of Walking Human Tracking 

 

2. Local Estimation of Walking Human 

 

2.1. Walking Human Image Projection 

As an experiment to recognize and estimate the moving objects, color information of 

the pedestrians was used to control the location and position of a plane body in this study. 

The location information of the pedestrians was provided to the quadcopter in advance, 

and when the quadcopter attempted to correct its location, the location estimation degree 

increased, and pedestrians were observed while the quadcopter was in flight to increase its 

flight mobility. The route of the walking pedestrians was linearly displayed on the image 

coordinates, and the current estimated location of the quadcopter was used to induce the 

geometric constraint equation by converting the coordinates [10,11].  

Figure 2 shows that the quadcopter was equipped with a charge-coupled device 

(CCD) camera, and the camera was installed so that the optical axis below the 

quadcopter can be placed on the quadcopter 
RX   axis and a straight line. The camera’s 

geometric model is a common pinhole model [7]. Here, (x , y ,z )W W W
 expresses the standard 

coordinates, (x , y ,z )R R R
 expresses the plane-body coordinates, and ( , )u v   expresses the 

image coordinates [7, 8]. 
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Figure 2. Coordinates of Walking Human and Quadcopter 

The trajectory of the walking human on the W Wx y  plane of the reference 

coordinates, without loss of generality, is assumed to be as follows: 

0),( WW yxf
                                                             (1) 

0( )Wz z h  is also assumed to be constant and not equal to the camera height of 

quadcopter, h . 

The walking human trajectory in the reference coordinates can then be transformed 

into the quadcopter coordinates, as follows: 
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where ˆ ˆ ˆ[ ]Tr r rx y z  represents the current estimated position of the quadcopter and 

[ ]TW W Wx y z  represents the position of the walking human. 

This point ( [ ]TR R Rx y z ) is mapped once more onto the image frame using 

perspective projection, as follows [7, 11]: 
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where   represents the camera focal length and  
T

z u v  is the position of the 

walking human on the image frame. Based on the Eq. (2) and Eq. (3), the geometric 

constraint equation can be generally represented as 

ˆ( , ) 0f z x  ,                                                          (4) 

where ˆ ˆ ˆ ˆ[ , , ]T

r r rx x y z  represents the current estimated position of the quadcopter. 
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2.2. Position Correction 

There is some discrepancy between the calculated position of the walking human in the 

image frame, which is based on the estimated quadcopter position, and the actual value. 

Utilizing this error, the real position of the quadcopter can be corrected recursively. To 

overcome vague input information, i.e., the noise of the human position in the image 

frame and uncertainty components of the position estimation of the quadcopter, the 

Kalman filtering technique is adopted to develop a robust observer [14, 15]. The 

geometric constraint equations between the human image coordinates and the quadcopter 

position are approximated to a linear equation, and the Kalman filtering technique is 

applied to estimate the quadcopter position.     

It is assumed that the i-th measured vector, i.e., the position of the walking human, ˆ
iz , 

includes noise with the following average and variance: 

î i iz z   ,                                                             (5) 

where [ ] 0iE    and [ ]T
i i iE S   . 

Using the Taylor series expansion and ignoring the higher order nonlinear terms at the 

measured vector, ˆ
iz , and the estimated position of the quadcopter, 1ˆix  , the nonlinear 

constraint equations are approximated to linear equation as follows:  

1

1 1
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In a linear system, Eq. (6) can be rearranged as the following matrix equation [8]: 

ˆi i iy M x u  ,                                                          (7) 

where 
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. 

In this equation, iy  is the new measured vector, iM  linearly combines the measured 

vector and the quadcopter position, x̂ , and iu  is the error in linearization of the measured 

vector with the following average and variance values [6]: 

[ ] 0iE u  ,                                                               (8) 

ˆ ˆ
[ ]

T

T

i i i i

f f
E u u W S

z z

 
 

 
,                                             (9) 

Since iM  and iy  are a priori given values, if the average and variance of iu  are 

known, we can obtain the optimal estimated value of x̂  with the new variance. The 

Kalman filter provides the estimated value, x̂ , which minimizes the expected squared 

error norm, ˆ ˆ[( ) ( )]TE x x x x  , as the linear combination of the measured vectors, { iy }, 

as follows: 
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1 1ˆ ˆ ˆ( )i i i i i ix x K y M x    ,                                                 (10) 

1
1 1( )T T

i i i i i i iK P M M P M W 
   ,                                         (11) 

1( )i i i iP I K M P  ,                                                       (12) 

where iK  represents the Kalman gain, iP  is the zero-mean-variance matrix of the 

estimated error by the ith measured vector, and ˆix  is the estimated quadcopter position by 

the i-th measured vector. 

The initial quadcopter position estimation and variance, 0x̂  and 0P , can be obtained 

using the quadcopter driving model. Using n image frames from the image coordinates of 

the moving object, the final quadcopter position is recursively estimated as ˆnx , with a 

variance of nP . 

 

2.3. Direction Correction According to Gaussian distribution 

Figure 3 shows a two-dimensional Gaussian distribution that provides deviation 

information on a single observation of an object. The average of the central distribution is 

the estimated location of the pedestrian, and this axis displays the degree of standard 

deviation according to the maximum and minimum axes of the distribution relative to the 

estimation of the uncertainty of the observation. The distribution value for the specified 

location must be identical to the possibility that the pedestrian is actually at that location.  

The pedestrian information for the specified location must be characterized by 

calculating the average, standard deviation, and angle of the fused distribution with regard 

to the observation of the indication point recognized by the quadcopter while hovering. 

The average, standard deviation, measured distribution angle received from the sensor, 

and sensor-error model regarding the recognized pedestrian can be accordingly calculated. 

A method of determining the parameters combined for the individual distributions is 

required, and such is generally being used as follows: 

 

 

Figure 3. Gaussian Distribution Parameter: Average (X, Y), Ellipsoid 

Parameters were combined for Individual Distribution (σ max,σ min) Distance 

from Object V 

The matrix pattern of the Kalman filter adopted by Smith and Cheeseman proposed 

several simple calculation methods [3]. These methods expressed a fused covariance 
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matrix pattern without considering the conversion factors, whereas the average, standard 

deviation, and direction of the maximum axis are independent of the conversion. A three-

dimensional regular distribution of the Gaussian distribution is accordingly determined 

according to the standard deviation, , covariance matrix, C  and average. Covariance 

matrix C , relative to the observation indicates the existing research results as the 

maximum and minimum axes of the standard deviation, as expressed in Equation (13) 

[12, 13]. 
2

max

2

min

0

0
C





 
  
 

                                  (13) 

Since the observation may be oriented arbitrarily with respect to the global coordinate 

frame, it must first be rotated to align with this frame:  

)()(   RCRC T
                                         (14) 

where   is the angle of the distribution’s principal axis with respect to the global x-

axis. This rotation accomplishes the transformation from observation parameters to the 

canonical form. Once the observations are in the canonical form, we continue to merge 

the observations into one.  

The covariance matrices of two distributions, C1 and C2, can be combined into a single 

covariance matrix, C, as  
1

1 1 1 2 1[ ]C C C C C C   .                                         (15) 

Now the mean of the resulting merged distribution, X, is computed from the individual 

distribution means and covariance matrices as follows:  
1

1 1 1 2 2 1
ˆ ˆ ˆ ˆ[ ] ( )X X C C C X X    .                                          (16) 

The hovering position of the quadcopter can be corrected through image recognition of 

the pedestrian, and the three-dimensional uncertainty ellipsoid relative to the pedestrian 

movements can be displayed as follows. 

 

3. Experiments 
 

3.1. Experimental Conditions 

First, the UAV body was set so that it could be tracked while in a hovering state to 

maintain strong recognition of the pedestrian. The pedestrian’s movements proceeded in a 

curved path like a parabola to express a complicated pattern of movement. The 

experimental conditions that considered the actual parameters were as follows: 

Camera height:  300h cm   

Focal length: 1.55cm    

CCD size: 0.60 ( ) 0.52 ( )cm H cm V   

The covariance of the estimated vectors is independent of each other, and the data 

acquired through the experiment, as expressed in Equation (17), were used considering a 

standard deviation of approximately three pixels. 
2

2

0.005 0

0 0.005
S

 
  
 

                                                       (17) 

When the quadcopter’s control period was set to 100 s and the input speed error of the 

quadcopter’s four rotor blades were set to 3% of actual input, the Kalman filter’s initial 

estimated value of location and covariance of error were the values based on the 

experimental results of the quadcopter’s flight model. The pedestrian decided to walk 

along an arc-shaped route expressed in Equation (18). 
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2Y 0.01(X 500) 300,

X 200 500,
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 



                                              (18) 

 

3.2. Results 

Several experiments were performed with the human walking in S-curve directions, 

making turns. In all cases, the quadcopter is able to closely follow the walking human. 

Figure 4 shows a simulation of the walking human with varying speeds and patterns of 

movement with changes in direction. At all times, the quadcopter satisfactorily follows 

the walking human. 
 

 

Figure 4. Motion Path of a Walking Human Captured By Simulation 

Figures 5(a) and (b) show the tracing movement trajectory of the pedestrian, and the 

bounding box that indicates the recognition status regarding the rear state obtained while 

the subject moved from the point of departure to the destination in a forward direction 

respectively. Here, the error intervals of the bounding box in Figure 5(b) are shown to be 

slightly narrower than those in the bounding box in Figure 5(a). The error interval of the 

bounding box may look narrower according to the decrease in uncertainty when the 

pedestrian arrived at the location compared with the increase in uncertainty at the point of 

departure.  

According to the experimental results, the recognition uncertainty with regard to the 

pedestrian decreased the closer he/she approached his/her destination. The uncertainty 

ellipsoid on the estimated values of the location and covariance before and after 

correction is shown in Figure 6. 
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(a) Motion Path of a Walking Human Captured by Hovering Quadcopter 

  

   

(b) Reverse Direction (goal–start) 

Figure 5. Pedestrian Tracking from the Video 

 

 

Figure 6. Uncertainty Ellipsoid of the Location Estimation 
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4. Conclusion 

In this paper, a method has been presented that estimates the absolute location of a 

pedestrian through an estimation method of tracking pedestrians while a quadcopter is 

hovering. The uncertainty ellipsoid was used to quantitatively show the location 

estimation uncertainty of the quadcopter. The quadcopter location was shown to be 

correctable by applying the Kalman filter and the geometric constraints based on the 

images through coordinate conversions.  

To examine the presented method, a pedestrian that moved along a specified route was 

projected on a video camera loaded in a UAV, and the constraints generated between the 

object image coordinates and the quadcopter current estimated location were induced. 

Because this information was calculated based on the quadcopter-estimated location, the 

pedestrian predicted image coordinates were different from those actually observed. This 

difference was used to inversely determine the quadcopter location. Because the 

pedestrian image coordinates included static noise during processing, an uncertain 

component existed in the quadcopter’s location estimate.  

The Kalman filter that robustly estimates the status was used to track the moving 

objects. The tests results showed that the accuracy of the quadcopter location estimation 

was further influenced by the arc-shaped path of the movement of the pedestrian rather 

than a linear path.  
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