
International Journal of Control and Automation 

Vol. 10, No. 12 (2017), pp.15-24 

http//dx.doi.org/10.14257/ijca.2017.10.12.02 

 

 

ISSN: 2005-4297 IJCA 

Copyright © 2017 SERSC Australia 

An Application of Eigenvalues Statistics on Sensor Array 

Processing 
1 

 

Youssef Khmou 

Sultan Moulay Slimane University, Morocco 

khmou.y@gmail.com 

Abstract 

The properties of the eigenvalues in array processing are important to study where 

they depend on several functions of physical parameters including the media of 

propagation, the geometry and the number of sensors in base station. For source number 

detection and angular interferometry of radiating sources, where the objective is to detect 

the number of radiating sources during the period of observation and to implement an 

angular beam scan in order to spatially study the coherence effect of wave fields, 

eigenvalues analysis is an important step that enables to separate the sources of interest 

and to isolate the interfering sources that can be other radiating sources or simply the 

noise field that is generated in the circuits of the antennas, or as result of diffuse 

reflections in the medium of propagation. In this paper, we study the statistics of the 

eigenvalues of the spectral matrix obtained from signal vectors, their computations are 

based on the trace. We discuss the eigenvalues statistics of Hermitian matrices, next, we 

apply first and second order statistics to estimate the threshold between signal and noise 

eigenvalues, some numerical results are presented using large array of sensors and 

closely sources. 
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1. Introduction 

In the field of electronic engineering, array processing is an ongoing field of research 

divided into many parts including, but not limited to, channel estimation [1], modulation 

[2] and demodulation of transmitted signals, narrow and broadband [3] transmission 

schemes and spatial interferences study, this last case is focused on spatial and temporal 

coherence effects of propagating waves from the sources towards the intercepting array of 

sensors. 

Special processing of induced voltages in receiving array of antennas is performed to 

estimate the coherence effects by detecting the number of radiating sources which is 

known as model order estimation [4], these steps are based on eigenvalues of spectral 

matrix computed from the array of signals on the base station. In the other hand, the 

bearing estimation and waveforms retrieval is performed using high resolution spectral 

and algebraic methods [5,6], the term high resolution refers to the case where it is possible 

to correctly estimation the angles of arrival of radiating sources where the angular 

differences between different angles of incidence are less than the Rayleigh angular 

resolution limit of the array, this metric is also known as Half Power Beam Width. 

Bearing estimation relies on the spectral matrix and angular beam scan which permit 

the estimation of the properties of sources and those of propagation medium [7]. Among 

the high resolution techniques that rely on eigenvalues properties is the ESPRIT 

(Estimation of Signal Parameters via Rotational Invariance) algebraic method [8,9], 

another method based on angular spectrum and peak detection procedure is the EG [10] 
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(Ermolaev and Gershman) where the constructed operator is based on chosen threshold 

value of the eigenvalues of spectral matrix. In fact, the signal vector at base station can be 

decomposed into two complementary parts, signal and noise subspaces [5,6,7] that are 

orthogonal to each other, each part corresponds to a set of eigenvalues of spectral matrix, 

the EG operator [10] is computed based on threshold value between signal and noise 

eigenvalues. Theoretically, the signal eigenvalues have higher magnitudes and noise 

eigenvalue is degenerate q times where q in the number of sensors of the array minus the 

number of present sources, the threshold is strictly superior to the noise eigenvalue and 

strictly inferior to the smallest signal eigenvalue. 

An alternative approach to estimate the threshold of the two sets of eigenvalues was 

proposed using QR or LU decomposition of spectral matrix [11]. Another methodology of 

noise subspace approximation was proposed using the threshold obtained from first and 

second order statistics of eigenvalues [12], the threshold used consists of selecting the 

value that attenuates the function used to approximate the noise subspace, the resulted 

operator has almost binary eigevalues such as one and null eigenvalues correspond to 

noise and signal subspaces respectively. 

In this paper, we focus on large array of sensors, we study a possible alternative 

solution of the threshold selection using first and second order statistics of 

eigenvalues [13], without performing the eigendecomposition of spectral matrix, 

this proposition is supported by some numerical simulations. In the second part, we 

describe the statistics of eigenvalues of Hermitian matrices using the trace, next we 

present the signal model of array processing and the theorem we are based upon to 

estimate the threshold of eigenvalues. In the third part, we perform a comparative 

analysis between the proposed and existing models using large array and few 

radiating sources. 

 

2. Eigenvalues Statistics of Hermitian Matrices 

In this section, we present a brief discussion of the spectra of Hermitian matrices and 

their statistics using the trace. Let us consider a complex matrix
N NM C  , M  is 

Hermitian if it equals its transpose conjugate pair, the definition is based on the relation: 

M M                                                                                                                        (1) 

Where
*TM M  , the part we are focused on is the eigenvalues, the decomposition of 

such matrices exists and is given by the following relationship: 

N

i i i
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                                                                                      (2) 

N NU C  is complex vectorial space of M , 
i is the

thi  eigenvalue that 

corresponds to the 
thi eigenvector,   is diagonal matrix whose elements are

i . For 

Hermitian matrices, the eigenvalues are always real
i R  . We limit our study by 

examining fourth order statistics, the mean eigenvalue denoted by letter m  can be 

computed using the trace as the following: 

1

1 1
( )

N

ii

i

m Tr M M
N N 

                                                                                   (3) 

Based on this value, the second order statistic or the standard deviation s is given by the 

following relation: 
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2
2 2 2( )Tr M

s m
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                                                                            (4) 

Next, the third order statistic called skewness that we denote by letter µ is given by: 

3
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3 2 3

1 ( ) 3 2
( ( ) ( )) ( )
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Tr M Tr M Tr M

s N N N


 
   

 
                                        (5) 

Finally, the fourth order statistic called Kurtosis k can be computed similarly to the 

above metrics, by the equation: 

4
3 2 2 4

4 2 3 4

1 ( ) 1 1 3
(4 ( ) ( )) (6 ( ) ( ) ) (3 ( ) )

Tr M
k Tr M Tr M Tr M Tr M Tr M

s N N N N
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   (6) 

Similarly, 
thn statistic, if it exists, can be computed using the binomial theorem as the 

following: 
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Let us illustrate an example of random and real symmetric matrix defined 

by 0.5 ( )TM H H   where
ijH are independent and identically distributed random 

variables ~ (0,1)ijH N . Staring from dimension 2N  to 100N  , we compute the 

eigenvalues statistics, as illustrated by Figure 1, each statistic of given value of N is 

averaged over100  trials. 
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Figure 1. Mean, Standard Deviation, Kurtosis and Skewness of 
Symmetric Random Matrix W.R.T Dimension 

Given the case where only the statistics of matrix spectra is needed, the above relations 

can be applied without using the eigendecomposition given in equation (1). To illustrate 
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one possible application of trace based statistics, we present in the next section, an 

application in field of bearing estimation with large array of sensors. 

 

3. Eigenvalue Threshold of Array Signal Model 

In array signal processing, bearing estimation [5,6,7] is based on observations 

(samples) collected from an array of antennas, the superimposed waves pass through the 

array system and induce a voltage at sensors, the signal model is based on angle 

interferometry which is a function of geometrical arrangement of sensors, in order to 

simplify the problem, let us consider a case of uniform linear array with N omni-

directional and identical sensors with same consecutive distance d which equals half of 

the wavelength of radiating sources / 2d  , based on K samples and superposition of 

P punctual sources in the far field region, the signal model relatively to the normal of the 

array is given by the relation: 

1

( ) ( ) ( ) ( )
P

i i

i

x t s t a n t


                                                                                            (8) 

For t=1,...,K and angles of incidence 
1,..., P   of plane waves [5], it is assumed 

that the sensors are vertically placed in (x,y)  plane and the waves are linearly 

polarized E=(0,0,E )z
, ( )ia  is the steering vector which is written in the following 

form using the first element as phase reference: 

 
1 12 sin( ) 2 ( 1)sin( )

( ) 1, ,...,i i

T
j d j d N

ia e e
   

   
                                                            (9) 

The steering matrix of the uniform linear array 
N PA C   is written by the 

relation 
1[ ( ,..., ]) )( PA a a  . Bearing estimation algorithms [5,6,7] rely generally 

on second order statistics of data x(t) , its theoretical expression is given by : 

2< Nxx A ss A I                                                                          (10) 

ss   is the correlation matrix of P waveforms,
2 is the noise power and

NI is 

the identity matrix. Bearing estimation requires a threshold of  the spectrum of   

described in descending order 
2

1 2 1... P P N         , the minimum 

eigenvalue is degenerate N P  times. 

The threshold value is in the range 
1] , [c P P   , several solutions were 

proposed to estimate 
c , among the alternative solutions is the QR and LU 

decompositions [11] of spectral matrix that are given by: 
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The dimensions of matrices 
22U  and 

22R  are N P N P   , according the 

relations presented in [11]
1 22 2P PU  ‖ <‖<  and 

1 22 2P PR  ‖ <‖< , the threshold 

can be chosen as 
22 2c U ‖ ‖= or

22 2c R ‖ ‖= . 

Let us consider the application of eigenvalues statistics on the present model of 

signals. For the first application, given that the different waveforms ( )s t are 

uncorrelated between each other and white noise model of ( )n t [6], the first order 
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statistic of eigenvalues given in equation (3) is an estimate of sum of signal and 

noise powers [14], it is given by: 

1

2 2( )

i

i

PTr

N
  




                                                                                (12) 

As a second application, the above relation and second order statistic  , given 

in equation (4), can be employed to estimate the threshold
c using a theorem of 

eigenvalues bounds [15], given Hermitian matrix , the lower and upper bounds of 

smallest and largest eigenvalues
N and

1 respectively are bounded by [15]: 
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                                                      (13) 

If the condition of large number of sensors N relatively to the number of radiating 

sources P is verified, the upper bound of smallest eigenvalue can be an alternative 

estimate the threshold
c as the following: 

1
cs

N


 


  


                                                                                        (14) 

The threshold is in general, applied to estimate the number of radiating sources  

and for angular beam scan to estimate the  angles of incidence of superimposed 

wave fields using as example the EG [9] and Lorentzian [12] operators. In order to 

quantify the performance of the three presented functions above for approximating 

the parameter
c , we present in the next section, a numerical simulation using large 

array and closely sources. 

 

4. Numerical Comparison 

In this section, we run a computer simulation based on L=100 trials for each value of 

Signal to Noise Ratio SNR in the range [-5 dB, 20 dB] , the configuration of antennas-

sources is chosen as wave field consisting of P=4  radiating sources that are linearly 

polarized, uncorrelated and have complex random envelopess(t) with zero mean and same 

power 
2 1s  W, the angles of incidence are [5 ,10 ,15 ,18 ]     . 

The distance between sensors is half the wavelength / 2d  and the number of 

samples is K=200 . For each value of SNR , we compute the average, over L trials, of 

smallest signal eigenvalue 
P  and largest noise eigenvalue 

1P 
 in order to construct the 

threshold range 
1[ , ]P P 

, next we compare the estimate of threshold using the functions 

222U‖ ‖ , 
222R‖ ‖  and 

cs defined by equation (14). For precise quantification of the 

performance of the three functions, we test the estimated values according to the number 

of sensors, in the first part, we consider that the number of antennas is the double of the 

number of sources 8N  , Figure 2 represents the comparison. 
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Figure 2. Comparison of Different Thresholds 
c  of Eigenvalues, 8N   

The colored area represents the range 
1[ , ]P P 

, the lines denoted by the notations '-*-' 

and '-◊-' represent the norms 
22 2U‖ ‖  and 

22 2‖ R ‖  respectively, and the continuous line 

represents the threshold defined in equation (14), we remark that the three functions 

cannot estimate the threshold 
c  in this case of 8N  , however the norms

22 2U‖ ‖ and 

22 2‖ R ‖ converge to an accurate estimate staring from SNR=20 dB. To compare this 

remark with that of large array, we repeat the simulation using N=20sensors, the result of 

comparison are illustrated in Figure 3. 
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Figure 3. Comparison of Different Thresholds
c of Eigenvalues, 20N   
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In this case, the estimated threshold
sc defined by equation (14) can correctly 

estimate the threshold as we can remark that
1[ , ]cs P P   , however the two norms 

22 2U‖ ‖  and 
22 2‖ R ‖ are out of the valid range, an intuitive explanation for this 

result is that for large number of sensors, the dimensions of the 

blocks
22U and

22R become larger with dimensions N P N P   and consequently 

the norms become higher. 

For complementary study of this simulation results, we analyze the problem by peak 

detection of localization functions, we choose the optimal value of 10SNR  dB, the EG 

operator is computed for the three threshold criteria using parameter 10m  as the 

following: 

1
m

EG N

c

P I




  
   
   

                                                                                              (15) 

Using the same conditions of array number of sensors, we present in Figure 4 the 

results of three spectra ( )f  averaged using L=100  Monte Carlo trials, for different 

criteria of threshold. 
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Figure 4. Comparison of Different Spectra ( )f  , 10SNR  dB, 8N   

In this case, the number of peaks is less that the exact number of present sources and 

the three localization functions have the same response of angular beam scan. Next, we 

test the spectra for 20N  as illustrated in Figure 5. 
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Figure 5. Comparison of Different Spectra ( )f  , 10SNR  dB, 20N   

The peaks of the localization function based on statistical threshold
cs indicate the 

exact incident angles contrarily to the two other spectra. As concluding remark, for large 

array of sensors, eigenvalues first and second order statistics can be employed to estimate 

the threshold between signal and noise eigenvalues for the purpose of angular 

interferometry. 

 

5. Conclusion 

This paper is devoted to the subject of array signal processing, especially the 

properties of eigenvalues of spatial covariance matrix computed from observations 

generated by an array of sensors. In the first part, we have explained the calculations 

of eigenvalues statistics of Hermitian matrices using the trace which is the sum of 

diagonal elements. Next, we have demonstrated an application of first and second 

order statistics in the context of bearing estimation where for some techniques, a 

threshold between signal and noise eigenvalues is mandatory to accurately estimate 

the projector into the noise subspace. To support this proposition, we have 

performed some numerical simulations comparatively to the existing approaches of 

threshold estimation, the results obtained from sufficient number of trials, for each 

value of signal powers, demonstrated that the statistical threshold is valid in the case 

of large array relatively to the number of radiating sources. 
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