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Abstract 

The context of this study is the model-checking of timed systems. The timed logic 

TCTLΔ has been introduced as a powerful extension of TCTL, in order to specify transient 

states that last for less than k time units. The decidability of the model-checking algorithm 

has been proved for all modalities of this extension, using a suitable adaptation of Alur 

and Dill’s region graph. Unfortunately, this theoretical result cannot be normally 

implemented because of its state-space explosion problem. But this is not surprising since, 

even for the classical timed logic TCTL, the region graph algorithm is not used in model-

checkers like UPPAAL or KRONOS. Indeed, these tools use instead a so-called zone 

algorithm and data structures like DBMs. 

In previous work, we presented a zone-based model-checking algorithm for the TCTLΔ 

reachability modality EUk
∼c. We propose here an extension of this study, in order to 

specify the other modalities, namely the inevitability formulas AUk
∼c. We present symbolic 

model-checking algorithms computing characteristic sets of all AUk
∼c modalities and 

check their truth values. We also present a complete correctness proof of these 

algorithms, and their implementations using the DBM data structure. 

 

Keywords: Timed automata, symbolic model checking, inevitability, backward analysis 

algorithms, correctness, data structures 

 

1. Introduction 

Recently computerized systems have developed rapidly and have become more and 

more complex. Unfortunately, this development leads to an increased vulnerability for 

errors. Many of those errors could have been avoided if implemented softwares had been 

formally verified prior to their use. The need for formal verification of such systems is 

therefore becoming an increasingly important priority. 

In this approach, automatic verification, more specifically model-checking, has been 

widely growing over the last thirty years. In fact, it has been extended to real-time 

systems, where quantitative conditions about time have to be handled explicitly. To 

describe quantitative requirements of systems, we can use timed logics to express timed 

specifications. 

Timed Models. Real-time model-checking has been mostly proposed and developed in 

the framework of Alur and Dill’s Timed Automata [24], i.e., automata extended with a set 

of real-valued variables, called clocks, that evolve synchronously with time, and allowing 

to express constraints over delays between different actions of the modeled system [13, 

2]. This formalism is now regularly applied to analyse real-time control programs [12, 11] 

and timing analysis of algorithms and industrial systems [4]. Also, response-time and 
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robustness analysis based on timed automata modeling multitask applications running 

under real-time operating systems have received significant research effort [14, 6]. 

Furthermore, verification algorithms have been extended to these models, and several 

analysis tools have been developed [7] and successfully applied to numerous case studies 

[10, 4]. 

Timed temporal logics and duration properties. Following the study of timed 

automata, timed temporal logics have been proposed to extend the classical untimed 

temporal logics with quantitative modalities. There was several ways of expressing such 

constraints, for example, the timed logic TCTL has been proposed as a natural extension 

of CTL [25], where modalities are augmented with time comparisons of the form ∼ c, 

where ∼ is a comparison operator. We also cite the parametrized TCTL [21] where TCTL 

and the timed automata are in turn extended with parameters.  

In another direction, numerous works have been devoted to the algorithmic 

computation of duration properties for timed systems. Since clocks are sometimes not 

expressive enough, hybrid variables have been considered. The resulting model of hybrid 

automata has been extensively studied in the last few years [15, 9, 3].  

Further research has thus been dedicated to weaker models where hybrid variables are 

only used as observers, i.e. are not checked in the automaton and thus play no role during 

a computation. These variables, sometimes called costs or prices, can be used in an 

optimization criterium [19] or as constraints in temporal logic formulas. For instance, the 

logic WCTL [20], interpreted over timed automata extended with costs, adds cost 

constraints on modalities: it is possible to express that a given state is reachable within a 

fixed cost bound [8, 5]. 

Abstracting transient states. There exists several systems that handle variables whose 

values are subject to instantaneous changes. Such cases occur often when practical 

examples in the area of industrial automation are considered. Thus the need for 

abstracting transient states becomes an important requirement, especially with critical 

systems where all changes have to be controlled and taken into account. This motivated 

the work in [17, 16], where events that do not last continuously for at least k time units 

could be abstracted by introducing an extension of TCTL called TCTLΔ. The decidability 

result of TCTLΔ model-checking problem is based an extension of the region graph 

proposed in [16]. However, the region graph is not used for implementation, but tools like 

UPPAAL or KRONOS use a so-called “zone algorithm”. This algorithm computes on-

the-fly the set of reachable symbolic states, that is pairs (q,Z) where q is a control state 

and Z a zone. Zones have a practical advantage is that they can be easily implemented 

using DBMs data structures [18]. 

Contribution. The aim of this paper is to provide implementable model-checking 

algorithms for TCTLΔ inevitability modalities. The algorithms we propose are an 

extension of the zone algorithm used for TCTL timed logics, and present the continuation 

of the work started in [1], regarding the reachability modality EUk
 ∼c. The main result of 

this paper is the proof of correctness of our algorithms.  

Outline. This paper is organized as follows: we first present basic notions on timed 

automata model and give the main features of TCTLΔ timed logics (Section 2). After we 

shortly recall the classical zone algorithm for the timed logic TCTL (Section 3); we 

explain thereafter our algorithms, we give a complete proof of its correctness (Section 4); 

the following section is devoted to present a sample model-checking Pseudo-Code for an 

inevitability modality (Section 5); we finally give some concluding remarks (Section 6). 

 

2. Basic Notions 

We first recall the definition of timed automata proposed by Alur and Dill in [24] and 

then we remind timed temporal logic TCTLΔ [16]. 
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2.1. Notations 

Let N and R denote the sets of natural and non-negative real numbers, respectively. Let 

X be a set of real valued clocks. We write C(X) for the set of boolean expressions over 

atomic formulae of the form x ∼ k with x ∈ X, k ∈ N, and ∼ ∈ {<,≤,=,≥,>}. Constraints of 

C(X) are interpreted over valuations for clocks, i.e. mappings from X to R. RX denotes the 

set of valuations. For every v ∈ RX and d ∈ R, we use v + d to denote the time assignment 

which maps each clock x ∈ X to the value v(x)+d. For every r ⊆ X, we write v[r ← 0] for 

the valuation that maps each clock in r to the value 0 and agrees with v over X \ r. Let AP 

be a set of atomic propositions. 

 

2.2. Timed Automata 

Definition 1. A timed automaton (TA) [24] is a tuple A = (X,QA, qinit,→A, InvA, lA)  

where X is a finite set of clocks, QA is a finite set of locations or control states and qinit ∈ 

QA is the initial location. The set →A ⊆ QA × C(X) × 2X × QA is a finite set of action 

transitions: for (q, g, r, q’)∈ →A, g is the enabling condition and r is a set of clocks to be 

reset with the transition (we write q →g,r q’). InvA : QA → C(X) assigns an invariant to 

each control state. Finally lA : QA → 2AP labels every location with a subset of AP. 

A state (or configuration) of a TA A is a pair (q, v), where q ∈ QA is the current 

location and v ∈ RX is the current clock valuation. The initial state of A is (qinit , v0) with 

v0(x) = 0 for any x in X. There are two kinds of transition. From (q, v), it is possible to 

perform the action transition q →g,r q’ if v |= g and v[r ← 0] |= InvA(q’) and then the new 

configuration is (q’, v[r ← 0]). It is also possible to let time elapse, and reach (q, v + d) 

for some d ∈ R whenever the invariant is satisfied along the delay. Formally the semantics 

of a TA A is given by a Timed Transition System (TTS) TA = (S, sinit,→TA, l) where: 

- S = {(q, v) | q ∈ QA and v ∈ RX s.t. v |= InvA(q)} and sinit = (qinit, v0). 

- →TA ⊆ S × S and we have (q, v)→TA(q’, v’) iff 

 either q’ = q, v’ = v + d and v + d’ |= InvA(q) for any d’ ≤ d. This is a delay 

transition, we write (q, v) →d (q, v + d), 

 or ∃q →g,r q’ and v |= g, v’ = v[r ← 0] and v’ |= InvA(q’). This is an action 

transition, we write (q, v) →a (q’, v’). 

- l : S → 2AP labels every state (q, v) with the subset lA(q) of AP . 

An execution (or run) of A is an infinite path s0 →TA s1 →TA s2 . . . in TA such that (1) 

time diverges and (2) there are infinitely many action transitions. Let Exec(s) be the set of 

all executions from s. With a run ρ: (q0, v0) →d1→a (q1, v1) →d2→a . . . of A, we associate 

the sequence of absolute dates defined by t0 = 0 and ti = Σ j≤i dj for i ≥ 1, and in the sequel, 

we often write ρ as the sequence ((qi, vi, ti))i≥0. 

A state (q, v) can occur several times along a run ρ, the notion of position allows us to 

distinguish them: every occurrence of a state is associated with a unique position. Given a 

position p, the corresponding state is denoted by sp. The standard notions of prefix, suffix 

and subrun apply to paths in TTS: given a position p ∈ρ, ρ≤p is the prefix leading to p, ρ≥p 

is the suffix issued from p. Finally, a subrun σ from p to p’ is denoted by p →σ p’.  

Given a position p ∈ρ, the prefix ρ ≤p has a duration, Time(ρ ≤p), defined as the sum of 

all delays along ρ≤p. For a subset P ⊆ρ of positions in ρ, we define a natural measure μ (P) 

= μ{Time(ρ≤p) | p ∈ P}, where μ is Lebesgue measure on the set of real numbers. In the 

sequel, we only use this measure when P is a subrun of ρ: in this case, for a subrun σ such 

that p →σ p’, we simply have μ(σ) = Time(ρ≤p’ ) − Time(ρ≤p). 

 

2.3. The Timed Temporal Logic TCTLΔ 

The syntax of TCTL was extended in [16] to express that a formula holds everywhere 

except on subruns with duration a parameter k ∈ N: TCTLΔ is obtained by adding to 

TCTL the modalities E Uk ∼c and AUk 
∼c , where c, k ∈ N.  
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We include the following abbreviations: 

EFk ∼c ϕ  =def E(T Uk ∼c ϕ)  AFk ∼c ϕ = def  A(T Uk ∼c ϕ)  

EGk ∼c ϕ =def ¬AFk ∼c ¬ϕ  AGk ∼c ϕ =def ¬EFk ∼c ¬ϕ 

 

Definition 2 (Semantics of TCTLΔ). The following clauses define when a state s of 

some TTS T = (S, sinit,→, l) satisfies a TCTLΔ formula ϕ, written s |= ϕ, by induction over 

the structure of ϕ. 

s |= ¬ϕ   iff  s |= ϕ 

s |= ϕ ∧ ψ   iff  s |= ϕ and s |= ψ 

s |= EϕU∼cψ   iff  ∃ ρ ∈ Exec(s) s.t. ρ |= ϕU∼cψ 

s |= AϕU∼cψ   iff  ∀ ρ ∈ Exec(s) we have ρ |= ϕU∼cψ 

s |= EϕUk
∼cψ  iff  ∃ ρ ∈ Exec(s) s.t. ρ |= ϕUk

∼cψ 

s |= AϕUk
∼cψ  iff  ∀ ρ ∈ Exec(s) we have ρ |= ϕUk

∼cψ 

ρ |= ϕU∼cψ   iff  ∃p ∈ ρ s.t. Time(ρ≤p)∼c ∧ sp |= ψ ∧∀p’ <ρ p, sp’ |= ϕ 

ρ |= ϕUk∼cψ  iff  there exists a subrun σ along ρ, a position p ∈ σ s.t. 

    Time(ρ≤p)∼c ∧ μ(σ) > k ∧ ∀p’∈σ, sp’ |= ψ and  

    for all subrun σ’ s.t. σ’ <ρ p ∧ ∀p’ ∈ σ’, sp’ |= ¬ϕ we  

    have μ(σ’) ≤ k 

Modality EϕUk
∼cψ means that it is possible to reach a sufficiently long interval (>k) 

where ψ is true, around a position at a distance ∼ c and, before this position, ϕ is 

everywhere true except along negligible duration subpaths (≤ k). Whereas modality AϕUk 

∼cψ means that along any path, ψ lasts long enough (> k) around a position at a distance ∼ 

c and, before this position, ϕ is everywhere true except along negligible duration subpaths 

(≤ k). 

 

2.4. Decidability Result for TCTLΔ 

The decidability result of TCTLΔ model-checking is based on a generalization of the 

Alur and Dill’s region graph as presented in [16]. However, this theoretical result cannot 

be normally implemented, because in dense time models, the construction of the region 

graph leads to the state-space explosion problem [23]. Instead of it, and for reasons of 

efficiency, model-checkers like UPPAAL use a symbolic analysis algorithm, called the 

“zone algorithm”, in order to explore finitely the reachable symbolic states [22]. The 

implementation of this algorithm is based on a data structure called the Difference 

Bounded Matrices [18], DBMs for short.  

The aim of this paper is to provide such implementable algorithms for model-checking 

TCTLΔ inevitability modalities. So, we first shortly recall the zone algorithm for TCTL 

timed logics. Then we will present our symbolic model-checking algorithms with the 

complete correctness proof. 

 

3. Classical Zone Algorithm, State of the Art 

In this section, we describe briefly the on-the-fly algorithm implemented in some 

model-checkers for verifying TCTL timed logics. Before presenting this algorithm, we 

first present the symbolic representation called Zone. 

 

3.1. Zones 

The set of configurations of a timed automaton is infinite. To check this model, it is 

therefore necessary to be able to manipulate large sets of configurations, and thus to 

provide an efficient symbolic representation, called zone. A zone is a set of valuations 

defined by a conjunction of atomic constraints x ∼ c or x − y ∼ c where x and y are 

clocks, ∼ is a comparison sign, and c is a integer constant. In forward and backward 

analysis, the objects that will be handled are symbolic states (q,Z) where q is a control 
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state of the automaton and Z a zone. On zones, multiple operations can be performed 

(Future, Past, Clock reset. . . ). A detailed presentation of zones can be found in [13]. 

 

3.2. The Algorithm 

The algorithm presented in [22] aims to calculate for each TCTL formula, its 

characteristic set defined as set of pairs (q,Z) where q is a control state of the automaton 

and Z a zone. We describe here only the the algorithm of Eϕ1U∼cϕ2, the other modalities 

can be found for example in [25]. For the formula Eϕ1U∼cϕ2, the characteristic set is 

given by the following recurrent sequence: 

[[Eϕ1U∼cϕ2]] = EU([z ← 0][[ϕ1]], [[ϕ2]] ∩ [[z ∼ c]]) 

Where z is the clock corresponding to the operator U and EU(R1,R2) = U i≥0 Ei with: 

E0   =  R2 

 Ei+1 =  Pre[R1](Ei) ∪ Pre(Ei) 

Pre[R1](Ei) represents the set of configurations that allow to reach Ei by letting time 

pass while staying in R1, while Pre(Ei) represents the configurations that allow to reach Ei 

by taking an action transition. A clock is attached to each U operator in the formula. It is 

used to handle subscripts ∼ c in until modalities. We note that the above analysis is in fact 

a backward analysis. 

 

4. TCTLΔ Inevitability Modalities: Symbolic Model-Checking 

Algorithms 

In this section, we show our symbolic model-checking algorithms for TCTLΔ 

inevitability modalities using a backward analysis. We present in parallel the complete 

correctness proof for each algorithm. 

 

4.1. Modality Eϕ1Uk
∼cϕ2 

For this modality, we recall briefly the approach opted in [1], based on splitting the 

semantics of Eϕ1Uk
∼cϕ2 in two parts (as depicted in Figure 1). The left part represents the 

subrun where ϕ1 is true everywhere except along negligible duration subpaths (≤ k). 

While the right part represents the subrun where ϕ2 lasts long enough around a position (z 

∼ c), and before this position ϕ1 is true except along negligible duration subpaths.  
 

 
Figure 1. Illustration of Eϕ1Uk

∼cϕ2 Modality 

We proved in [1] that the characteristic set of Eϕ1Uk
∼cϕ2 is given as the least upper 

bound of the following stationary and increasing (by inclusion) sequence: 

X0  = [[RP(Eϕ1Uk ∼cϕ2)]]  

 Xn+1  = Xn ∨ (([[ϕ1]] ▷ [zl ← 0]Xn ) ∨ ( [[(¬ϕ1 ∧ zl ≤ k)]] ▷Xn)) 

Where RP(Eϕ1Uk
∼cϕ2) denotes the right part modality of Eϕ1Uk

∼cϕ2, given as follows:  

[[RP(Eϕ1Uk
∼cϕ2)]] = [zr ← 0]Sup Yn 

Such that Sup Yn denotes the least upper bound of the sequence Yn. We define the also 

stationary and increasing sequence Yn as: 
Y0  = [[(z ∼ c) ∧ (E ϕ2 U (ϕ2 ∧ zr > k))]]  

Eϕ1U
k
∼cϕ2 Left Part Eϕ1U

k
∼cϕ2 Right Part 

|= ϕ1 ∨ zl ≤  k 
|= ϕ2 

z, zl := 0 zr  > k zr := 0 z ∼ c 
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 Yn+1  = Yn ∨ (( [[ϕ2 ∧ ϕ1]] ▷ [zl ← 0]Yn) ∨ ([[ϕ2 ∧ (¬ϕ1 ∧ zl ≤ k)]] ▷Yn 

Note that z, zl are reset when the stationary value of the sequence Xn is reached, i.e. 

after that the set of symbolic states satisfying Eϕ1Uk ∼cϕ2 is computed. 

 

Predecessor operator ▷:  

The predecessor operator ▷is defined as follows [1]:  

Given a TA A, a TTS T = (S, sinit,→, l), an alphabet Σ which denotes a finite set of 

actions and two characteristic sets Q1 and Q2. Calculate Q1 ▷Q2 is to determine:  

–All the instantaneous predecessors of Q2 states that verify Q1, i.e. the states satisfying 

Q1 and can reach Q2 by an action transition denoted Q1 ▷a Q2.  

– Union, all temporal predecessors of Q2 that verify Q1, i.e. all states that can reach a 

state of Q2 by a delay transition, such that all intermediates states are in Q1: 

q ∈ Q1 ▷t Q2 ⇔ q ∈ Q1 ∧ ∃t > 0 s.t. 

          q + t ∈ Q2 and ∀t’ < t  q + t’ ∈ Q1 

 

4.2. Modality Aϕ1Uk
∼cϕ2 

For this modality, we distinguish between cases according to the signs of “z ∼ c”. 

 

4.2.1. Aϕ1Ukϕ2 

This modality indicates that along any path, ϕ2 lasts long enough (> k) and before, ϕ1 is 

true everywhere except along paths having negligible durations (≤ k). In other words, 

Aϕ1Ukϕ2 ensures that (1) along any path, eventually ϕ2 holds for at least k t.u., and (2) it is 

not possible to have ¬ϕ1 for k t.u. unless either ϕ2 has been verified for k t.u. before, or ϕ2 

is true and will hold for k t.u. The negation of (2) is depicted in the following figure 

(Figure 2): 

 

Figure 2. Illustration of Aϕ1Ukϕ2 Property (2) Negation 

We prove that the characteristic set of Aϕ1Ukϕ2 is given as follows: 

[[Aϕ1Ukϕ2]] = [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn 

Where ¬Sup Xn denotes the negation of the least upper bound of the sequence Xn. The 

stationary and increasing (by inclusion) sequence Xn represents the negation of property 

(2) (as depicted in the figure above), and is defined by: 
X0  = [zl ← 0]Sup Yn  

  Xn+1 = Xn∨(([[¬ϕ2]] ▷[zr ← 0]Xn) ∨([[(ϕ ∧ zr≤k)]] ▷Xn)) 

And Yn is also a stationary and increasing (by inclusion) sequence, that represents the 

first term of Xn (as depicted in the figure above). The sequence Yn is defined as: 

 Y0  = [[(¬ϕ1 ∧ zl > k) ∧ ¬(A ϕ2 U (ϕ2 ∧ zr > k))]]  

 Yj+1  = Yj ∨ (( [[¬ϕ1 ∧¬ϕ2]] ▷ [zr ← 0]Yj ) ∨  ([[¬ϕ1 ∧ (ϕ2 ∧ zr ≤ k)]] ▷ Yj)) 

Proof [sketch.] We have to show that: 

[[Aϕ1Ukϕ2]] = [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn 

zr := 0 zl := 0 

|= ¬ ϕ1 

|= ¬ϕ2 ∨ zr ≤  k 

zl > k 

            |= 

¬ (A ϕ2 U (ϕ2 ∧ zr > k)) 
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         ⊆ / Let q ∈ [[Aϕ1Ukϕ2]] : 

• We have obviously: q ∈ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] 

We show now that q ∈ ¬Sup Xn (Note that we can prove that the sequences Xn and Yn 

are stationary and increasing by inclusion in the same way as shown in [1]).  

Suppose that q ∈ Sup Xn. As Xn is stationary, so ∃k ∈ N, s.t. Sup Xn = Xk. Then q ∈ Xk:  

if k = 0 : then q ∈ X0 = [zr ← 0][zl ← 0]Sup Yn s.t : 

Y0  = [[(¬ϕ1 ∧ zl > k) ∧ ¬(A ϕ2 U (ϕ2 ∧ zr > k))]]  

 Yj+1  = Yj ∨ (([[¬ϕ1 ∧ ¬ϕ2]] ▷ [zr ← 0]Yj ) ∨ ( [[¬ϕ1 ∧ (ϕ2 ∧ zr ≤ k)]] ▷Yj)) 

Therefore there is a path from q that satisfies all the time ¬ϕ1 ∧ (¬ϕ2 ∨ zr ≤ k) until it 

reaches a position that satisfies ¬ϕ1 ∧ zl > k, and there is at least one path from that 

position |= ¬(ϕ2 U (ϕ2 ∧ zr > k)). Then q ∉ [[Aϕ1Ukϕ2]], contradiction. So q ∈ ¬Sup Xn. 

if k ≠ 0 : then q ∈ Xk s.t k ≠ 0,  

   X0  = [zl ← 0]Sup Yn 

   Xn+1  = Xn ∨ (([[¬ϕ2]] ▷ [zr ← 0]Xn ) ∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷Xn)) 

i.e. there exists a path from q that satisfies all the time (¬ϕ2 ∨ zr ≤ k) until reaching a 

state q’ ∈ X0. Then q ∉ [[Aϕ1Ukϕ2]], contradiction. So q ∈ ¬Sup Xn. Therefore, we have: 

[[Aϕ1Ukϕ2]] ⊆ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn 

⊇ / Let q ∈ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn : 

• As q ∈ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]], then for every path from q there exists a 

sub path σ where ϕ2 lasts at least k t.u. 

• On another side, q ∈ ¬Sup Xn, this certifies that it is not possible that ¬ϕ1 lasts long (> 

k) before the sub path σ, unless either ϕ2 has been verified for k t.u. before, or ϕ2 is true 

and will hold for k t.u. (i.e. q ∈ [[Aϕ1Ukϕ2]], then we have: 

[[Aϕ1Ukϕ2]] ⊇ [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn 

Finally, we have: 

[[Aϕ1Ukϕ2]] = [[AF([zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k)))]] ∧ [zr ← 0]¬Sup Xn 

 

4.2.2. Aϕ1Uk
<cϕ2 

This modality indicates that along any path ϕ2 lasts long enough (> k) around a position 

at a distance < c, and before this position ϕ1 is true everywhere except along paths having 

negligible durations (≤ k). In other words, Aϕ1Uk <cϕ2 ensures that (1) along any path, 

eventually ϕ2 holds for at least k t.u. around a position at a distance < c (AFk <cϕ2), and 

(2) it is not possible to have ¬ϕ1 for k t.u. unless either ϕ2 has been verified for k t.u. 

before, or ϕ2 is true and will hold for k t.u.  

Note that in the case of ∼ ∈ {<, ≤}, it is necessary and sufficient that z ∼ c be verified 

at the beginning of the subrun where ϕ2 lasts long enough (> k), that is why the condition 

(2) described above did not change from that described in the formula Aϕ1Ukϕ2.  

For dealing with this case, we first consider the formula AFk <cϕ2 and more precisely 

we consider the dual modality EGk <c. 

We have: EGk <c ¬ϕ2 = ¬AFk <cϕ2, then: s |= EGk <c ¬ϕ2 ⇔ ∃ρ ∈ Exec(s) | 

∀σ ∈ subrun(ρ) :μ(σ) > k ⇒ (∀p ∈ σ, Time(ρ≤p) ∼ c) ∨ (∃p ∈ σ s.t. sp |= ¬ϕ2) 

EGk <c ¬ϕ2 expresses that there exists an execution (from the current state s) where any 

subrun σ s.t. (a) μ(σ) > k and (b) σ contains states located before c t.u. from s, contains a 

state satisfying ¬ϕ2. Thus states satisfying ¬ϕ2 have to occur “often” (at least every k t.u.) 

during c + k t.u. The formula EGk
<c ¬ϕ2 is depicted in the following figure (Figure 3): 
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Figure 3. Illustration of EGk
<c¬ϕ2 Modality 

Therefore, we prove that the characteristic set of AFk <cϕ2 is given as follows: 

[[AFk
<cϕ2]] = [z ← 0][zr ← 0]¬Sup Vn 

Where Vn is a stationary and increasing (by inclusion) sequence, that represents 

EGk
<c ¬ϕ2 (as depicted in the figure above). The sequence Vn is defined as: 

V0 = [[z = c + k]]  

  Vn+1  = Vn ∨ (( [[¬ϕ2]] ▷[zr ← 0]Vn) ∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷Vn)) 

Finally, the characteristic set of Aϕ1Uk <cϕ2 is given as follows: 

[[Aϕ1Uk
 <cϕ2]] = [z ← 0][zr ← 0]¬Sup Vn ∧ [zr ← 0]¬Sup Xn 

Proof [sketch.] For this modality, we have to show that:  

[[Aϕ1Uk
<cϕ2]] = [z ← 0][zr ← 0]¬Sup Vn ∧ [zr ← 0]¬Sup Xn 

⊆ / Let q ∈ [[Aϕ1Uk <cϕ2]]  

 • We show now that q ∈ [z ← 0][zr ← 0]¬Sup Vn (Note that we can prove that the 

sequence Vn is stationary and increasing by inclusion in the same way as shown in [1]).  

 Suppose that q ∈ [z ← 0][zr ← 0]Sup Vn s.t: 

V0  = [[z = c + k]]  

  Vn+1 = Vn ∨ (( [[¬ϕ2]] ▷[zr ← 0]Vn) ∨ ( [[(ϕ2 ∧ zr ≤ k)]] ▷Vn)) 

Then there is a path from q that reaches the position z = c+k, without verifying before 

ϕ2 long enough around a position z < c. contradiction. So q ∈ ¬Sup Vn 

• We show in the same way as Aϕ1Ukϕ2 that q ∈ [zr ← 0]¬Sup Xn. 

⊇ / Let q ∈ [z ← 0][zr ← 0]¬Sup Vn ∧ [zr ← 0]¬Sup Xn 

• As q ∈ [z ← 0][zr ← 0]¬Sup Vn, then along all path from q there exists a sub-path 

satisfying ϕ2 long enough, before reaching the position c + k. Therefore, for every path 

from q there is a sub path σ of length (> k) where ϕ2 is true, and this path inevitably 

contains a position located strictly before c u.t. 

• On another side, q ∈ [zr ← 0]¬Sup Xn, this certifies that it is not possible that ¬ϕ1 

lasts long (> k) before the sub path σ, unless either ϕ2 has been verified for k t.u. before, 

or ϕ2 is true and will hold for k t.u. (i.e. q ∈ [[Aϕ1Uk<cϕ2]], then we have: 

[[Aϕ1Uk
<cϕ2]] = [z ← 0][zr ← 0]¬Sup Vn ∧ [zr ← 0]¬Sup Xn 

The pseudo-code version of the Model-Checking algorithm for this modality is shown 

in Algorithm 1 (Section 5). 

 

4.2.3. Aϕ1Uk
≤cϕ2 

This case is very similar to the previous one. The dual formula EGk
≤c ¬ϕ2 is depicted in 

the following figure (Figure 4): 
 

 

Figure 4. Illustration of EGk
≤c ¬ϕ2 Modality 

z, zr := 0 z = c 

|= ¬ϕ2 ∨ zr ≤  k 

z = c + k 

z, zr := 0 z = c 

|= ¬ϕ2 ∨ zr ≤  k 

z > c + k 
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Therefore, we prove that the characteristic set of Aϕ1Uk
≤cϕ2 is given as follows: 

[[Aϕ1Uk
≤cϕ2]] = [z ← 0][zr ← 0]¬Sup V’n ∧ [zr ← 0]¬Sup Xn 

Where V’n is a stationary and increasing (by inclusion) sequence, that represents EGk ≤c 

¬ϕ2 (as depicted in the figure above). The sequence V’ n is defined as: 

V’0  = [[z > c + k]]  

  V’n+1  = V’n ∨ (( [[¬ϕ2]] ▷[zr ← 0]V’n)∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷V’n)) 

Proof [sketch.] The same previous proof can be adapted to show that: 

[[Aϕ1Uk≤cϕ2]] = [z ← 0][zr ← 0]¬Sup V’n∧ [zr ← 0]¬Sup Xn 

4.2.4. Aϕ1Uk
∼cϕ2: ∼∈ {>, ≥} 

This modality indicates that along any path ϕ2 lasts long enough (> k) around a position 

at a distance ∼ c, and before this position ϕ1 is true everywhere except along paths having 

negligible durations (≤ k). In other words, Aϕ1Uk ∼cϕ2 ensures that: 

(1) along any path, eventually ϕ2 holds for at least k t.u. around a position at a distance 

∼ c, note that in this case it is necessary and sufficient that z ∼ c be verified at the end of 

the sufficiently long subrun (> k) where ϕ2 is true,  

U1 = [[[z ← 0]AF([zr ← 0]Eϕ2U(ϕ2 ∧ (zr > k) ∧ (z ∼ c))]]), 

(2) it is not possible to have ¬ϕ1 for k t.u. in a position satisfying ¬(z ∼ c)  

U2 = [[[z ← 0]¬E(true)U([zl ← 0]E¬ϕ1U(¬ϕ1 ∧ (zl > k)∧¬(z ∼ c)))]], and 

(3) it is not possible to have ¬ϕ1 for k t.u. in a position at a distance ∼ c unless either ϕ2 

has been verified for k t.u. around a position at a distance ∼ c before, or ϕ2 is true and will 

hold for k t.u. The negation of (3) is depicted in the following figure (Figure 5): 

 

Figure 5. Illustration of Aϕ1Uk
>,≥cϕ2 Property (3) Negation 

We prove that the characteristic set of Aϕ1Uk
∼cϕ2 is given as follows:  

[[Aϕ1Uk
∼cϕ2]] = U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn 

Where Xn is a stationary and increasing (by inclusion) sequence, that represents the 

negation of (3) (as depicted in the figure above). The sequence Xn is defined as : 

X0  = [zl ← 0]Sup Yn 

   Xn+1  = Xn ∨ (([[¬ϕ2]] ▷[zr ← 0]Xn )  ∨ ([[(ϕ2 ∧ zr ≤ k)]] ▷Xn ) ∨ 

                   ([[(ϕ2 ∧ zr > k) ∧ ¬(z ∼ c)]] ▷Xn )) 

And Yn is also a stationary and increasing (by inclusion) sequence, that represents the 

first term of Xn (as depicted in the figure above). The sequence Yn is defined as:  

Y0  = [[¬ϕ1 ∧ (zl > k) ∧ (z ∼ c) ∧ ¬(A ϕ2 U (ϕ2 ∧ zr > k))]]  

 Yj+1  = Yj ∨ (([[¬ϕ1∧¬ϕ2]] ▷[zr ← 0]Yj) ∨ ( [[¬ϕ1∧ (ϕ2∧ zr ≤k)]] ▷Yj) ∨   

      ([[¬ϕ1 ∧ (ϕ2 ∧ zr > k) ∧ ¬(z ∼ c)]] ▷Yj)) 

 Proof [sketch.] For this modality, we have to show that: 

z, zr := 0 zl := 0 

|= ¬ ϕ1 

|= ¬ϕ2 ∨ zr ≤  k ∨ (zr > k ∧¬ z ∼ c) 

zl > k ∧ z ∼ c 

            |= 

¬ (A ϕ2 U (ϕ2 ∧ zr > k)) 
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[[Aϕ1Uk
∼cϕ2]] = U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn 

⊆ / Let q ∈ [[Aϕ1Uk
∼cϕ2]]  

• It is obvious to see that for every path from q ϕ2 lasts long enough (> k) around a 

position satisfying z ∼ c, and so at the end of this sub path we have always z ∼ c.  

Then q ∈ U1, such that:   

U1 = [[[z ← 0]AF([zr ← 0]Eϕ2U(ϕ2 ∧ (zr > k) ∧ (z ∼ c))]]) 

• Suppose that q ∈ ¬U2 with  

U2 = [[[z ← 0]¬E(true)U([zl ← 0]E¬ϕ1U(¬ϕ1 ∧ (zl > k) ∧ ¬(z ∼ c)))]] 

So there exists a path from q containing a position located at ¬ ∼ c, where ¬ϕ1 lasted 

long enough, contradiction because q ∈ [[Aϕ1Uk
∼cϕ2]].  

Then we have q ∈ U2 = [[[z ← 0]¬E(true)U([zl ← 0]E¬ϕ1U(¬ϕ1∧(zl > k)∧¬(z ∼ c)))]], 

We show now that q ∈ [z ← 0][zr ← 0]¬Sup Xn s.t. Xn is a recurrent sequence defined 

as: 
X0  = [zl ← 0] Sup Yn 

   Xn+1 = Xn ∨ (( [[¬ϕ2]] ▷[zr ← 0]Xn )∨ ( [[(ϕ2 ∧ zr ≤ k)]] ▷Xn  ) ∨ 

               ([[ϕ2 ∧ (zr > k) ∧ ¬(z ∼ c)]] ▷Xn )) 

And Yn is also a recurrent sequence defined as:  

Y0 = [[¬ϕ1 ∧ (zl > k) ∧ (z ∼ c) ∧¬(A ϕ2 U (ϕ2 ∧ zr > k))]]  

 Yj+1 =Yj ∨ (( [[¬ϕ1 ∧ ¬ϕ2]] ▷[zr ← 0]Yj) ∨ ([[¬ϕ1 ∧ (ϕ2 ∧ zr ≤ k)]] ▷Yj)  

   ∨ ([[¬ϕ1 ∧ (ϕ2 ∧ zr > k)∧ ¬(z ∼ c)]] ▷Yj )) 

First of all, we can prove that the sequences Xn and Yn are stationary and increasing by 

inclusion in the same way as shown in [1].  

Suppose that q ∈ Sup Xn. As Xn is stationary, so ∃k ∈ N, s.t. Sup Xn = Xk. Then q ∈ Xk:  

if k = 0 : then q ∈ X0 = [z ← 0][zr ← 0][zl ← 0]Sup Yn, i.e. there exists a path from q, 

that satisfies all the time ¬ϕ1 ∧ ¬ϕ2 ∨ zr ≤ k ∨ ((zr > k)∧¬(z ∼ c)) until reaching a position 

that satisfies (¬ϕ1 ∧ (zl > k) ∧ (z ∼ c)). And there is at least one path from that position 

|= ¬(ϕ2 U (ϕ2 ∧ zr > k)). Contradiction. So q ∈ ¬Sup Xn.  

if k ≠ 0 : then q ∈ Xk s.t k = 0, i.e. there exists a path from q that satisfies all the time 

(¬ϕ2 ∨ zr ≤ k ∨ (zr > k ∧ ¬z ∼ c)) until reaching a state q’ ∈ X0. Then q ∉ [[Aϕ1Uk
∼c ϕ2]], 

contradiction. So q ∈ ¬Sup Xn. Therefore, we have:  

[[Aϕ1Uk
∼cϕ2]] ⊆ U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn 

  ⊇ / Let q ∈ U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn  

• As q ∈ U1 = [[[z ← 0]AF([zr ← 0]Eϕ2U(ϕ2 ∧(zr > k)∧(z ∼ c))]]), then for every path 

from q there exists a sub path σ where ϕ2 lasts long enough around a position satisfying 

z ∼ c.  

• On another side q ∈ U2 = [[[z ← 0]¬E(true)U([zl ← 0]E¬ϕ1U(¬ϕ1 ∧(zl > k) ∧ 

¬(z ∼ c)))]], i.e. it is not possible to have a sub path from all path starting from q where 

¬ϕ1 lasts long enough before the position z ∼ c.  

• We also have q ∈ [z ← 0][zr ← 0]¬Sup Xn, this certifies that it is not possible that ¬ϕ1 

lasts long (> k) after the position ∼ c, unless either ϕ2 has been verified for k t.u. around a 

position satisfying z ∼ c before, or ϕ2 is true and will hold for k t.u. (i.e., q ∈ 

[[Aϕ1Uk
∼cϕ2]]), then we have: 

U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn ⊆ [[Aϕ1Uk
∼cϕ2]] 

Finally, we have: 

[[Aϕ1Uk
∼cϕ2]] = U1 ∧ U2 ∧ [z ← 0][zr ← 0]¬Sup Xn 
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4.2.5. Aϕ1Uk
=cϕ2  

In this case, we use the following equivalences [16] in order to reduce the model-

checking algorithm to previous modalities:  

  Aϕ1Uk
=cϕ2  ≡ AFk

=cϕ2 ∧ AGk ≤c−k(ϕ1)  if c ≥ k     

  Aϕ1Uk
=cϕ2  ≡ AFk

=cϕ2    if c < k     

For, AGk
≤c−k(ϕ1) we have : AGk

≤c(ϕ1) = ¬EFk
≤c ¬ϕ1 (algorithm already given for this 

modality). So it remains to give the zone algorithm for AFk
=cϕ2.  

For dealing with this case, we first consider the dual modality EGk
=c.  

We have: EGk
=c¬ϕ2 =¬AFk

=cϕ2, then s |= EGk
=c¬ϕ2⇔∃ρ∈ Exec(s) |∀σ ∈ subrun(ρ): μ(σ) 

> k ⇒ (∀p ∈ σ, Time(ρ≤p ≠ c)) ∨ (∃p ∈ σ s.t. sp |= ¬ϕ2).  

EGk =c¬ϕ2 expresses that there exists an execution from the current state s where any 

subrun σ s.t. (a) μ(σ) > k and (b) σ contains a state located at duration c from s, contains a 

state satisfying ¬ϕ2. Thus we have to verify that there exists an execution where ¬ϕ2 holds 

or has held “recently” (i.e. in less than k t.u. ago) for any state located at a duration in 

[c; c + k].  

The formula EGk
=c ¬ϕ2 is depicted in the following figure (Figure 6): 

 

Figure 6. Illustration of EGk
=c¬ϕ2 Modality 

We prove that the characteristic set of AFk =cϕ2 is given as follows:  

[[AFk
=cϕ2]] = [z ← 0][zr ← 0]¬Sup Xn 

Where Xn is a stationary and increasing (by inclusion) sequence, that represents 

EGk
=c¬ϕ2 (as depicted in the figure above). The sequence Xn is defined as : 

 X0  = [[z = c]] ∧ Sup Yn  

 Xn+1  = Xn ∨ (( [[(z < c) ∧ ¬ϕ2]] ▷[zr ← 0]Xn ) ∨ ([[(z < c) ∧ ϕ2]] ▷Xn )) 

And Yn is also a stationary and increasing (by inclusion) sequence, that represents the 

first term of Xn (as depicted in the figure above). The sequence Yn is defined as: 

  Y0  = [[z > c + k]]  

  Yj+1  = Yj ∨ (([[¬ϕ2 ∧ z ≥ c]] ▷[zr ← 0]Yj)∨ ([[(ϕ2 ∧ zr ≤ k) ∧ z ≥ c]] ▷Yj )) 

Proof [sketch.] For this modality, we have to show that: 

[[AFk
=cϕ2]] = [z ← 0][zr ← 0]¬Sup Xn 

s.t. Xn is a recurrent sequence defined as :  

X0 = [[z = c]] ∧ Sup Yn  

 Xn+1  = Xn ∨ (( [[(z < c) ∧ ¬ϕ2]] ▷[zr ← 0]Xn ) ∨ ([[(z < c) ∧ ϕ2]] ▷Xn)) 

And Yn is also a recurrent sequence defined as:  

Y0  = [[z > c + k]]  

  Yj+1  = Yj ∨ (( [[¬ϕ2 ∧ z ≥ c]] ▷[zr ← 0]Yj) ∨ ([[(ϕ2 ∧ zr ≤ k) ∧ z ≥ c]] ▷Yj)) 

First of all, we can prove that the sequences Xn and Yn are stationary and increasing by 

inclusion in the same way as shown in [1].  

⊆ / Let q ∈ [[AFk
=cϕ2]], suppose that q ∈ [z ← 0][zr ← 0]Sup Xn, therefore there exists 

a path from q such that any position between c and c + k satisfying ¬ϕ2 ∨ zr ≤ k. This 

clearly contradicts the fact that q ∈ [[AFk
=cϕ2]], i.e. q ∈ [z ← 0][zr ← 0]¬Sup Xn.  

z, zr := 0 z = c 

|= ¬ϕ2 ∨ zr ≤  k 

z > c + k 
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⊇ / Let q ∈ [z ← 0][zr ← 0]¬Sup Xn. Suppose that q /∈ [[AFk
=cϕ2]], then 

q ∈ EGk
=c ¬ϕ2. Then, there exists a path ρ from q, such that all sub path σ having length > 

k and containing a configuration located at c time units from q, must contain a position 

where ¬ϕ2 is true. Now consider the sub path ρ’ of ρ from the position z = c, clearly this 

sub path verifies (¬ϕ2 ∨ zr ≤ k) ∨ (z > c +k) this is a contradiction with the fact that 

q ∈ [z ← 0][zr ← 0]¬Sup Xn.  

Finally, we have: 
[[AFk

=cϕ2]] = [z ← 0][zr ← 0]¬Sup Xn 

 

4.3. Implementation of Algorithms using DBMs 

The DBM acronym means difference bounded matrice. It is a classical data structure 

widely used for representing systems of difference constraints, which has a significant 

interest for the verification of timed systems because they can be used to represent zones. 

DBMs are now intensively used to analyze timed automata [18]. Moreover, the DBMs are 

appropriate to implement algorithms proposed in the previous subsection. Indeed, we 

have shown in [1] how to compute, using the DBMs, all operations on zones appearing in 

the model-checking algorithms of TCTLΔ inevitability modalities. We also gave in [1] an 

effective method for computing the operation Q1▷Q2. 

 

5. Pseudo-Codes for TCTLΔ Model-Checking Algorithms 

We give here the pseudo-code version of the Model-Checking algorithm for 

Aϕ1Uk<cϕ2. The algorithms’ pseudo-codes of the other inevitability modalities can be 

developed exactly with the same approach, based on the results of subsection 4.2. 

Algorithm 1 computes step-by-step the characteristic of the modality Aϕ1Uk
<cϕ2, using 

a backward analysis approach we have seen in subsection 4.2.2. We start by computing 

the least upper bound of the sequence Yn. The first term of Yn is given as the 

characteristic set of a classical TCTL formula. Then we compute iteratively the terms of 

Yn until reaching a stationary value which is obviously the least upper bound of Yn. 

Similarly, we compute the least upper bound of the sequence Xn. The stop condition of 

Xn’s iterations is also given by convergence to its stationary value. Then we compute the 

least upper bound of the sequence Vn. The first term of Vn is given as the characteristic set 

of a simple clock constraint. After, we compute iteratively the terms of Vn until reaching 

its stationary value, which is evidently its least upper bound. Finally, the characteristic set 

of formula Aϕ1Uk <cϕ2 is given by the intersection of Xn’s least upper bound negation and 

Vn’s least upper bound negation.  

We note that all operations used in this algorithms (intersection of sets of symbolic 

states, predecessor operators and clocks reset, …) are reduced to known operations on 

zones. These operations are easily implemented through DBM data structure as we have 

shown in [1]. 
 

Algorithm 1 Model-Checking of Aϕ1Uk<cϕ2 Modality 

 1: function Characteristic Set(Aϕ1Uk<cϕ2 : TCTLΔ) 

 2: 

 3: // (* TCTL formula *) 

 4: TargetSetYn := [[ (¬ϕ1 ∧ zl > k) ∧¬(A ϕ2 U (ϕ2 ∧ zr > k))]]; 

 5: 

 6: repeat 

 7:  CurrentSet    := TargetSetYn; 

 8:  TargetSetYn := TargetSetYn ∪ CurrentSet; 

 9:  TargetSetYn := TargetSetYn ∪ ([[¬ϕ1 ∧¬ϕ2]] ▷[zr← 0] CurrentSet); 

10:  TargetSetYn := TargetSetYn ∪ ([[¬ϕ1 ∧ (ϕ2 ∧ zr ≤ k)]] ▷CurrentSet); 

11: until TargetSetYn = CurrentSet 
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12: 

13: TargetSetXn := [zl← 0] TargetSetYn; 

14: 

15: repeat 

16: CurrentSet    := TargetSetXn; 

17:  TargetSetXn := TargetSetXn ∪ CurrentSet; 

18:  TargetSetXn := TargetSetXn ∪ ([[¬ϕ2]] ▷[zr ← 0] CurrentSet); 

19:  TargetSetXn := TargetSetXn ∪ ([[(ϕ2 ∧ zr ≤ k)]] ▷CurrentSet); 

20: until TargetSetXn = CurrentSet 

21: 

22: TargetSetVn := [[z = c + k]]; 

23: 

24: repeat 

25: CurrentSet    := TargetSetVn; 

26:  TargetSetVn := TargetSetVn ∪ CurrentSet; 

27: TargetSetVn := TargetSetVn ∪ ([[¬ϕ2]] ▷[zr ← 0] CurrentSet); 

28:  TargetSetVn := TargetSetVn ∪ ([[(ϕ2 ∧ zr ≤ k)]] ▷CurrentSet); 

29: until TargetSetVn = CurrentSet 

30: 

31: TargetSet := [z ← 0][zr ← 0]¬ TargetSetVn ∩[zr ← 0]¬ TargetSetXn; 

32: return TargetSet; 

33: end function 
 

6. Conclusion 

In this paper, we proposed implementable model-checking algorithms for TCTLΔ 

inevitability modalities. We presented a complete correctness proof for each proposed 

procedure. The main result of this paper is the overcome of the state-space explosion 

problem caused by the theoretical TCTLΔ model-checking algorithm based on regions. 

Moreover, we have described the implementation of our algorithms using zones and 

DBMs, which is the same approach as the one used in tools like UPPAAL or KRONOS. 

Furthermore, this paper completes the study started in [1], regarding the reachability 

modality EUk
∼c. Indeed, no much work is now necessary to get a model-checker that deals 

with all TCTLΔ modalities. 
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