Scaling of Supply Voltage in Design of Energy Saver FIR Filter on 28nm FPGA

Bishwajeet Pandey¹, Vishal Jain², Rashmi Sharma³, Mragang Yadav⁴ and D M Akbar Hussain⁵

 ^{1,3,4}Center of Energy Excellence, Gyancity Research Lab Gurgaon, India
²Bharati Vidyapeeth's Institute of Computer Applications and Management (BVICAM), Delhi, India
⁵Department of Energy Technology, Aalborg University Esbjerg, Denmark gyancity@gyancity.com, drvishaljain83@gmail.com, rashmisharma1505@gmail.com, mragangjec@gmail.com, akh@et.aau.dk

Abstract

In this work, we are going to analyze the effect of main supply voltage, auxiliary supply voltage, local voltage of different power bank, and supply voltage in GTX transceiver and BRAM on power dissipation of our FIR design using Verilog during implementation on 28nm FPGA. We have also taken three different level of voltage with 16 IO standards and we get three different power analysis for each IO Standards. IO power dissipation of FIR filter is 150mW with SSTL_18_II IO standard. When we migrate our design with HSTL_I, HSUL_12, LVCMOS15, LVTTL, MOBILE_DDR, and PCI33_3 IO standards then there is 53.33%, 86%, 90.67%, 65.33%, 52%, and 48.67% reduction in IO power dissipation of FIR Filter design on CSG324 package of Artix-7 FPGA family.

Keywords: Supply Voltage, Input Voltage, Output Voltage, Auxiliary Voltage, Power Dissipation, Energy Efficient, FIR Filter

1.Introduction

VCCINT supply power with internally connected metallization in chip. Internal connection have to ensure good decoupling capacitors, minimum IR drop, and lesser noise on the power rails. VCCAUX bumps on the die connect with common metal interconnect. This interconnect has a common connection on the laminate package. VCCO pins tied together for pins in the same bank [1]. VCCO33, VCCO25, VCCO18, VCCO15, VCCO135 and VCCO12 are 6 difference VCCO pins for six following voltage of bank 3.3V, 2.5V, 1.8V, 1.5V, 1.35V and 1.2V respectively. We have also taken three different level of voltage for three different power analysis with 16 IO Standards of 7 different family. For example, minimum voltage is 0.95V, average voltage is 1.0V and maximum voltage is 1.05V for VCCINT as shown in Table 1. SSTL IO standards family is the most power hungry IO standards. LVCMOS is the most energy efficient IO standards for our FIR filter design on FPGA. Power dissipation of other 5 IO standards family like, HSTL, HSUL, LVTLL, MOBILE_DDR and PCI33_3 give intermediate results in terms of power.

Received (August 7, 2017), Review Result (November 5, 2017), Accepted (November 20, 2017)

Voltage	Minimum	Average	Maximum
Vccint	0.950	1.000	1.050
Vccaux	1.710	1.800	1.890
Vcco33	3.000	3.300	3.450
Vcco25	2.380	2.500	2.630
Vcc018	1.710	1.800	1.900
Vcco15	1.430	1.500	1.580
Vcco135	1.300	1.350	1.400
Vcco12	1.140	1.200	1.260
Vccaux_io	1.710	1.800	1.890
Vccbram	0.950	1.000	1.050
MGTAVcc	0.950	1.000	1.050
MGTAVtt	1.140	1.200	1.260
Vccadc	1.710	1.800	1.890

In 7 series FPGA, average VCCINT, VCCAUX, VCCBRAM, and VCCADC voltage for power analysis are 1.0V, 1.8V, 1.0V and 1.8 V respectively as shown in Table 1. The recommended GTX transceiver power up sequence is VCCINT, MGTAVCC, MGTAVTT. Whereas, the recommended GTX transceiver power down sequence is MGTAVTT, MGTAVCC, VCCINT. The current and voltage associated with MGTAVTT, MGTAVCC are shown in Figure 1.

Figure 1. Xilinx MGT Reference Design [2]

VCCINT, VCCAUX, and VCCBRAM capacitors are listed as the quantity per device, while VCCO capacitors are listed as the quantity per I/O bank [3]. There are 41,600 FF, 90 DSP and 210 IO available on CSG324 package of Artix-7 FPGA family. Our current design of FIR filter, is using flip-lop (FF), digital signal processing (DSP) blocks and input/output (IO) port available on Artix-7 FPGA as shown in Table 2.

Table 2. Resource Availability and Usage by FIR Filter Design

Resource	Utilization	Available
FF	48	41600
DSP	9	90
IO	28	210

Our design is using only 1% (48 out of 41600), 10% (9 out of 90) and 13% (28 out of 210) FF, DSP and IO as shown in Figure 2 and Table 2.

Figure 2. Resource Availability and Usage in Artix-7 FPGA

2. Related Work

Scaling of supply voltage on 28nm 7 series FPGA means variation of voltage between 0.95 V to 1.5 V. Voltage scaling in this paper is variation of voltage between 0.95V to 3.45V. In [4], energy efficient counter is developed with use of technique called voltage scaling. In [5], energy efficient mobile battery charge controller sensor is developed with voltage scaling. Voltage scaling is also used in FPGA based design of cyclic redundancy check [6], flip-flop [7] and Wi-Fi Ah Channel enable ALU [8]. [9] Investigates the possibility of reductions possible in commercially available FPGAs configured to support voltage, frequency and logic scalability combined with power gating. Voltage and frequency pairs at run-time while logic scalability is achieved with partial dynamic reconfiguration [9].

3. Artix-7 FPGA

Dynamic power is related to switching activity and clock frequency of design. For power analysis of our design, we have to create timing constraints and add that clock to our design. In this work, our waveform has 10ns period, 0ns rising edge time and 5ns falling edge time as shown in Figure 3.

Clock game:	dock	0
Source objects:		
Waveform		
Period:	10 💽 ris	
Bise at:	0 🊖 ris	
Eal at:	5 🚭 ns	

Figure 3. Clock Information of our FIR Filter Design

Table 3.	Power	Dissipation	with	Different	0	Standards

IO STANDARDS	POWER DISSIPATION (Watt)
LVCMOS15	0.014
LVCMOS18	0.017
SSTL135_R	0.021
SSTL15_R	0.023
LVCMOS25	0.033
SSTL135	0.041
SSTL15	0.048
LVCMOS33	0.052
LVTTL	0.052
HSTL_I	0.07

MOBILE_DDR	0.072
PCI33_3	0.077
SSTL_18_I	0.09
HSUL_12	0.107
HSTL_II	0.118
SSTL_18_II	0.15

When we are using LVCMOS15, IO Power dissipation of FIR filter is the lowest *i.e.*, 14 mW. Whereas, IO power dissipation of FIR filter is the highest *i.e.*, 150mW with SSTL_18_II IO standards as shown in Table 3. Other family of IO standards like LVTTL, HSTL_I, MOBILE_DDR, PCI33_3 and HSUL is taking 52 mW, 70mW, 72mW, 77mW and 107mW respectively as shown in Table 3 and Figure 4.

Figure 4. IO Power Dissipation on Artix-7 FPGA with 7 IO Standards

A. Power Analysing Using LVCMOS18 For 3 Different Voltage Level: Minimum, Average, Maximum

For minimum voltage level, total on-chip power is 93mW as shown in Figure 5. It increases to 98mW for average voltage level as shown in Figure 5. It is 110mW for maximum voltage level as shown in Figure 7.

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can drame affer indemotivity.		On-Chip Power	·			
		24%	Dynamic:	0.023 W (24%)		
change after implementation.		-	8%	Signals:	0.002 W	(8%)
Total On-Chip Power:	0.098 W		20%	Logict	<0.001 W	(<1%)
Junction Temperature:	25.5 ℃			III DSP:	0.005 W	(20%)
Thermal Margin:	59.5 °C (12.4 W)	76%	71%		0.017 W	(71%)
Effective dJA:	4.8 °C/W			121 1122+	0.011 11	Cr + ruy
Power supplied to off-chip devices:	o w		Denice St	alier 0	075 W 17	1461
Confidence level:	Law	1	III Device St	dines 0.	Wra H 1/5	1.142

Figure 6. Power Analysis of FIR Filter for Average Voltage Level

Dynamic power is 22mW, 23mW and 25mW for minimum, average and maximum voltage level as shown in Figure 5-7

Power estimation from Synthesized derived from constraints files, simular vectoriess analysis. Note: these each change after implementation.	netlist. Activity ation files or rly estimates can	On-Chip Pow 23%	er	o	.025 W (2	3%)
change arter implementation.		-	10%	Signals:	0.002 W	(10%)
Total On-Chip Power:	0.11 W		22%	Logic:	<0.001 W	(<1%)
Junction Temperature:	25.5 ℃			DSP:	0.006 W	(22%)
Thermal Margin:	59.5 °C (12.4 W)	77%	67%	I I/O:	0.017W	(67%)
Effective dJA:	4.8 °C/W			New Salary		160.000
Power supplied to off-chip devices:	0 W 0		Device St	atic: 0	.085 W (7	7%]
Confidence level:	Low		mee or		Case of the	P. 1079901.1

B. Power Analysing Using HSTL_I For 3 Different Voltage Level: Minimum, Average, Maximum

Figure 8. Power Analysis of FIR Filter for Minimum Voltage Level

Dynamic power is 66mW, power supplied to off-chip device is 66mW as shown in Figure 8.

Figure 9. Power Analysis of FIR Filter for Average Voltage Level

Dynamic power is 71mW. Total on-chip power is 143mW and power supplied to offchip device is 79mW as shown in Figure 9.

Power estimation from Synthesized derived from constraints files, simul vectorless analysis. Note: these ea change after implementation.	netlist. Activity ation files or rly estimates can	On-Chip Powe	Dynamic:	0	.078 W (4	1%) —
Total On-Chip Power:	0.164 W	76.78	7%	Signals:	0.002 W	(3%)
Junction Temperature:	25.8 ℃		000	DSP:	0.001 W	(7%)
Thermal Margin:	59.2 °C (12.3 W)		89%	EIVO:	0.070 W	(89%)
Effective dJA:	4.8 °C/W	52%			0.070 11	Gen val
Power supplied to off-chip devices:	0.094 W		Device St	tatic: 0	086 W /5	1963
Confidence level:	Low		Device of	upder 0	1000 W 10	c vag

For maximum voltage level, dynamic power is 71mW. Junction Temperature is 25.8°C. Total on-chip power is 164mW and power supplied to off-chip device is 79mW as shown in Figure 10.

C. Power Analysing Using HSUL_12 For 3 Different Voltage Level: Minimum, Average, Maximum

Figure 11. Power Analysis of FIR Filter for Minimum Voltage Level

For minimum voltage level, dynamic power is 110mW. Junction Temperature is 25.9°C. Total on-chip power is 185mW as shown in Figure 11.

Power estimation from Synthesized derived from constraints files, smult vectoriess analysis. Note: these ea change after implementation.	netiist. Activity ation files or rly estimates can	On-Chip Pow	Dynamic:	0	. 113 W (i	1%)
Total On-Chip Power: Junction Temperature:	0.186 W 25.9 ℃	61%	0295	El Signals:	0.002 W <0.001 W 0.005 W	(2%) (<1%) (5%)
Thermal Margin; Effective dJA: Power supplied to off-chip devices;	59.1 °C (12.3 W) 4.8 °C/W 0 W	39%	34.10	01/2:	0.106 W	(92%)
Confidence level:	Low	12 1	Device S	tatic: 0	.073 W (:	9%)

Figure 12. Power Analysis of FIR Filter for Average Voltage Level

For average voltage level, dynamic power is 113mW. Junction Temperature is 25.9°C. Total on-chip power is 186mW as shown in Figure 12.

Power estimation from Synthesized derived from constraints files, simuli vectorless analysis. Note: these ear change after implementation.	netist. Activity ation files or ily estimates can	On-Chip Power	Dynamic:	0.	115 W (5)	2%6)
Tabal On Chin Dawan	0.201.00	57%		Signals;	0.002 W	(2%)
Total On-Chip Power:	0.201 W			Logict	<0.001W	(<1%)
Junction Temperature:	26.0 °C		0.784	III DSP:	0.005 W	(\$85)
Thermal Margin:	59.0 °C (12.3 W)		34.70	TTI LICH	0.10714	(0.284)
Effective dJA:	4.8 °C/W	43%		11 122	0.107 14	(36.34)
Power supplied to off-chip devices:	o w		Device St	tatic: 0	086 W (4)	2943
Confidence level:	Low		- Device of		000 11 11	

Figure 13. Power Analysis of FIR Filter for Maximum Voltage Level

For maximum voltage level, dynamic power is 115mW. Junction Temperature is 26.0°C. Total on-chip power is 201mW as shown in Figure 13.

D. Power Analysing Using LVCMOS15 For 3 Different Voltage Level: Minimum, Average, Maximum

Figure 14. Power Analysis of FIR Filter for Minimum Voltage Level

For minimum voltage level, dynamic power is 18mW. Junction Temperature is 25.4°C. Total on-chip power is 92mW as shown in Figure 14.

Figure 15. Power Analysis of FIR Filter for Average Voltage Level

For average voltage level, dynamic power is 20mW. Junction Temperature is 25.4°C. Total on-chip power is 93mW as shown in Figure 15.

Power estimation from Synthesized	netlist. Activity	On-Chip Powe	ar .			
derived from constraints files, simuli vectoriess analysis. Note: these ear	ation files or ly estimates can	20%	Dynamic:	0.022 W (20%)		
change after implementation.			11%	III Sanaka	0.002 W	(11%)
Total On-Chip Power:	0.107 W		26%	Logict	<0.001 W	(<1%)
Junction Temperature:	25.5 ℃			DSP:	0.006 W	(26%)
Thermai Margin:	59.5 °C (12.4 W)	80%	62%	LO:	0.014 W	(62%)
Effective dJA:	4.8 °C/W					
Power supplied to off-chip devices:	0 W 0		Device St	atic: 0.	085 W /80	1963
Confidence level:	Low			A2350 - 23	100000	1.00

Figure 16. Power Analysis of FIR Filter for Maximum Voltage Level

For maximum voltage level, dynamic power is 22mW. Junction Temperature is 25.5°C. Total on-chip power is 107mW as shown in Figure 16.

E. Power Analysing Using LVTTL For 3 Different Voltage Level: Minimum, Average, Maximum

Figure 17. Power Analysis of FIR Filter for Minimum Voltage Level

For minimum voltage level, dynamic power is 58mW. Junction Temperature is 25.6°C. Total on-chip power is 129mW as shown in Figure 16.

Figure 18. Power Analysis of FIR Filter for Average Voltage Level

For average voltage level, dynamic power is 59mW. Junction Temperature is 25.7°C. Total on-chip power is 138mW as shown in Figure 18.

Power estimation from Synthesized derived from constraints files, simuli vectoriess analysis. Note: these ear change after implementation.	netlist. Activity ation files or ily estimates can	On-Chip Powe	Dynamic:	0	.060 W (4	196)
Total On-Chip Power:	0.145 W		9%	Signals:	0.002 W	(4%) (<1%)
Junction Temperature:	25.7 °C			DSP:	0.005 W	(0%)
Thermal Margin:	59.3 °C (12.3 W)	top:	86%	1110-	0.057 W	(8696)
Effective dJA:	4.8 °C/W	2976		Can FUS-	0.034 11	for set
Power supplied to off-chip devices:	0 W		Device S	tatic 0	085 10 (51	144
Confidence level:	LOW .		E Sevice 3	000	1000 M 100	6.94

Figure 19. Power Analysis of FIR Filter for Maximum Voltage Level

For maximum voltage level, dynamic power is 60mW. Junction Temperature is 25.7°C. Total on-chip power is 145mW as shown in Figure 19.

F. Power Analysing Using MOBILE_DDR For 3 Different Voltage Level: Minimum, Average, Maximum

Figure 20. Power Analysis of FIR Filter for Minimum Voltage Level

For minimum voltage level, dynamic power is 79mW. Junction Temperature is 25.7°C. Total on-chip power is 150mW as shown in Figure 20.

For average voltage level, dynamic power is 80mW. Junction Temperature is 25.8°C. Total on-chip power is 158mW as shown in Figure 21.

Power estimation from Synthesized	netlist. Activity	On-Chip Power				
vectorless analysis. Note: these ear change after implementation.	ation files or rly estimates can	48%	Dynamic:	0	.081W (48	(96)
Total On-Chin Rowar	0 166 W		7%	Signals:	0.002 W	(3%)
rotar on chip rower.	0.100 1			Logic:	<0.001W	$\{<1\%\}$
Junction Temperature:	25.8 °C		2026	III DSP:	0.006 W	(7%)
Thermal Margin:	59.2 °C (12.3 W)		0376	F11/0:	0.072 W	(89%)
Effective dJA:	4.8 *C/W	52%		La Alber	0.072.11	40.0.141
Power supplied to off-chip devices:	o w o		Device St	atic: 0	086 W /15	1965
Confidence level:	Low		CI DEVICE DI	and a second		

Figure 22. Power Analysis of FIR Filter for Maximum Voltage Level

For maximum voltage level, dynamic power is 81mW. Junction Temperature is 25.8°C. Total on-chip power is 166mW as shown in Figure 22.

G. Power Analysing Using PCI33_3 For 3 Different Voltage Level: Minimum, Average, Maximum

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.		On-Chip Pow	Dynamic: 0.083 W (54%)				
Total On-Chip Power:	0.155 W	54%	6%	Signals:	0.002 W	(2%) (<1%)	
Junction Temperature:	25.7 ℃	-	9196	III OSP:	0.005 W	(6%)	
Thermal Margin:	59.3 °C (12.4 W)		2 . (B)	FI I/O:	0.077 W	(91%)	
Effective dJA:	4.8 °C/W	46%	· · · · ·		2023200	000000	
Power supplied to off-chip devices:	0 W 0		Device S	tatic 0	072 W [44	140	
Confidence level:	Low		Device 3	dor. o	101211 110	100	

Figure 23. Power Analysis of FIR Filter for Minimum Voltage Level

For minimum voltage level, dynamic power is 83mW. Junction Temperature is 25.7°C. Total on-chip power is 155mW as shown in Figure 23.

Figure 24. Power Analysis of FIR Filter for Average Voltage Level

For average voltage level, dynamic power is 84mW. Junction Temperature is 25.8°C. Total on-chip power is 163mW as shown in Figure 24.

Figure 25. Power Analysis of FIR Filter for Maximum Voltage Level

For maximum voltage level, dynamic power is 85mW. Junction Temperature is 25.8°C. Total on-chip power is 171mW as shown in Figure 25.

H. Power Analysing Using SSTL_18_II For 3 Different Voltage Level: Minimum, Average, Maximum

Figure 26. Power Analysis of FIR Filter for Minimum Voltage Level

For minimum voltage level, dynamic power is 156mW. Junction Temperature is 26.1°C. Total on-chip power is 221mW as shown in Figure 26.

Figure 27. Power Analysis of FIR Filter for Average Voltage Level

For average voltage level, dynamic power is 157mW. Junction Temperature is 26.1°C. Total on-chip power is 237mW as shown in Figure 27.

Figure 28. Power Analysis of FIR Filter for Maximum Voltage Level

For maximum voltage level, dynamic power is 158mW. Junction Temperature is 26.2°C. Total on-chip power is 243mW as shown in Figure 28.

4. Conclusion

We are able to reduce 91% power dissipation with usage of LVCMOS15 in place of power hungry IO standards of SSTL family. We have also verified that our design is able to operate on all three levels of voltage. Junction temperature is always below 30°C. The IO power dissipation of HSTL, HSUL, MOBILE_DDR, PCI33_3 and LVTTL is in between power dissipation of both LVCMOS and SSTL.

References

- [1] Are all of the VCCINT, VCCAUX, VCCAUX_IO, VCCO, or GND pins in the FPGA connected internally?, https://www.xilinx.com/support/answers/22338.html
- [2] Xilinx Ultrascale MGT Reference Design, http://www.ti.com/lit/ug/tidu649/tidu649.pdf
- [3] 7 Series FPGAs PCB Design Guide,
- https://www.xilinx.com/support/documentation/user_guides/ug483_7Series_PCB.pdf
- [4] T. Gupta, *et al.* "Energy Efficient Counter Design Using Voltage Scaling On FPGA." Communication Systems and Network Technologies (CSNT), 2015 Fifth International Conference on. IEEE, (2015).
- [5] S. M. Islam, et al. "Simulation of voltage scaling aware mobile battery charge controller sensor on FPGA." Advanced Materials Research. Vol. 893. Trans Tech Publications, (2014).
- [6] P. Khaneja, *et al.* "Wireless Sensor Network Specific Voltage Scaling Based Energy Efficient Circuit Design for Cyclic Redundancy Check." Computational Intelligence and Communication Networks (CICN), 2015 International Conference on. IEEE, (2015).
- [7] S. Singh, *et.al.* "Energy efficient flip flop design using voltage scaling on FPGA." Power Electronics (IICPE), 2014 IEEE 6th India International Conference on. IEEE, (**2014**).
- [8] S. Singh, *et al.* "Simulation and Verification of Voltage and Capacitance Scalable 32-bit Wi-Fi Ah Channel Enable ALU Design on 40nm FPGA." Computational Intelligence and Communication Networks (CICN), 2015 International Conference on. IEEE, (**2015**).
- [9] JL Nunez-Yanez, M. Hosseinabady, and A. Beldachi. "Energy optimization in commercial FPGAs with voltage, frequency and logic scaling." IEEE Transactions on Computers, vol. 65, no.5, (2016), pp. 1484-1493.