
International Journal of Control and Automation

Vol. 10, No. 12 (2017), pp.209-220

http//dx.doi.org/10.14257/ijca.2017.10.12.19

ISSN: 2005-4297 IJCA

Copyright © 2017 SERSC Australia

Modeling Slicer and Control Algorithm for Distributed

Computation in Metrized Weaker Topological Spaces
1

Susmit Bagchi

Department of Aerospace and Software Engineering (Informatics),

Gyeongsang National University, Jinju, South Korea

profsbagchi@gmail.com

Abstract

A distributed system is essentially a networked system having controlled execution

under observation. The present day distributed systems require hybridization with

distributed databases to support heterogeneous data-intensive applications. The control

of computation of such hybrid geo-distributed systems is difficult in the presence of

randomly varying network delays and unpredictable occurrence of partitions in network

topology. In order to gain insight to controllability of a hybrid geo-distributed system and

to design control algorithm, the formal analytical model of the system is required. In

general, lattice and algebraic topological concepts are employed to model distributed

systems, which impose rigid geometric structures. However, flexibility of the model can be

enhanced in weaker topological spaces. This paper proposes the model of observable

distributed computation in weaker topological spaces having monotone and metrizability

properties. A corresponding distributed control algorithm is designed. The distributed

algorithm can detect various classes of state of control of distributed computation.

Keywords: Distributed computing, monotone, topology, lattice, control algorithm,

metric space

1. Introduction

The present day distributed systems encompass peer-to-peer systems as well as mobile

geo-distributed systems involving heterogeneous networks [1, 26]. A cloud computing

platform is essentially a hybrid system comprised of geo-distributed systems and

distributed databases storing massive datasets [30]. In such systems, the multiple server-

groups (SGs) are formed by clustering a set of nodes and the SGs are connected by

Internet. The nodes in SGs store large datasets and carryout computation. The inter-SG

and intra-SG nodes coordinate by messages over network. In general, the clusters employ

data replication of full datasets or partitioned datasets depending upon the requirements of

a particular application. However, the performance of geo-distributed systems involving

distributed databases is highly dependent on the concurrency control and stability of

network topology. The limits of distributed computations and conditions of controllability

are often required to be formulated in order to avoid waste of computing resources and to

maintain stability. In order to model observable distributed computation and to design

associated control algorithm, the formal model of asynchronous distributed computation

is required [29, 30].

In the view of graph theory, a distributed computing system can be modeled as a graph

having fixed topology if the underlying network is static [2, 28]. The computational

model of such distributed system involves iterative execution and shared memory [10]. It

is important to note that, a distributed computation cannot be rigidly synchronized based

on any global clock due to random network delays [27]. Thus, the observation and control

Received (October 20, 2017), Review Result (December 7, 2017), Accepted (December 8, 2017)

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

210 Copyright © 2017 SERSC Australia

of geo-distributed hybrid systems become more challenging in the presence of

heterogeneous networks. Interestingly, the concepts of algebraic topology can be applied

to model distributed computation [5, 6, 9]. However, the traditional algebraic topological

models of distributed computation impose rigid geometric structures on computation

reducing flexibility. A model with enhanced flexibility is required to design and analyze

observability and controllability of geo-distributed computing systems in heterogeneous

environments. The monotone space is a generalized weaker form of topological spaces

[7]. Hence, the applications of monotone spaces with metrizability property in modeling

controllability of distributed systems are promising approach. This paper proposes the

design and analysis of observable and controllable distributed computation within weaker

(monotone) topological spaces. The metrizability of the computing space is analyzed. A

distributed algorithm is designed to control the respective distributed computation. This

paper presents a set of axiomatic and analytical properties of the stronger and weaker

forms of observable states of control of a distributed computation.

1.1. Motivation

The observation and control of hybrid geo-distributed computations are the essential

requirements to maintain data consistency under replication, concurrency as well as

asynchrony [31]. The observation and control of computing states of large scale

distributed systems require formal models [27, 30, 31]. Traditionally, the graph theory

and relational algebra are employed to model distributed computation and databases.

However, the modular graphs and relational algebraic models do not adequately formalize

observability and control of a hybrid geo-distributed computing in the presence of

heterogeneous network, dynamic topology and, stability of nodes. The hybrid geo-

distributed computation is essentially asynchronous in nature [27, 29]. The formal models

of asynchronous distributed systems are constructed by employing algebraic topology and

homotopy theory [5, 6, 10, 15]. The algebraic topological models impose a set of very

rigid and fixed geometric structures, whereas a more flexible structure would benefit the

modeling of asynchronous distributed systems exposing finer states of control. The

formulation of computational model in monotone spaces would enhance structural

flexibility. The metrizability of such space would enhance the observability of control

states in topological spaces. This paper proposes the model of observable and controllable

asynchronous distributed computation in metrized monotone topological spaces. The

axiomatic determinations of observable and controllable distributed computation in

monotone spaces are formulated. The main contributions of this paper are as follows.

 Formulation of an observable and controllable model of distributed computations in

metrized monotone topological spaces.

 Formulation of a distributed algorithm to identify computational states in weaker

topological spaces.

 Analysis of metrizability and convergence properties of distributed computational

space.

Rest of the paper is organized as follows. Section 2 represents related work. Section 3

presents formulation of model of asynchronous distributed computation in monotone

topological spaces. Section 4 describes designing of monotone slicer and control

algorithm of asynchronous distributed computation in monotone spaces. Section 5

illustrates analytical properties of the model. Finally, Section 6 concludes the paper.

2. Related Work

The applications of large scale distributed systems are ranging from cloud computing

platforms to distributed embedded systems. In recent times, the distributed systems

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 211

having hybrid architecture have emerged involving wireless network based mobile

platforms [1]. Traditionally, the distributed computing systems are modeled by employing

discrete structural elements with assumptions that network topology is static [25].

However, the hybrid distributed systems are dependent on dynamic network topology,

which are modeled by using dynamic graphs [28].

In recent time growing number of attempts are made to apply the concepts of algebraic

and combinatorial topology to model and analyze distributed computing systems. The

concepts of algebraic topology theory are employed to model and analyze synchronous as

well as asynchronous distributed computing systems [3, 11, 21]. The structures of

algebraic topology deal with higher dimensional geometrical objects resulting in the

formation of higher dimensional automata representing concurrent computation [17, 18,

24]. In general, the algebraic topological objects form simplicial complexes to model

distributed processes and protocols [8, 21]. The connectivity properties of higher-

dimensional topological objects are employed to model and analyze the computability

issues in distributed computing systems [11, 13]. The modeling and analysis of distributed

systems employing asynchronous iterated shared memory (DSM) model are formulated

utilizing combinatorial algebraic topological concepts [5, 10]. Furthermore, the concepts

of persistent homology are employed to formulate the model of distributed computation in

topological spaces [20, 23]. Researchers have proposed to employ homotopy theory to

model the complexity of mutual exclusion involving concurrently executing programs [6,

16]. Interestingly, the stability properties of distributed concurrent processes can be

analyzed by applying homotopy theory [15]. It is illustrated that, the semaphore objects

(for mutual exclusions) can be formed in topological spaces having partial ordering and, it

can be extended to analyze deadlock and serializability properties of concurrent processes

[14]. However, the application of homotopy theory cannot be made in distributed systems

without considering directional property. This is because the general homotopy does not

prevent reversal of time in a computing system.

Often, the distributed computing systems require iterative computation of immediate

snapshot. The topology theory is employed to compute the time complexity bounds of

determining approximate agreement in iterated immediate snapshot model [12].

Interestingly, the simplicial complexes can be reduced to manifolds in case of immediate

snapshot model in order to reduce structural complexities [13]. However, generally the

topological structures are very complex having rigid structural geometries. Following the

combinatorial computing approach, distributed systems are modeled in combinatorial

topological spaces. In such cases, the combinatorial relations in topological spaces are

defined to construct the model of asynchronous processes having wait-free computation

[8]. These combinatorial relations are in static form without considering the interleaving

computations in distributed systems. The object-oriented distributed systems are a class of

designing distributed systems. The characterizations of object-based distributed systems

are formulated by using topological structures [19]. The modeling of liveness and safety

properties of concurrency in distributed systems are constructed by employing concepts of

topological spaces [22].

3. Distributed Computation in Monotone Spaces

The simplicial complexes are the higher-dimensional objects analogous to structures of

graphs representing the distributed processes [5, 6, 8]. Following the concepts of algebraic

topological spaces, simplicial complexes are }0:{  ZnnwW nC where,
nw is

simplex and
CW is finite having properties:

CmnCmnCmn WwwWwwWww  ,,, . A simplicial map between simplexes

(
1cW and

2cW) is given by,
21: cc WW  .

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

212 Copyright © 2017 SERSC Australia

Let W be a point set and,)(W is power set. If)()(: WWg  is considered to

be a monotone function such that,)(),(,)(AgAWAg  and,

)()(),(, FgAgFAWFA  then,),(gW is a monotone space. Any

arbitrary intersections of closed sets in monotone spaces are closed.

3.1. Construction of Model

Let a distributed computation be symbolically represented as D comprised of a set of

distributed processes given by }1:{  ZjNjpP j . All the distributed

processes are considered as finite state machines and a process
jp has a set of

deterministic execution states denoted by
jS , where

jS . Hence, D can be identified

by,


N

j

jSDS
1

)(


 (1)

The distributed processes execute as state machines with inter-process communications

and as a result state transitions occur in a process. Considering the processing of inputs to

a process is the internal computation, the overall global dynamics of a set of processes

can be modeled by using a simplified and system-wide state transition function defined as,

}{\)(

),()(:

jjj
sSSsf

DSDSf

j 


 (2)

The distributed computation is considered to be deterministic if the system-wide state

transition function is having convergence property within global state-space. Thus the

overall system dynamics converge to a state-space and such converging space of D is

defined as,






)(

,)(
1

DS

SDS
N

j

j
 (3)

The set of all possible cuts on distributed computation D is denoted by

))(()(DSDC 
, where (.) generates power set. The set of boundary elements

j
B

of a process
j

p is defined as, Pp j  ,

)()(DSSBf jj  (4)

The concept of boundary elements represents the recognition of regions of

convergences in state-space of a distributed computation. If
j

SBj  then a computation

in D is defined as,

)(\)(
1


N

j

j
BfDSD



 (5)

This indicates that, the executions in a distributed computation consider global states

excluding the convergent region. However, it includes the boundary state-space.

A monotone space over D is),(gD having following properties:

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 213

)()(),(,

),(),(

,)(

),()(:

BgAgBADBA

AgADA

g

DDg










 (6)

This definition represents the monotone property of a distributed computation and the

mapping of structural forms within the state-space of distributed computation under

consideration.

3.2. Inter-process Communication

The set of distributed processes communicates through messages over the network in

order to maintain synchrony and coordination. A partial ordering relation (m
),

representing message passing, is defined in global state-space of the respective distributed

system by following axioms (where
1is and

1is denote previous/next states of
ip

before/after state
is due to state transition, respectively),

)]([)]([]),(),[(

],),[(]),[(:,

),()(:,

1111 jjii

m

ij

m

ji

m

ij

m

jijjii

ijji

m

ji

sfssfsssss

ssssSsSs

SSSSPpp









 (7)

A relation
2)(|| DS between any two states within state-space of the distributed

computation under consideration is defined by following axioms,

)||()||(

],),(:[)||(

],),[(]),[()||(

)),(())((:)(),(:

11

1111

ijji

m

ijjji

m

ij

m

jiji

iiiiiii

ssss

ssBsss

ssssss

sfssfsDSBsDSAsPp













 (8)

Thus, the relation || maintains the consistency of cuts in execution state-space of

distributed processes by following traditional concepts of consistent cuts [25].

3.3. Convergence of Global Transition Function

Let, (.), fi iPp  such that, iif SSi : and, (S(D)))(fSi if  . The distributed

computation is stable and deterministic if (.)f is convergent transition function

satisfying following axioms, where))(()(2

iffi

o

f siisi  ,

)()(

),,1(

,,,

DSsi

n

SsZnPp

i

on

f

i

iiii

i 



 

 (9)

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

214 Copyright © 2017 SERSC Australia

If])()()([])([:, DSsDSsfssiSssPp ii

on

fiii
i   then, the

global transition function is a discrete variety of Banach contraction map with finite

ending.

4. Consistent Slicing and Control of Computation

In this section, the model of consistent slicing of distributed computation in monotone

spaces is formulated. Furthermore, the axiomatic determination of controllability of a

distributed computation is presented.

4.1. Monotone Slicing Model

In order to formulate an observable distributed computation, it is necessary to restrict

the dynamics of distributed computation in monotone topological spaces. Let)(DA
j


and)(
jj

AgA  . Set of cuts)(DCC  in D for |)(| DK  is given by,


K

j

j
AgC

1

)}({


 such that, NcCc  ||, and,][],:[,, vuSySxcyxyxPpp vuvu  .

Hence, a cut is comprised of states of processes spanning the entire set of processes in the

distributed system in monotone spaces. Each element in a set of cuts is not consistent and,

the consistency is formed by using lattice model. The set of consistent cuts forms a lattice

),(L in D where, CL and,)]||([, yxcyxLc  . A set of lattice join-

irreducible elements of L is given by, LLJ )(. A distributed computation in monotone

topological spaces is consistent if the run R in D is defined as a sequence given below

where,)(, DAA mk  such that, ))(),((mk AgAg and, 1 km ,

 ,.....2,1,0),(: kDAAR kk (10)

Let X be a set of Boolean observation variables given by,

}}1,0{:{  

nn xZnxX . The predicate }1,0{)|( cX is assumed to be

computable at cut-state Cc in the corresponding distributed system. Thus, the slice of

a distributed computation is defined as,

))}(()1)|((:{)|(LJccXcLJ  (11)

The lean slice of a distributed computation is)}|(:{  LJccl where, 1|| l . A

state e is called critical state if)(}{ De  and, })({egl  . The elements of

(.)g satisfying stable Boolean predicate (.) in a valid distributed computation are

verified by,

)]1))(|(())(())([()),(( xgXLxgDxxg (12)

Hence, the set of consistent and stable executions in a distributed computation can be

found if the corresponding sequences of executions satisfy Equation (12). The Birkhoff’s

representation theorem formalizes corresponding lattice isomorphism structure [4]. It is

possible to incorporate the Birkhoff’s lattice isomorphism in the monotone slicing model

by maintaining following axiom,

))}(()),((:{)(

,:

LJxcxxLc

CL








 (13)

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 215

Thus, the proposed model of computation preserves Birkhoff’s representation theorem

within the corresponding space of distributed computation.

4.2. Controllability of Computation

The determination of controllability of computation in monotone spaces requires

observation of control states within topological spaces. It is denoted earlier that X is a

set of observation variables given by, }}1,0{:{  

nn xZnxX and, let NX || .

The elements of the set are assigned to different distributed processes such that,

},:{ XxPpxX jjj  . Let
jE be a set of local events of Pp j  and, 

N

j

jEE
1

 .

Furthermore, let }1,0{),( jj Ex be a Boolean predicate (local to a process) defined

over
jx considering local set of events of the respective process in the distributed system

under consideration. The integer valued function
 Z: Er imposes a total order of

execution of events within the processes (locally). Let jyjxj Eee  , such that,

)()(yjxj erer  then, the following axiomatic implications determine stable and consistent

observation of),(jj Ex ,

)0),(())0),(()0),(((

),1),(())1),(()1),(((

:)](),([)(,







zjjyjjxjj

zjjyjjxjj

yjxjjzjj

exexex

exexex

ererEerPp

 (14)

The events satisfying Equation (14) in the processes are denoted by,

 yjxjj eePp ,: . Furthermore, the segregated events for respective processes are

computed as, },:{},,:{:  yjxjyjyjxjxjj eeeTeeeQPp . The anti-symmetric

ordering relation R is defined over TQR  such that,

)()(),(

:

jyjixiyjxi

ji

EeEeRee

Ppp




 (15)

The set of all possible combinatorial execution sequences in the distributed

computation under consideration can be counted by permutation !n where, || En  . On

the contrary, every combinatorial execution sequences are not feasible exhaustively due to

data-dependency between distributed processes. Let, the exhaustive and possible

combinatorial sequences of executions for each process be computed as a finite set of

permutations denoted by,)(jm where mj EEEEjm )(21 . Hence, the

entire combinatorial space of execution sequences in the distributed computation is

computed as,


N

j

jmU
1

)(


  where, Nm  (16)

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

216 Copyright © 2017 SERSC Australia

The function recognizing the relation within a combinatorial sequence of execution is

defined as, }{\)(:  RUg  . Thus, the filtered set of combinatorial executions (i.e.

consistent set of combinatorial executions of processes) is given by,

})(:{ RuUuuU gP   (17)

It is important to note that, all combinatorial executions in Equation (17) may not be

always controllable and a stronger axiom is required. The stronger axiomatic form for

observing controllability of a distributed computation in the combinatorial execution-

space can be formulated as,

)1),(()1),((:),(:)(

),(:





yjjxiiyjxiAS

gP

exexAeeuC

uAUu 
 (18)

Hence, the set of all strongly observable and controllable combinatorial distributed

computations is derived as,

)}(:{ uCUuuU ASPPS  (19)

However, the consistent observation and controllability of a distributed computation

can be relaxed to a weaker form given by following axiom,

)1),(()1),((:),(:)(

),(:





yjjxiiyjxiAW

gP

exexAeeuC

uAUu 
 (20)

The corresponding weakly observable and controllable distributed computation is

given by,

)}(:{ uCUuuU AWPPW  (21)

If the Boolean predicate evaluation function (.) denotes the mutual exclusion

detection on a shared data then, the consistency property can be maintained by refining

the controllability axiom as,

),(),(:),(yjjxiiyjxi exexAee  (22)

Hence, the axiomatic determination of different degrees of observation and

controllability of sliceable distributed computations can be measured and, the safety

property of distributed mutual exclusion can be maintained in monotone space.

4.3. The Control Algorithm

The state of control of an asynchronous distributed computation can be algorithmically

determined by following the strong and weak forms of axioms. The pseudo code

representation of the algorithm in simplified form for observing the state of control of an

asynchronous distributed computation is presented in Figure 1.

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 217

Figure 1. Algorithm for Observing State of Control

 Each process in a system maintains a local vector storing the instantaneous values of

distributed Boolean variables associated to the processes. The initial control states are

marked as false by the processes. The distributed processes compute while generating or

absorbing events in the system and, during computation the value of variables may

change depending on the conditions such as, event ordering.

A process determines the intervals for observing stable predicate and, in the end of

such interval it sends the value of the predicate evaluation of associated variable to other

processes. On receiving the values of the predicate from other distributed processes, a

process will determine the global state of control in the system. The state of control can be

strong or weak depending upon the values of predicate as evaluated by distributed

processes. The message complexity of the algorithm is O(N2), because each process has to

share the local values to other processes in the distributed system under consideration.

5. Analytical Properties

Let))((DSA  such that,  m

jiji ssAss),(:, . Let in a rigid monotone be

)(AgB  and 1||||  AB . Furthermore, if Bx such that,  m

j xs),(then

),(B forms a sub-lattice chain if }{\ xAB  . Next, the rigidity of monotone is relaxed

such that, nAB  |||| where,
 Znn ,1 . If)(AgB such that,),(B is the only

sub-lattice chain, then BBss ji \,  it is true that ji ss || . Hence, a sub-lattice chain is

formed by the monotone function (.)g .

5.1. Critical State Theorem

If e is a critical state of a distributed computation in monotone spaces then,

)](})({:[)}),({(yegLyeg  .

Proof: Let De be a critical state of a distributed computation in monotone spaces.

Thus, it is valid that,)|(})({  LJeg for the distributed computation. Let LA such

that,)()(ALJ  . However, following implication holds in the distributed computation

under consideration,

)](})({[)]()|([LJegLJLJ  (23)

Moreover, in the distributed computation in monotone spaces satisfying a stable

predicate indicates that following biconditional exists,

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

218 Copyright © 2017 SERSC Australia

)}),({()]|(})({[ egLJeg (24)

Thus, combining the above equations and considering the condition that

)()|(LJLJ  , one can conclude that,

)](})({[)}),({(Aegeg  (25)

Furthermore, in the respective distributed computation in monotone spaces, stable

predicate is satisfied such that,)](})({:[)}),({(yegAyeg  .

Hence,)](})({:[)}),({(yegLyeg  .

Descriptions: If a critical state exists in a distributed computation in monotone spaces

satisfying a stable predicate then, the corresponding consistent cut in lattice is covered by

Birkhoff’s representation.

5.2. Message Passing Theorem

If))((DSA  such that,  m

jiji ssAss),(:, then,

 m

jiji ssAgss),(:)(, .

Proof: Let))((DSA  such that, Ass ji  , where,  m

ji ss),(. However,

)(AgA indicating that,)(},{},{ AgssAss jiji  . Hence,)(, Agss ji  such

that,  m

ji ss),(.

5.3. Metrizability Property

In the proposed model of distributed computing,)(DS represents the set of entire

states of computation by multiple distributed processes. However,)(DS is not directly

metrizable.

The real valued monotonically increasing function
)(: DS along with state

transition function (.)f enforce metrizability of)(DS into)),((sdDS where,

2)(: DSds
 is a distance metric on)(DS . Hence, the definition of (.)sd is given

by,

0))(,(:1,

,0),(),(

|,)()(|),(

),,0[(.),),(







 

i

n

isi

iisi

jijis

sji

sfsdnPp

ssdDSs

ssssd

dZnDSss


 (26)

This indicates that, distributed computing has metrizability property under the

existence of suitable real valued function, where state transitions in a process form a chain

as execution lattice.

Furthermore, if a distributed system is designed and analyzed based on events, then

metrizability becomes easier. Considering
iE be the set of events generated by Ppi 

and 
N

i

iEE
1

 , the corresponding monotone logical clock function is given by

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 219

 ZEr : . The distance metric function })0{(:  ZEEde forms a metrized

computing space in distributed systems by following axioms,

0),(,

|,)()(|),(

),,0[(.),







iiei

jijie

eji

eedEe

erereed

dEee

 (27)

This indicates that, the state-based as well as event-based distributed computing

systems are metrizable if it is equipped with suitable real-valued functions, respectively.

6. Conclusions

The topological models of distributed computation offer a new insight to the inherent

properties of distributed computation. The algebraic topological complexes impose rigid

geometric structures on computing models needing greater flexibility. The enhanced

flexibility facilitates determination of slice and observability of fine-grained control states

of computations. The model of asynchronous distributed computation in metrized

monotone topological spaces allows greater flexibility in designing observable and

controllable distributed computation. The distributed algorithm in metrized monotone

topological spaces can identify the variations in state of control in an asynchronous

distributed computation.

References

[1] M. A. M. Acosta, “Two-Level Software Architecture for Context-Aware Mobile Distributed Systems”,

IEEE Latin America Transactions, vol. 13, issue 4, (2015), pp. 1205 - 1209.

[2] S. Dubois, M. H. Kaaouachi and F. Petit, “Enabling Minimal Dominating Set in Highly Dynamic

Distributed Systems”, 17th International Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS 2015), LNCS 9212, Springer, (2015), pp. 51-66.

[3] P. Fraigniaud, S. Rajsbaum and C. Travers, “Locality and Checkability in Wait-Free Computing”, 25th

International Symposium on Distributed Computing (DISC 2011), Springer LNCS, vol. 6950, (2011),

pp. 333-347.

[4] G. Birkhoff and S. A. Kiss, “A ternary operation in distributive lattices”, Bulletin of the American

Mathematical Society, vol. 53, no. 1, (1947), pp. 749–752.

[5] R. Conde and S. Rajsbaum, “An introduction to topological theory of distributed computing with safe-

consensus”, Electronic Notes in Theoretical Computer Science, Elsevier, vol. 283, (2012), pp. 29-51.

[6] L. Fajstrup, M. Rauben and E. Goubault, “Algebraic topology and concurrency”, Theoretical Computer

Science, vol. 357, Issue 1-3, Elsevier, (2006), pp. 241-278.

[7] S. R. Ghosh and H. Dasgupta, “Connectedness in Monotone Spaces”, Bulletin of the Malaysian

Mathematical Sciences Society, vol. 27, no. 2, (2004), pp. 129-148.

[8] M. Herlihy and N. Shavit, “The topological structure of asynchronous computability”, Journal of ACM,

vol. 46, (1999), pp. 858–923.

[9] M. Saks and F. Zaharoglou, “Wait-free k-set agreement is impossible: The topology of public

knowledge”, SIAM Journal on Computing, vol. 29, issue 5, (2000), pp. 1449–1483.

[10] E. Borowsky and E. Gafni, “A simple algorithmically reasoned characterization of wait-free

computation”, In Proceedings of the sixteenth annual ACM Symp. on Principles of distributed

computing, (1997), pp. 189–198.

[11] M. Herlihy and S. Rajsbaum, “New perspectives in distributed computing”, In Proceedings of the 24th

International Symp. on Mathematical Foundations of Computer Science, LNCS, Springer, vol. 1672,

(1999), pp. 170-186.

[12] G. Hoest and N. Shavit, “Toward a topological characterization of asynchronous complexity”, SIAM

Journal on Computing, vol. 36, no. 2, (2006), pp. 457-497.

[13] E. Borowsky and E. Gafni, “Generalized FLP impossibility result for t-resilient asynchronous

computations”, In Proceedings of the 25th annual ACM Symp. on Theory of computing, ACM, (1993).

[14] S. D. Carson and P. F. Jr. Reynolds, “The geometry of semaphore programs”, ACM Trans.

Programming Languages Systems, ACM, vol. 9, no. 1, (1987), pp. 25–53.

[15] E. Goubault, “Some geometric perspectives in concurrency theory”, Homology Homotopy Appl., vol. 5,

no. 2, (2003), pp. 95–136.

International Journal of Control and Automation

Vol. 10, No. 12 (2017)

220 Copyright © 2017 SERSC Australia

[16] [16] J. Gunawardena, “Homotopy and concurrency”, Bulletin of the EATCS, vol. 54, (1994), pp. 184-

193.

[17] M. A. Armstrong, “Basic topology, Springer-Verlag”, ISBN: 978-1-4757-1793-8, (1983).

[18] E. Goubault and T. P. Jensen, “Homology of higher dimensional automata”, In Proceedings of

CONCUR’92, LNCS, Springer, vol. 630, (1992).

[19] C. H. C. Duarte, “Mathematical Models of Object-Based Distributed Systems”, LNCS, Springer, vol.

7000, (2011), pp. 57-73.

[20] U. Bauer, M. Kerber and J. Reininghaus, “Distributed Computation of Persistent Homology”, In

proceedings of Meeting on Algorithm Engineering and Experiments, SIAM, USA, (2014), pp. 31-38.

[21] M. Herlihy, D. Kozlov and S. Rajsbaum, “Distributed Computing Through Combinatorial Topology”,

Elsevier, ISBN: 978-0-12-404578-1, (2014).

[22] B. Alpern and F. B. Schneider, “Defining liveness”, Information Processing Letters, vol. 21, issue 4,

(1985), pp. 181-185.

[23] A. Zomorodian and G. Carlsson, “Computing persistent homology, Discrete and Computational

Geometry”, vol. 33, issue 2, (2005), pp. 249-274.

[24] H. Edelsbrunner and J. Harer, “Computational topology: An introduction, American Mathematical

Society”, (2010).

[25] V. K. Garg and N. Mittal, “On Slicing a Distributed Computation”, 21st International Conference on

Distributed Computing Systems (ICDCS’01), IEEE, (2001), pp. 322-329.

[26] A. Friday and N. Davies, “Distributed systems support for mobile applications”, IEE Colloquium on

Mobile Computing and its Applications, IEE, DOI: 10.1049/ic: 19951395, (1995).

[27] V. K. Garg and N. Mittal, “Time and State in Asynchronous Distributed Systems”, Wiley Encyclopedia

of Computer Science and Engineering, Wiley, DOI: 10.1002/9780470050118.ecse436, (2008).

[28] F. Kuhn, N. Lynch and R. Oshman, “Distributed Computation in Dynamic Networks”, Proceedings of

the forty-second ACM symposium on Theory of computing (STOC'10), ACM, (2010), pp. 513-522.

[29] T. Soneoka and T. Ibaraki, “Logically Instantaneous Message Passing in Asynchronous Distributed

Systems”, IEEE Transactions on Computers, vol. 43, issue 5, (1994), pp. 513-527.

[30] Y. Li and Y. Lu, “A two-layer cloud database model and its bidirectional conversion algorithms”, 7th

International Conference on Software Engineering and Service Science (ICSESS), IEEE, (2016), pp.

289-294.

[31] J. Lindstrom, “Performance of distributed optimistic concurrency control in real-time databases”, LNCS,

Vol. 3356, Springer, (2004), pp. 243-252.

Author

Susmit Bagchi, he has received B. E.in Electronics

Engineering in 1997, M.E. in Electronics and

Telecommunication Engineering in 1999 and, Ph.D.

(Engineering) in Information Technology in 2008. Currently, he

is Associate Professor in Department of Aerospace and Software

Engineering (Informatics), Gyeongsang National University,

South Korea. His research interests are in Distributed

Computing.

