
International Journal of Control and Automation

Vol. 10, No. 12 (2017), pp.37-50

http//dx.doi.org/10.14257/ijca.2017.10.12.04

ISSN: 2005-4297 IJCA

Copyright © 2017 SERSC Australia

Symbolic Model-Checking for Abstracting Inevitability Modalities

over Transient States
1

Mohammed Achkari Begdouri*, Houda Bel Mokadem and Mohamed El Haddad

Department of Computer Science and Communication/LABTIC

ENSA of TANGIER, AbdelMalek Essaadi University,

P.O. Box 1818 Principal Tangier, Tangier, Morocco

*achkari.med@gmail.com

Abstract

The context of this study is the model-checking of timed systems. The timed logic

TCTLΔ has been introduced as a powerful extension of TCTL, in order to specify transient

states that last for less than k time units. The decidability of the model-checking algorithm

has been proved for all modalities of this extension, using a suitable adaptation of Alur

and Dill’s region graph. Unfortunately, this theoretical result cannot be normally

implemented because of its state-space explosion problem. But this is not surprising since,

even for the classical timed logic TCTL, the region graph algorithm is not used in model-

checkers like UPPAAL or KRONOS. Indeed, these tools use instead a so-called zone

algorithm and data structures like DBMs.

In previous work, we presented a zone-based model-checking algorithm for the TCTLΔ

reachability modality EUk
∼c. We propose here an extension of this study, in order to

specify the other modalities, namely the inevitability formulas AUk
∼c. We present symbolic

model-checking algorithms computing characteristic sets of all AUk
∼c modalities and

check their truth values. We also present a complete correctness proof of these

algorithms, and their implementations using the DBM data structure.

Keywords: Timed automata, symbolic model checking, inevitability, backward analysis

algorithms, correctness, data structures

1. Introduction

Recently computerized systems have developed rapidly and have become more and

more complex. Unfortunately, this development leads to an increased vulnerability for

errors. Many of those errors could have been avoided if implemented softwares had been

formally verified prior to their use. The need for formal verification of such systems is

therefore becoming an increasingly important priority.

In this approach, automatic verification, more specifically model-checking, has been

widely growing over the last thirty years. In fact, it has been extended to real-time

systems, where quantitative conditions about time have to be handled explicitly. To

describe quantitative requirements of systems, we can use timed logics to express timed

specifications.

Timed Models. Real-time model-checking has been mostly proposed and developed in

the framework of Alur and Dill’s Timed Automata [24], i.e., automata extended with a set

of real-valued variables, called clocks, that evolve synchronously with time, and allowing

to express constraints over delays between different actions of the modeled system [13,

2]. This formalism is now regularly applied to analyse real-time control programs [12, 11]

and timing analysis of algorithms and industrial systems [4]. Also, response-time and

Received (January 27, 2017), Review Result (October 31, 2017), Accepted (November 10, 2017)
* Corresponding Author

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

38 Copyright © 2017 SERSC Australia

robustness analysis based on timed automata modeling multitask applications running

under real-time operating systems have received significant research effort [14, 6].

Furthermore, verification algorithms have been extended to these models, and several

analysis tools have been developed [7] and successfully applied to numerous case studies

[10, 4].

Timed temporal logics and duration properties. Following the study of timed

automata, timed temporal logics have been proposed to extend the classical untimed

temporal logics with quantitative modalities. There was several ways of expressing such

constraints, for example, the timed logic TCTL has been proposed as a natural extension

of CTL [25], where modalities are augmented with time comparisons of the form ∼ c,

where ∼ is a comparison operator. We also cite the parametrized TCTL [21] where TCTL

and the timed automata are in turn extended with parameters.

In another direction, numerous works have been devoted to the algorithmic

computation of duration properties for timed systems. Since clocks are sometimes not

expressive enough, hybrid variables have been considered. The resulting model of hybrid

automata has been extensively studied in the last few years [15, 9, 3].

Further research has thus been dedicated to weaker models where hybrid variables are

only used as observers, i.e. are not checked in the automaton and thus play no role during

a computation. These variables, sometimes called costs or prices, can be used in an

optimization criterium [19] or as constraints in temporal logic formulas. For instance, the

logic WCTL [20], interpreted over timed automata extended with costs, adds cost

constraints on modalities: it is possible to express that a given state is reachable within a

fixed cost bound [8, 5].

Abstracting transient states. There exists several systems that handle variables whose

values are subject to instantaneous changes. Such cases occur often when practical

examples in the area of industrial automation are considered. Thus the need for

abstracting transient states becomes an important requirement, especially with critical

systems where all changes have to be controlled and taken into account. This motivated

the work in [17, 16], where events that do not last continuously for at least k time units

could be abstracted by introducing an extension of TCTL called TCTLΔ. The decidability

result of TCTLΔ model-checking problem is based an extension of the region graph

proposed in [16]. However, the region graph is not used for implementation, but tools like

UPPAAL or KRONOS use a so-called “zone algorithm”. This algorithm computes on-

the-fly the set of reachable symbolic states, that is pairs (q,Z) where q is a control state

and Z a zone. Zones have a practical advantage is that they can be easily implemented

using DBMs data structures [18].

Contribution. The aim of this paper is to provide implementable model-checking

algorithms for TCTLΔ inevitability modalities. The algorithms we propose are an

extension of the zone algorithm used for TCTL timed logics, and present the continuation

of the work started in [1], regarding the reachability modality EUk
 ∼c. The main result of

this paper is the proof of correctness of our algorithms.

Outline. This paper is organized as follows: we first present basic notions on timed

automata model and give the main features of TCTLΔ timed logics (Section 2). After we

shortly recall the classical zone algorithm for the timed logic TCTL (Section 3); we

explain thereafter our algorithms, we give a complete proof of its correctness (Section 4);

the following section is devoted to present a sample model-checking Pseudo-Code for an

inevitability modality (Section 5); we finally give some concluding remarks (Section 6).

2. Basic Notions

We first recall the definition of timed automata proposed by Alur and Dill in [24] and

then we remind timed temporal logic TCTLΔ [16].

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 39

2.1. Notations

Let N and R denote the sets of natural and non-negative real numbers, respectively. Let

X be a set of real valued clocks. We write C(X) for the set of boolean expressions over

atomic formulae of the form x ∼ k with x ∈ X, k ∈ N, and ∼ ∈ {<,≤,=,≥,>}. Constraints of

C(X) are interpreted over valuations for clocks, i.e. mappings from X to R. RX denotes the

set of valuations. For every v ∈ RX and d ∈ R, we use v + d to denote the time assignment

which maps each clock x ∈ X to the value v(x)+d. For every r ⊆ X, we write v[r ← 0] for

the valuation that maps each clock in r to the value 0 and agrees with v over X \ r. Let AP

be a set of atomic propositions.

2.2. Timed Automata

Definition 1. A timed automaton (TA) [24] is a tuple A = (X,QA, qinit,→A, InvA, lA)

where X is a finite set of clocks, QA is a finite set of locations or control states and qinit ∈

QA is the initial location. The set →A ⊆ QA × C(X) × 2X × QA is a finite set of action

transitions: for (q, g, r, q’)∈ →A, g is the enabling condition and r is a set of clocks to be

reset with the transition (we write q →g,r q’). InvA : QA → C(X) assigns an invariant to

each control state. Finally lA : QA → 2AP labels every location with a subset of AP.

A state (or configuration) of a TA A is a pair (q, v), where q ∈ QA is the current

location and v ∈ RX is the current clock valuation. The initial state of A is (qinit , v0) with

v0(x) = 0 for any x in X. There are two kinds of transition. From (q, v), it is possible to

perform the action transition q →g,r q’ if v |= g and v[r ← 0] |= InvA(q’) and then the new

configuration is (q’, v[r ← 0]). It is also possible to let time elapse, and reach (q, v + d)

for some d ∈ R whenever the invariant is satisfied along the delay. Formally the semantics

of a TA A is given by a Timed Transition System (TTS) TA = (S, sinit,→TA, l) where:

- S = {(q, v) | q ∈ QA and v ∈ RX s.t. v |= InvA(q)} and sinit = (qinit, v0).

- →TA ⊆ S × S and we have (q, v)→TA(q’, v’) iff

 either q’ = q, v’ = v + d and v + d’ |= InvA(q) for any d’ ≤ d. This is a delay

transition, we write (q, v) →d (q, v + d),

 or ∃q →g,r q’ and v |= g, v’ = v[r ← 0] and v’ |= InvA(q’). This is an action

transition, we write (q, v) →a (q’, v’).

- l : S → 2AP labels every state (q, v) with the subset lA(q) of AP .

An execution (or run) of A is an infinite path s0 →TA s1 →TA s2 . . . in TA such that (1)

time diverges and (2) there are infinitely many action transitions. Let Exec(s) be the set of

all executions from s. With a run ρ: (q0, v0) →d1→a (q1, v1) →d2→a . . . of A, we associate

the sequence of absolute dates defined by t0 = 0 and ti = Σ j≤i dj for i ≥ 1, and in the sequel,

we often write ρ as the sequence ((qi, vi, ti))i≥0.

A state (q, v) can occur several times along a run ρ, the notion of position allows us to

distinguish them: every occurrence of a state is associated with a unique position. Given a

position p, the corresponding state is denoted by sp. The standard notions of prefix, suffix

and subrun apply to paths in TTS: given a position p ∈ρ, ρ≤p is the prefix leading to p, ρ≥p

is the suffix issued from p. Finally, a subrun σ from p to p’ is denoted by p →σ p’.

Given a position p ∈ρ, the prefix ρ ≤p has a duration, Time(ρ ≤p), defined as the sum of

all delays along ρ≤p. For a subset P ⊆ρ of positions in ρ, we define a natural measure μ (P)

= μ{Time(ρ≤p) | p ∈ P}, where μ is Lebesgue measure on the set of real numbers. In the

sequel, we only use this measure when P is a subrun of ρ: in this case, for a subrun σ such

that p →σ p’, we simply have μ(σ) = Time(ρ≤p’) − Time(ρ≤p).

2.3. The Timed Temporal Logic TCTLΔ

The syntax of TCTL was extended in [16] to express that a formula holds everywhere

except on subruns with duration a parameter k ∈ N: TCTLΔ is obtained by adding to

TCTL the modalities E Uk ∼c and AUk
∼c , where c, k ∈ N.

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

40 Copyright © 2017 SERSC Australia

We include the following abbreviations:

EFk ∼c ϕ =def E(T Uk ∼c ϕ) AFk ∼c ϕ = def A(T Uk ∼c ϕ)

EGk ∼c ϕ =def ¬AFk ∼c ¬ϕ AGk ∼c ϕ =def ¬EFk ∼c ¬ϕ

Definition 2 (Semantics of TCTLΔ). The following clauses define when a state s of

some TTS T = (S, sinit,→, l) satisfies a TCTLΔ formula ϕ, written s |= ϕ, by induction over

the structure of ϕ.

s |= ¬ϕ iff s |= ϕ

s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

s |= EϕU∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕU∼cψ

s |= AϕU∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕU∼cψ

s |= EϕUk
∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕUk

∼cψ

s |= AϕUk
∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕUk

∼cψ

ρ |= ϕU∼cψ iff ∃p ∈ ρ s.t. Time(ρ≤p)∼c ∧ sp |= ψ ∧∀p’ <ρ p, sp’ |= ϕ

ρ |= ϕUk∼cψ iff there exists a subrun σ along ρ, a position p ∈ σ s.t.

 Time(ρ≤p)∼c ∧ μ(σ) > k ∧ ∀p’∈σ, sp’ |= ψ and

 for all subrun σ’ s.t. σ’ <ρ p ∧ ∀p’ ∈ σ’, sp’ |= ¬ϕ we

 have μ(σ’) ≤ k

Modality EϕUk
∼cψ means that it is possible to reach a sufficiently long interval (>k)

where ψ is true, around a position at a distance ∼ c and, before this position, ϕ is

everywhere true except along negligible duration subpaths (≤ k). Whereas modality AϕUk

∼cψ means that along any path, ψ lasts long enough (> k) around a position at a distance ∼

c and, before this position, ϕ is everywhere true except along negligible duration subpaths

(≤ k).

2.4. Decidability Result for TCTLΔ

The decidability result of TCTLΔ model-checking is based on a generalization of the

Alur and Dill’s region graph as presented in [16]. However, this theoretical result cannot

be normally implemented, because in dense time models, the construction of the region

graph leads to the state-space explosion problem [23]. Instead of it, and for reasons of

efficiency, model-checkers like UPPAAL use a symbolic analysis algorithm, called the

“zone algorithm”, in order to explore finitely the reachable symbolic states [22]. The

implementation of this algorithm is based on a data structure called the Difference

Bounded Matrices [18], DBMs for short.

The aim of this paper is to provide such implementable algorithms for model-checking

TCTLΔ inevitability modalities. So, we first shortly recall the zone algorithm for TCTL

timed logics. Then we will present our symbolic model-checking algorithms with the

complete correctness proof.

3. Classical Zone Algorithm, State of the Art

In this section, we describe briefly the on-the-fly algorithm implemented in some

model-checkers for verifying TCTL timed logics. Before presenting this algorithm, we

first present the symbolic representation called Zone.

3.1. Zones

The set of configurations of a timed automaton is infinite. To check this model, it is

therefore necessary to be able to manipulate large sets of configurations, and thus to

provide an efficient symbolic representation, called zone. A zone is a set of valuations

defined by a conjunction of atomic constraints x ∼ c or x − y ∼ c where x and y are

clocks, ∼ is a comparison sign, and c is a integer constant. In forward and backward

analysis, the objects that will be handled are symbolic states (q,Z) where q is a control

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 41

state of the automaton and Z a zone. On zones, multiple operations can be performed

(Future, Past, Clock reset. . .). A detailed presentation of zones can be found in [13].

3.2. The Algorithm

The algorithm presented in [22] aims to calculate for each TCTL formula, its

characteristic set defined as set of pairs (q,Z) where q is a control state of the automaton

and Z a zone. We describe here only the the algorithm of Eϕ1U∼cϕ2, the other modalities

can be found for example in [25]. For the formula Eϕ1U∼cϕ2, the characteristic set is

given by the following recurrent sequence:

[[Eϕ1U∼cϕ2]] = EU([z ← 0][[ϕ1]], [[ϕ2]] ∩ [[z ∼ c]])

Where z is the clock corresponding to the operator U and EU(R1,R2) = U i≥0 Ei with:

E0 = R2

 Ei+1 = Pre[R1](Ei) ∪ Pre(Ei)

Pre[R1](Ei) represents the set of configurations that allow to reach Ei by letting time

pass while staying in R1, while Pre(Ei) represents the configurations that allow to reach Ei

by taking an action transition. A clock is attached to each U operator in the formula. It is

used to handle subscripts ∼ c in until modalities. We note that the above analysis is in fact

a backward analysis.

4. TCTLΔ Inevitability Modalities: Symbolic Model-Checking

Algorithms

In this section, we show our symbolic model-checking algorithms for TCTLΔ

inevitability modalities using a backward analysis. We present in parallel the complete

correctness proof for each algorithm.

4.1. Modality Eϕ1Uk
∼cϕ2

For this modality, we recall briefly the approach opted in [1], based on splitting the

semantics of Eϕ1Uk
∼cϕ2 in two parts (as depicted in Figure 1). The left part represents the

subrun where ϕ1 is true everywhere except along negligible duration subpaths (≤ k).

While the right part represents the subrun where ϕ2 lasts long enough around a position (z

∼ c), and before this position ϕ1 is true except along negligible duration subpaths.

Figure 1. Illustration of Eϕ1Uk

∼cϕ2 Modality

We proved in [1] that the characteristic set of Eϕ1Uk
∼cϕ2 is given as the least upper

bound of the following stationary and increasing (by inclusion) sequence:

X0 = [[RP(Eϕ1Uk ∼cϕ2)]]

 Xn+1 = Xn ∨ (([[ϕ1]] ▷ [zl ← 0]Xn) ∨ ([[(¬ϕ1 ∧ zl ≤ k)]] ▷Xn))

Where RP(Eϕ1Uk
∼cϕ2) denotes the right part modality of Eϕ1Uk

∼cϕ2, given as follows:

[[RP(Eϕ1Uk
∼cϕ2)]] = [zr ← 0]Sup Yn

Such that Sup Yn denotes the least upper bound of the sequence Yn. We define the also

stationary and increasing sequence Yn as:
Y0 = [[(z ∼ c) ∧ (E ϕ2 U (ϕ2 ∧ zr > k))]]

Eϕ1U
k
∼cϕ2 Left Part Eϕ1U

k
∼cϕ2 Right Part

|= ϕ1 ∨ zl ≤ k
|= ϕ2

z, zl := 0 zr > k zr := 0 z ∼ c

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

42 Copyright © 2017 SERSC Australia

 Yn+1 = Yn ∨ (([[ϕ2 ∧ ϕ1]] ▷ [zl ← 0]Yn) ∨ ([[ϕ2 ∧ (¬ϕ1 ∧ zl ≤ k)]] ▷Yn

Note that z, zl are reset when the stationary value of the sequence Xn is reached, i.e.

after that the set of symbolic states satisfying Eϕ1Uk ∼cϕ2 is computed.

Predecessor operator ▷:

The predecessor operator ▷is defined as follows [1]:

Given a TA A, a TTS T = (S, sinit,→, l), an alphabet Σ which denotes a finite set of

actions and two characteristic sets Q1 and Q2. Calculate Q1 ▷Q2 is to determine:

–All the instantaneous predecessors of Q2 states that verify Q1, i.e. the states satisfying

Q1 and can reach Q2 by an action transition denoted Q1 ▷a Q2.

– Union, all temporal predecessors of Q2 that verify Q1, i.e. all states that can reach a

state of Q2 by a delay transition, such that all intermediates states are in Q1:

q ∈ Q1 ▷t Q2 ⇔ q ∈ Q1 ∧ ∃t > 0 s.t.

 q + t ∈ Q2 and ∀t’ < t q + t’ ∈ Q1

4.2. Modality Aϕ1Uk
∼cϕ2

For this modality, we distinguish between cases according to the signs of “z ∼ c”.

4.2.1. Aϕ1Ukϕ2

This modality indicates that along any path, ϕ2 lasts long enough (> k) and before, ϕ1 is

true everywhere except along paths having negligible durations (≤ k). In other words,

Aϕ1Ukϕ2 ensures that (1) along any path, eventually ϕ2 holds for at least k t.u., and (2) it is

not possible to have ¬ϕ1 for k t.u. unless either ϕ2 has been verified for k t.u. before, or ϕ2

is true and will hold for k t.u. The negation of (2) is depicted in the following figure

(Figure 2):

Figure 2. Illustration of Aϕ1Ukϕ2 Property (2) Negation

We prove that the characteristic set of Aϕ1Ukϕ2 is given as follows:

[[Aϕ1Ukϕ2]] = [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn

Where ¬Sup Xn denotes the negation of the least upper bound of the sequence Xn. The

stationary and increasing (by inclusion) sequence Xn represents the negation of property

(2) (as depicted in the figure above), and is defined by:
X0 = [zl ← 0]Sup Yn

 Xn+1 = Xn∨(([[¬ϕ2]] ▷[zr ← 0]Xn) ∨([[(ϕ ∧ zr≤k)]] ▷Xn))

And Yn is also a stationary and increasing (by inclusion) sequence, that represents the

first term of Xn (as depicted in the figure above). The sequence Yn is defined as:

 Y0 = [[(¬ϕ1 ∧ zl > k) ∧ ¬(A ϕ2 U (ϕ2 ∧ zr > k))]]

 Yj+1 = Yj ∨ (([[¬ϕ1 ∧¬ϕ2]] ▷ [zr ← 0]Yj) ∨ ([[¬ϕ1 ∧ (ϕ2 ∧ zr ≤ k)]] ▷ Yj))

Proof [sketch.] We have to show that:

[[Aϕ1Ukϕ2]] = [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn

zr := 0 zl := 0

|= ¬ ϕ1

|= ¬ϕ2 ∨ zr ≤ k

zl > k

 |=

¬ (A ϕ2 U (ϕ2 ∧ zr > k))

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 43

 ⊆ / Let q ∈ [[Aϕ1Ukϕ2]] :

• We have obviously: q ∈ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]]

We show now that q ∈ ¬Sup Xn (Note that we can prove that the sequences Xn and Yn

are stationary and increasing by inclusion in the same way as shown in [1]).

Suppose that q ∈ Sup Xn. As Xn is stationary, so ∃k ∈ N, s.t. Sup Xn = Xk. Then q ∈ Xk:

if k = 0 : then q ∈ X0 = [zr ← 0][zl ← 0]Sup Yn s.t :

Y0 = [[(¬ϕ1 ∧ zl > k) ∧ ¬(A ϕ2 U (ϕ2 ∧ zr > k))]]

 Yj+1 = Yj ∨ (([[¬ϕ1 ∧ ¬ϕ2]] ▷ [zr ← 0]Yj) ∨ ([[¬ϕ1 ∧ (ϕ2 ∧ zr ≤ k)]] ▷Yj))

Therefore there is a path from q that satisfies all the time ¬ϕ1 ∧ (¬ϕ2 ∨ zr ≤ k) until it

reaches a position that satisfies ¬ϕ1 ∧ zl > k, and there is at least one path from that

position |= ¬(ϕ2 U (ϕ2 ∧ zr > k)). Then q ∉ [[Aϕ1Ukϕ2]], contradiction. So q ∈ ¬Sup Xn.

if k ≠ 0 : then q ∈ Xk s.t k ≠ 0,

 X0 = [zl ← 0]Sup Yn

 Xn+1 = Xn ∨ (([[¬ϕ2]] ▷ [zr ← 0]Xn) ∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷Xn))

i.e. there exists a path from q that satisfies all the time (¬ϕ2 ∨ zr ≤ k) until reaching a

state q’ ∈ X0. Then q ∉ [[Aϕ1Ukϕ2]], contradiction. So q ∈ ¬Sup Xn. Therefore, we have:

[[Aϕ1Ukϕ2]] ⊆ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn

⊇ / Let q ∈ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn :

• As q ∈ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]], then for every path from q there exists a

sub path σ where ϕ2 lasts at least k t.u.

• On another side, q ∈ ¬Sup Xn, this certifies that it is not possible that ¬ϕ1 lasts long (>

k) before the sub path σ, unless either ϕ2 has been verified for k t.u. before, or ϕ2 is true

and will hold for k t.u. (i.e. q ∈ [[Aϕ1Ukϕ2]], then we have:

[[Aϕ1Ukϕ2]] ⊇ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn

Finally, we have:

[[Aϕ1Ukϕ2]] = [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn

4.2.2. Aϕ1Uk
<cϕ2

This modality indicates that along any path ϕ2 lasts long enough (> k) around a position

at a distance < c, and before this position ϕ1 is true everywhere except along paths having

negligible durations (≤ k). In other words, Aϕ1Uk <cϕ2 ensures that (1) along any path,

eventually ϕ2 holds for at least k t.u. around a position at a distance < c (AFk <cϕ2), and

(2) it is not possible to have ¬ϕ1 for k t.u. unless either ϕ2 has been verified for k t.u.

before, or ϕ2 is true and will hold for k t.u.

Note that in the case of ∼ ∈ {<, ≤}, it is necessary and sufficient that z ∼ c be verified

at the beginning of the subrun where ϕ2 lasts long enough (> k), that is why the condition

(2) described above did not change from that described in the formula Aϕ1Ukϕ2.

For dealing with this case, we first consider the formula AFk <cϕ2 and more precisely

we consider the dual modality EGk <c.

We have: EGk <c ¬ϕ2 = ¬AFk <cϕ2, then: s |= EGk <c ¬ϕ2 ⇔ ∃ρ ∈ Exec(s) |

∀σ ∈ subrun(ρ) :μ(σ) > k ⇒ (∀p ∈ σ, Time(ρ≤p) ∼ c) ∨ (∃p ∈ σ s.t. sp |= ¬ϕ2)

EGk <c ¬ϕ2 expresses that there exists an execution (from the current state s) where any

subrun σ s.t. (a) μ(σ) > k and (b) σ contains states located before c t.u. from s, contains a

state satisfying ¬ϕ2. Thus states satisfying ¬ϕ2 have to occur “often” (at least every k t.u.)

during c + k t.u. The formula EGk
<c ¬ϕ2 is depicted in the following figure (Figure 3):

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

44 Copyright © 2017 SERSC Australia

Figure 3. Illustration of EGk
<c¬ϕ2 Modality

Therefore, we prove that the characteristic set of AFk <cϕ2 is given as follows:

[[AFk
<cϕ2]] = [z ← 0][zr ← 0]¬Sup Vn

Where Vn is a stationary and increasing (by inclusion) sequence, that represents

EGk
<c ¬ϕ2 (as depicted in the figure above). The sequence Vn is defined as:

V0 = [[z = c + k]]

 Vn+1 = Vn ∨ (([[¬ϕ2]] ▷[zr ← 0]Vn) ∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷Vn))

Finally, the characteristic set of Aϕ1Uk <cϕ2 is given as follows:

[[Aϕ1Uk
 <cϕ2]] = [z ← 0][zr ← 0]¬Sup Vn ∧ [zr ← 0]¬Sup Xn

Proof [sketch.] For this modality, we have to show that:

[[Aϕ1Uk
<cϕ2]] = [z ← 0][zr ← 0]¬Sup Vn ∧ [zr ← 0]¬Sup Xn

⊆ / Let q ∈ [[Aϕ1Uk <cϕ2]]

 • We show now that q ∈ [z ← 0][zr ← 0]¬Sup Vn (Note that we can prove that the

sequence Vn is stationary and increasing by inclusion in the same way as shown in [1]).

 Suppose that q ∈ [z ← 0][zr ← 0]Sup Vn s.t:

V0 = [[z = c + k]]

 Vn+1 = Vn ∨ (([[¬ϕ2]] ▷[zr ← 0]Vn) ∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷Vn))

Then there is a path from q that reaches the position z = c+k, without verifying before

ϕ2 long enough around a position z < c. contradiction. So q ∈ ¬Sup Vn

• We show in the same way as Aϕ1Ukϕ2 that q ∈ [zr ← 0]¬Sup Xn.

⊇ / Let q ∈ [z ← 0][zr ← 0]¬Sup Vn ∧ [zr ← 0]¬Sup Xn

• As q ∈ [z ← 0][zr ← 0]¬Sup Vn, then along all path from q there exists a sub-path

satisfying ϕ2 long enough, before reaching the position c + k. Therefore, for every path

from q there is a sub path σ of length (> k) where ϕ2 is true, and this path inevitably

contains a position located strictly before c u.t.

• On another side, q ∈ [zr ← 0]¬Sup Xn, this certifies that it is not possible that ¬ϕ1

lasts long (> k) before the sub path σ, unless either ϕ2 has been verified for k t.u. before,

or ϕ2 is true and will hold for k t.u. (i.e. q ∈ [[Aϕ1Uk<cϕ2]], then we have:

[[Aϕ1Uk
<cϕ2]] = [z ← 0][zr ← 0]¬Sup Vn ∧ [zr ← 0]¬Sup Xn

The pseudo-code version of the Model-Checking algorithm for this modality is shown

in Algorithm 1 (Section 5).

4.2.3. Aϕ1Uk
≤cϕ2

This case is very similar to the previous one. The dual formula EGk
≤c ¬ϕ2 is depicted in

the following figure (Figure 4):

Figure 4. Illustration of EGk
≤c ¬ϕ2 Modality

z, zr := 0 z = c

|= ¬ϕ2 ∨ zr ≤ k

z = c + k

z, zr := 0 z = c

|= ¬ϕ2 ∨ zr ≤ k

z > c + k

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 45

Therefore, we prove that the characteristic set of Aϕ1Uk
≤cϕ2 is given as follows:

[[Aϕ1Uk
≤cϕ2]] = [z ← 0][zr ← 0]¬Sup V’n ∧ [zr ← 0]¬Sup Xn

Where V’n is a stationary and increasing (by inclusion) sequence, that represents EGk ≤c

¬ϕ2 (as depicted in the figure above). The sequence V’ n is defined as:

V’0 = [[z > c + k]]

 V’n+1 = V’n ∨ (([[¬ϕ2]] ▷[zr ← 0]V’n)∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷V’n))

Proof [sketch.] The same previous proof can be adapted to show that:

[[Aϕ1Uk≤cϕ2]] = [z ← 0][zr ← 0]¬Sup V’n∧ [zr ← 0]¬Sup Xn

4.2.4. Aϕ1Uk
∼cϕ2: ∼∈ {>, ≥}

This modality indicates that along any path ϕ2 lasts long enough (> k) around a position

at a distance ∼ c, and before this position ϕ1 is true everywhere except along paths having

negligible durations (≤ k). In other words, Aϕ1Uk ∼cϕ2 ensures that:

(1) along any path, eventually ϕ2 holds for at least k t.u. around a position at a distance

∼ c, note that in this case it is necessary and sufficient that z ∼ c be verified at the end of

the sufficiently long subrun (> k) where ϕ2 is true,

U1 = [[[z ← 0]AF([zr ← 0]Eϕ2U(ϕ2 ∧ (zr > k) ∧ (z ∼ c))]]),

(2) it is not possible to have ¬ϕ1 for k t.u. in a position satisfying ¬(z ∼ c)

U2 = [[[z ← 0]¬E(true)U([zl ← 0]E¬ϕ1U(¬ϕ1 ∧ (zl > k)∧¬(z ∼ c)))]], and

(3) it is not possible to have ¬ϕ1 for k t.u. in a position at a distance ∼ c unless either ϕ2

has been verified for k t.u. around a position at a distance ∼ c before, or ϕ2 is true and will

hold for k t.u. The negation of (3) is depicted in the following figure (Figure 5):

Figure 5. Illustration of Aϕ1Uk
>,≥cϕ2 Property (3) Negation

We prove that the characteristic set of Aϕ1Uk
∼cϕ2 is given as follows:

[[Aϕ1Uk
∼cϕ2]] = U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn

Where Xn is a stationary and increasing (by inclusion) sequence, that represents the

negation of (3) (as depicted in the figure above). The sequence Xn is defined as :

X0 = [zl ← 0]Sup Yn

 Xn+1 = Xn ∨ (([[¬ϕ2]] ▷[zr ← 0]Xn) ∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷Xn) ∨

 ([[(ϕ2 ∧ zr > k) ∧ ¬(z ∼ c)]] ▷Xn))

And Yn is also a stationary and increasing (by inclusion) sequence, that represents the

first term of Xn (as depicted in the figure above). The sequence Yn is defined as:

Y0 = [[¬ϕ1 ∧ (zl > k) ∧ (z ∼ c) ∧ ¬(A ϕ2 U (ϕ2 ∧ zr > k))]]

 Yj+1 = Yj ∨ (([[¬ϕ1∧¬ϕ2]] ▷[zr ← 0]Yj) ∨ ([[¬ϕ1∧ (ϕ2∧ zr ≤k)]] ▷Yj) ∨

 ([[¬ϕ1 ∧ (ϕ2 ∧ zr > k) ∧ ¬(z ∼ c)]] ▷Yj))

 Proof [sketch.] For this modality, we have to show that:

z, zr := 0 zl := 0

|= ¬ ϕ1

|= ¬ϕ2 ∨ zr ≤ k ∨ (zr > k ∧¬ z ∼ c)

zl > k ∧ z ∼ c

 |=

¬ (A ϕ2 U (ϕ2 ∧ zr > k))

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

46 Copyright © 2017 SERSC Australia

[[Aϕ1Uk
∼cϕ2]] = U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn

⊆ / Let q ∈ [[Aϕ1Uk
∼cϕ2]]

• It is obvious to see that for every path from q ϕ2 lasts long enough (> k) around a

position satisfying z ∼ c, and so at the end of this sub path we have always z ∼ c.

Then q ∈ U1, such that:

U1 = [[[z ← 0]AF([zr ← 0]Eϕ2U(ϕ2 ∧ (zr > k) ∧ (z ∼ c))]])

• Suppose that q ∈ ¬U2 with

U2 = [[[z ← 0]¬E(true)U([zl ← 0]E¬ϕ1U(¬ϕ1 ∧ (zl > k) ∧ ¬(z ∼ c)))]]

So there exists a path from q containing a position located at ¬ ∼ c, where ¬ϕ1 lasted

long enough, contradiction because q ∈ [[Aϕ1Uk
∼cϕ2]].

Then we have q ∈ U2 = [[[z ← 0]¬E(true)U([zl ← 0]E¬ϕ1U(¬ϕ1∧(zl > k)∧¬(z ∼ c)))]],

We show now that q ∈ [z ← 0][zr ← 0]¬Sup Xn s.t. Xn is a recurrent sequence defined

as:
X0 = [zl ← 0] Sup Yn

 Xn+1 = Xn ∨ (([[¬ϕ2]] ▷[zr ← 0]Xn)∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷Xn) ∨

 ([[ϕ2 ∧ (zr > k) ∧ ¬(z ∼ c)]] ▷Xn))

And Yn is also a recurrent sequence defined as:

Y0 = [[¬ϕ1 ∧ (zl > k) ∧ (z ∼ c) ∧¬(A ϕ2 U (ϕ2 ∧ zr > k))]]

 Yj+1 =Yj ∨ (([[¬ϕ1 ∧ ¬ϕ2]] ▷[zr ← 0]Yj) ∨ ([[¬ϕ1 ∧ (ϕ2 ∧ zr ≤ k)]] ▷Yj)

 ∨ ([[¬ϕ1 ∧ (ϕ2 ∧ zr > k)∧ ¬(z ∼ c)]] ▷Yj))

First of all, we can prove that the sequences Xn and Yn are stationary and increasing by

inclusion in the same way as shown in [1].

Suppose that q ∈ Sup Xn. As Xn is stationary, so ∃k ∈ N, s.t. Sup Xn = Xk. Then q ∈ Xk:

if k = 0 : then q ∈ X0 = [z ← 0][zr ← 0][zl ← 0]Sup Yn, i.e. there exists a path from q,

that satisfies all the time ¬ϕ1 ∧ ¬ϕ2 ∨ zr ≤ k ∨ ((zr > k)∧¬(z ∼ c)) until reaching a position

that satisfies (¬ϕ1 ∧ (zl > k) ∧ (z ∼ c)). And there is at least one path from that position

|= ¬(ϕ2 U (ϕ2 ∧ zr > k)). Contradiction. So q ∈ ¬Sup Xn.

if k ≠ 0 : then q ∈ Xk s.t k = 0, i.e. there exists a path from q that satisfies all the time

(¬ϕ2 ∨ zr ≤ k ∨ (zr > k ∧ ¬z ∼ c)) until reaching a state q’ ∈ X0. Then q ∉ [[Aϕ1Uk
∼c ϕ2]],

contradiction. So q ∈ ¬Sup Xn. Therefore, we have:

[[Aϕ1Uk
∼cϕ2]] ⊆ U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn

 ⊇ / Let q ∈ U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn

• As q ∈ U1 = [[[z ← 0]AF([zr ← 0]Eϕ2U(ϕ2 ∧(zr > k)∧(z ∼ c))]]), then for every path

from q there exists a sub path σ where ϕ2 lasts long enough around a position satisfying

z ∼ c.

• On another side q ∈ U2 = [[[z ← 0]¬E(true)U([zl ← 0]E¬ϕ1U(¬ϕ1 ∧(zl > k) ∧

¬(z ∼ c)))]], i.e. it is not possible to have a sub path from all path starting from q where

¬ϕ1 lasts long enough before the position z ∼ c.

• We also have q ∈ [z ← 0][zr ← 0]¬Sup Xn, this certifies that it is not possible that ¬ϕ1

lasts long (> k) after the position ∼ c, unless either ϕ2 has been verified for k t.u. around a

position satisfying z ∼ c before, or ϕ2 is true and will hold for k t.u. (i.e., q ∈

[[Aϕ1Uk
∼cϕ2]]), then we have:

U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn ⊆ [[Aϕ1Uk
∼cϕ2]]

Finally, we have:

[[Aϕ1Uk
∼cϕ2]] = U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 47

4.2.5. Aϕ1Uk
=cϕ2

In this case, we use the following equivalences [16] in order to reduce the model-

checking algorithm to previous modalities:

 Aϕ1Uk
=cϕ2 ≡ AFk

=cϕ2 ∧ AGk ≤c−k(ϕ1) if c ≥ k

 Aϕ1Uk
=cϕ2 ≡ AFk

=cϕ2 if c < k

For, AGk
≤c−k(ϕ1) we have : AGk

≤c(ϕ1) = ¬EFk
≤c ¬ϕ1 (algorithm already given for this

modality). So it remains to give the zone algorithm for AFk
=cϕ2.

For dealing with this case, we first consider the dual modality EGk
=c.

We have: EGk
=c¬ϕ2 =¬AFk

=cϕ2, then s |= EGk
=c¬ϕ2⇔∃ρ∈ Exec(s) |∀σ ∈ subrun(ρ): μ(σ)

> k ⇒ (∀p ∈ σ, Time(ρ≤p ≠ c)) ∨ (∃p ∈ σ s.t. sp |= ¬ϕ2).

EGk =c¬ϕ2 expresses that there exists an execution from the current state s where any

subrun σ s.t. (a) μ(σ) > k and (b) σ contains a state located at duration c from s, contains a

state satisfying ¬ϕ2. Thus we have to verify that there exists an execution where ¬ϕ2 holds

or has held “recently” (i.e. in less than k t.u. ago) for any state located at a duration in

[c; c + k].

The formula EGk
=c ¬ϕ2 is depicted in the following figure (Figure 6):

Figure 6. Illustration of EGk
=c¬ϕ2 Modality

We prove that the characteristic set of AFk =cϕ2 is given as follows:

[[AFk
=cϕ2]] = [z ← 0][zr ← 0]¬Sup Xn

Where Xn is a stationary and increasing (by inclusion) sequence, that represents

EGk
=c¬ϕ2 (as depicted in the figure above). The sequence Xn is defined as :

 X0 = [[z = c]] ∧ Sup Yn

 Xn+1 = Xn ∨ (([[(z < c) ∧ ¬ϕ2]] ▷[zr ← 0]Xn) ∨ ([[(z < c) ∧ ϕ2]] ▷Xn))

And Yn is also a stationary and increasing (by inclusion) sequence, that represents the

first term of Xn (as depicted in the figure above). The sequence Yn is defined as:

 Y0 = [[z > c + k]]

 Yj+1 = Yj ∨ (([[¬ϕ2 ∧ z ≥ c]] ▷[zr ← 0]Yj)∨ ([[(ϕ2 ∧ zr ≤ k) ∧ z ≥ c]] ▷Yj))

Proof [sketch.] For this modality, we have to show that:

[[AFk
=cϕ2]] = [z ← 0][zr ← 0]¬Sup Xn

s.t. Xn is a recurrent sequence defined as :

X0 = [[z = c]] ∧ Sup Yn

 Xn+1 = Xn ∨ (([[(z < c) ∧ ¬ϕ2]] ▷[zr ← 0]Xn) ∨ ([[(z < c) ∧ ϕ2]] ▷Xn))

And Yn is also a recurrent sequence defined as:

Y0 = [[z > c + k]]

 Yj+1 = Yj ∨ (([[¬ϕ2 ∧ z ≥ c]] ▷[zr ← 0]Yj) ∨ ([[(ϕ2 ∧ zr ≤ k) ∧ z ≥ c]] ▷Yj))

First of all, we can prove that the sequences Xn and Yn are stationary and increasing by

inclusion in the same way as shown in [1].

⊆ / Let q ∈ [[AFk
=cϕ2]], suppose that q ∈ [z ← 0][zr ← 0]Sup Xn, therefore there exists

a path from q such that any position between c and c + k satisfying ¬ϕ2 ∨ zr ≤ k. This

clearly contradicts the fact that q ∈ [[AFk
=cϕ2]], i.e. q ∈ [z ← 0][zr ← 0]¬Sup Xn.

z, zr := 0 z = c

|= ¬ϕ2 ∨ zr ≤ k

z > c + k

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

48 Copyright © 2017 SERSC Australia

⊇ / Let q ∈ [z ← 0][zr ← 0]¬Sup Xn. Suppose that q /∈ [[AFk
=cϕ2]], then

q ∈ EGk
=c ¬ϕ2. Then, there exists a path ρ from q, such that all sub path σ having length >

k and containing a configuration located at c time units from q, must contain a position

where ¬ϕ2 is true. Now consider the sub path ρ’ of ρ from the position z = c, clearly this

sub path verifies (¬ϕ2 ∨ zr ≤ k) ∨ (z > c +k) this is a contradiction with the fact that

q ∈ [z ← 0][zr ← 0]¬Sup Xn.

Finally, we have:
[[AFk

=cϕ2]] = [z ← 0][zr ← 0]¬Sup Xn

4.3. Implementation of Algorithms using DBMs

The DBM acronym means difference bounded matrice. It is a classical data structure

widely used for representing systems of difference constraints, which has a significant

interest for the verification of timed systems because they can be used to represent zones.

DBMs are now intensively used to analyze timed automata [18]. Moreover, the DBMs are

appropriate to implement algorithms proposed in the previous subsection. Indeed, we

have shown in [1] how to compute, using the DBMs, all operations on zones appearing in

the model-checking algorithms of TCTLΔ inevitability modalities. We also gave in [1] an

effective method for computing the operation Q1▷Q2.

5. Pseudo-Codes for TCTLΔ Model-Checking Algorithms

We give here the pseudo-code version of the Model-Checking algorithm for

Aϕ1Uk<cϕ2. The algorithms’ pseudo-codes of the other inevitability modalities can be

developed exactly with the same approach, based on the results of subsection 4.2.

Algorithm 1 computes step-by-step the characteristic of the modality Aϕ1Uk
<cϕ2, using

a backward analysis approach we have seen in subsection 4.2.2. We start by computing

the least upper bound of the sequence Yn. The first term of Yn is given as the

characteristic set of a classical TCTL formula. Then we compute iteratively the terms of

Yn until reaching a stationary value which is obviously the least upper bound of Yn.

Similarly, we compute the least upper bound of the sequence Xn. The stop condition of

Xn’s iterations is also given by convergence to its stationary value. Then we compute the

least upper bound of the sequence Vn. The first term of Vn is given as the characteristic set

of a simple clock constraint. After, we compute iteratively the terms of Vn until reaching

its stationary value, which is evidently its least upper bound. Finally, the characteristic set

of formula Aϕ1Uk <cϕ2 is given by the intersection of Xn’s least upper bound negation and

Vn’s least upper bound negation.

We note that all operations used in this algorithms (intersection of sets of symbolic

states, predecessor operators and clocks reset, …) are reduced to known operations on

zones. These operations are easily implemented through DBM data structure as we have

shown in [1].

Algorithm 1 Model-Checking of Aϕ1Uk<cϕ2 Modality

 1: function Characteristic Set(Aϕ1Uk<cϕ2 : TCTLΔ)

 2:

 3: // (* TCTL formula *)

 4: TargetSetYn := [[(¬ϕ1 ∧ zl > k) ∧¬(A ϕ2 U (ϕ2 ∧ zr > k))]];

 5:

 6: repeat

 7: CurrentSet := TargetSetYn;

 8: TargetSetYn := TargetSetYn ∪ CurrentSet;

 9: TargetSetYn := TargetSetYn ∪ ([[¬ϕ1 ∧¬ϕ2]] ▷[zr← 0] CurrentSet);

10: TargetSetYn := TargetSetYn ∪ ([[¬ϕ1 ∧ (ϕ2 ∧ zr ≤ k)]] ▷CurrentSet);

11: until TargetSetYn = CurrentSet

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 49

12:

13: TargetSetXn := [zl← 0] TargetSetYn;

14:

15: repeat

16: CurrentSet := TargetSetXn;

17: TargetSetXn := TargetSetXn ∪ CurrentSet;

18: TargetSetXn := TargetSetXn ∪ ([[¬ϕ2]] ▷[zr ← 0] CurrentSet);

19: TargetSetXn := TargetSetXn ∪ ([[(ϕ2 ∧ zr ≤ k)]] ▷CurrentSet);

20: until TargetSetXn = CurrentSet

21:

22: TargetSetVn := [[z = c + k]];

23:

24: repeat

25: CurrentSet := TargetSetVn;

26: TargetSetVn := TargetSetVn ∪ CurrentSet;

27: TargetSetVn := TargetSetVn ∪ ([[¬ϕ2]] ▷[zr ← 0] CurrentSet);

28: TargetSetVn := TargetSetVn ∪ ([[(ϕ2 ∧ zr ≤ k)]] ▷CurrentSet);

29: until TargetSetVn = CurrentSet

30:

31: TargetSet := [z ← 0][zr ← 0]¬ TargetSetVn ∩[zr ← 0]¬ TargetSetXn;

32: return TargetSet;

33: end function

6. Conclusion

In this paper, we proposed implementable model-checking algorithms for TCTLΔ

inevitability modalities. We presented a complete correctness proof for each proposed

procedure. The main result of this paper is the overcome of the state-space explosion

problem caused by the theoretical TCTLΔ model-checking algorithm based on regions.

Moreover, we have described the implementation of our algorithms using zones and

DBMs, which is the same approach as the one used in tools like UPPAAL or KRONOS.

Furthermore, this paper completes the study started in [1], regarding the reachability

modality EUk
∼c. Indeed, no much work is now necessary to get a model-checker that deals

with all TCTLΔ modalities.

References

[1] M. A. Begdouri, H. B. Mokadem and M. E. Haddad, “An algorithmic approach for abstracting transient

states in timed systems”, International Journal of Advanced Computer Science and Applications, vol. 7,

no. 5, (2016), pp. 500–509.

[2] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, J. Ouaknine and J. Worrell, “Model checking real-

time systems”, Handbook of Model Checking, Springer, (2016).

[3] L. Guozheng, C. Zining and G. Zheng, “Approximated model checking for multirate hybrid zia”,

International Journal of Control and Automation, vol. 9, no. 2, (2016), pp. 271–286.

[4] M. A. Begdouri and H.B. Mokadem, “Verification of a timed concurrent system with Uppaal”, In 11th

International Pluridisciplinary Congress on Quality, Dependability and Sustainability (QUALITA’

2015), Nancy, France, (2015).

[5] P. Bouyer, K. G. Larsen and N. Markey, “Lower-bound constrained runs in weighted timed automata”,

Performance Evaluation, vol. 73, (2014), pp. 91–109.

[6] P. Bouyer, N. Markey and O. Sankur, “Robustness in timed automata”, In Proceedings of the 7th

Workshop on Reachability Problems in Computational Models (RP’13), volume 8169, Springer, (2013).

[7] G. Behrmann, A. David, K. G. Larsen, P. Pettersson and W. Yi, “Developing Uppaal over 15 years”,

Software: Practice and Experience, vol. 41, no. 2, (2011), pp. 133–142.

[8] P. Bouyer, U. Fahrenberg, K. G. Larsen and N. Markey, “Quantitative analysis of realtime systems

using priced timed automata”, Communications of the ACM, vol. 54, no. 9, (2011), pp. 78–87.

[9] L. Bu, Y. Li, L. Wang and X. Li, “Bach: A toolset for bounded reachability analysis of linear hybrid

systems”, Journal of Software, vol. 22, no. 4, (2011), pp. 640–658.

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

50 Copyright © 2017 SERSC Australia

[10] H.B. Mokadem, B. Berard, V. Gourcuff, O.D. Smet and J.M. Roussel, “Verification of a timed multitask

system with Uppaal”, IEEE Transactions on Automation Science and Engineering, vol. 7, no. 4, (2010),

pp. 921–932.

[11] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci and P. Schnoebelen, “Systems and

software verification: model-checking techniques and tools”, Springer Publishing Company,

Incorporated, (2010).

[12] P. Bouyer, “Model-checking timed temporal logics”, In Proceedings of the 4th Workshop on Methods

for Modalities (M4M-5), volume 231 of Electronic Notes in Theoretical Computer Science, Elsevier

Science Publishers, (2009).

[13] P. Bouyer and F. Laroussinie, “Model checking timed automata”, In Stephan Merz and Nicolas Navet,

editors, Modeling and Verification of Real-Time Systems, ISTE Ltd. – John Wiley & Sons, Ltd., (2008).

[14] A. Brekling, M. R. Hansen and J. Madsen, “Models and formal verification of multiprocessor system-

on-chips”, The Journal of Logic and Algebraic Programming, vol. 77, no. 1–2, (2008), pp. 1–19.

[15] Z. Haibin and D. Zhenhua, “Symbolic reachability analysis of multirate hybrid systems”, Journal of

Xi’an Jiaotong University, vol. 41, no. 4, (2007), pp. 412–415.

[16] H.B Mokadem, B. Berard, P. Bouyer and F. Laroussinie, “Timed temporal logics for abstracting

transient states”, In Proceedings of the 4th International Symposium on Automated Technology for

Verification and Analysis, Springer, (2006).

[17] H.B. Mokadem, B. Berard, P. Bouyer and F. Laroussinie, “A new modality for almost everywhere

propeties in timed automata”, In Proceedings of the 16th International Conference on Concurrency

Theory (CONCUR05), volume LNCS 3653. Springer, (2005).

[18] P. Pettersson and W. Yi, “Formal modeling and analysis of timed systems”, In Third International

Conference, FORMATS 2005, Uppsala, Sweden, September 26-28, 2005, Proceedings, Lecture Notes in

Computer Science. Springer, vol.3829, (2005).

[19] P. Bouyer, E. Brinksma and K. G. Larsen, “Staying alive as cheaply as possible”, In Proceedings of the

7th International Workshop on Hybrid Systems: Computation and Control (HSCC’04), volume 2993 of

Lecture Notes in Computer Science, Springer, (2004).

[20] T. Brihaye, V. Bruyere and J. F. Raskin, “Model-checking for weighted timed automata”, In

Proceedings of the Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal

Techniques in Real-Time and Fault Tolerant System, Springer, vol. 3253, (2004).

[21] V. Bruyere, E. Dall’Olio and J. F. Raskin, “Durations, parametric model-checking in timed automata

with presburger arithmetic”, In Proceedings of the 20th Annual Symposium on Theoretical Aspects of

Computer Science (STACS’03), volume 2607 of Lecture Notes in Computer Science, Springer, (2003).

[22] S. Yovine, “Model checking timed automata”, In School on Embedded Systems, vol. 1494 of Lecture

Notes in Computer Science, Springer-Verlag, (1998).

[23] S. Yamane, “The symbolic model-checking for real-time systems”, In Proceedings of the Eighth

Euromicro Workshop on Real-Time Systems, (1996).

[24] R. Alur and D. Dill, “A theory of timed automata”, Theoretical Computer Science (TCS), vol. 126, no.

2, (1994), pp. 183–235.

[25] T. A. Henzinger, X. Nicollin, J. Sifakis and S. Yovine, “Symbolic model-checking for real-time

systems”, Information and Computation, vol. 111, no. 2, (1994), pp. 193–244.

Authors

Mohammed Achkari Begdouri, he obtained his state engineer diploma in Computer

Science from AbdelMalek Essaadi University, Morocco, in 2011. Actually, his is PhD

student at National School of Applied Sciences of Tangier, Morocco (ENSA de Tanger).

His research focuses on Theoretical Computer Science and Software Applications.

Houda Bel Mokadem, she received the Ph.D. degree in 2006 from École Normale

Supérieure de Cachan, Cachan, France. She is an Associate Professor at ENSA de Tanger

(Morocco). Her research area is the verification of temporal properties. She has published

several research papers at international journals and conference proceedings.

Mohamed El Haddad, he received the Ph.D. degree in 1994 from Université Paris-

Sud, France. He is a Full Professor at ENSA de Tanger (Morocco). His research focuses

on Theoretical Computer Science and Software Applications. He has published several

research papers at international journals and conference proceedings.

