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Abstract 

A distributed system is essentially a networked system having controlled execution 

under observation. The present day distributed systems require hybridization with 

distributed databases to support heterogeneous data-intensive applications. The control 

of computation of such hybrid geo-distributed systems is difficult in the presence of 

randomly varying network delays and unpredictable occurrence of partitions in network 

topology. In order to gain insight to controllability of a hybrid geo-distributed system and 

to design control algorithm, the formal analytical model of the system is required. In 

general, lattice and algebraic topological concepts are employed to model distributed 

systems, which impose rigid geometric structures. However, flexibility of the model can be 

enhanced in weaker topological spaces. This paper proposes the model of observable 

distributed computation in weaker topological spaces having monotone and metrizability 

properties. A corresponding distributed control algorithm is designed. The distributed 

algorithm can detect various classes of state of control of distributed computation. 

 

Keywords: Distributed computing, monotone, topology, lattice, control algorithm, 
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1. Introduction 

The present day distributed systems encompass peer-to-peer systems as well as mobile 

geo-distributed systems involving heterogeneous networks [1, 26]. A cloud computing 

platform is essentially a hybrid system comprised of geo-distributed systems and 

distributed databases storing massive datasets [30]. In such systems, the multiple server-

groups (SGs) are formed by clustering a set of nodes and the SGs are connected by 

Internet. The nodes in SGs store large datasets and carryout computation. The inter-SG 

and intra-SG nodes coordinate by messages over network. In general, the clusters employ 

data replication of full datasets or partitioned datasets depending upon the requirements of 

a particular application. However, the performance of geo-distributed systems involving 

distributed databases is highly dependent on the concurrency control and stability of 

network topology. The limits of distributed computations and conditions of controllability 

are often required to be formulated in order to avoid waste of computing resources and to 

maintain stability. In order to model observable distributed computation and to design 

associated control algorithm, the formal model of asynchronous distributed computation 

is required [29, 30]. 

In the view of graph theory, a distributed computing system can be modeled as a graph 

having fixed topology if the underlying network is static [2, 28]. The computational 

model of such distributed system involves iterative execution and shared memory [10]. It 

is important to note that, a distributed computation cannot be rigidly synchronized based 

on any global clock due to random network delays [27]. Thus, the observation and control 
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of geo-distributed hybrid systems become more challenging in the presence of 

heterogeneous networks. Interestingly, the concepts of algebraic topology can be applied 

to model distributed computation [5, 6, 9]. However, the traditional algebraic topological 

models of distributed computation impose rigid geometric structures on computation 

reducing flexibility. A model with enhanced flexibility is required to design and analyze 

observability and controllability of geo-distributed computing systems in heterogeneous 

environments. The monotone space is a generalized weaker form of topological spaces 

[7]. Hence, the applications of monotone spaces with metrizability property in modeling 

controllability of distributed systems are promising approach. This paper proposes the 

design and analysis of observable and controllable distributed computation within weaker 

(monotone) topological spaces. The metrizability of the computing space is analyzed. A 

distributed algorithm is designed to control the respective distributed computation. This 

paper presents a set of axiomatic and analytical properties of the stronger and weaker 

forms of observable states of control of a distributed computation.  

 

1.1. Motivation 

The observation and control of hybrid geo-distributed computations are the essential 

requirements to maintain data consistency under replication, concurrency as well as 

asynchrony [31]. The observation and control of computing states of large scale 

distributed systems require formal models [27, 30, 31]. Traditionally, the graph theory 

and relational algebra are employed to model distributed computation and databases. 

However, the modular graphs and relational algebraic models do not adequately formalize 

observability and control of a hybrid geo-distributed computing in the presence of 

heterogeneous network, dynamic topology and, stability of nodes. The hybrid geo-

distributed computation is essentially asynchronous in nature [27, 29]. The formal models 

of asynchronous distributed systems are constructed by employing algebraic topology and 

homotopy theory [5, 6, 10, 15]. The algebraic topological models impose a set of very 

rigid and fixed geometric structures, whereas a more flexible structure would benefit the 

modeling of asynchronous distributed systems exposing finer states of control. The 

formulation of computational model in monotone spaces would enhance structural 

flexibility. The metrizability of such space would enhance the observability of control 

states in topological spaces. This paper proposes the model of observable and controllable 

asynchronous distributed computation in metrized monotone topological spaces. The 

axiomatic determinations of observable and controllable distributed computation in 

monotone spaces are formulated. The main contributions of this paper are as follows.  

 

 Formulation of an observable and controllable model of distributed computations in 

metrized monotone topological spaces. 

 Formulation of a distributed algorithm to identify computational states in weaker 

topological spaces. 

 Analysis of metrizability and convergence properties of distributed computational 

space. 

Rest of the paper is organized as follows. Section 2 represents related work. Section 3 

presents formulation of model of asynchronous distributed computation in monotone 

topological spaces. Section 4 describes designing of monotone slicer and control 

algorithm of asynchronous distributed computation in monotone spaces. Section 5 

illustrates analytical properties of the model. Finally, Section 6 concludes the paper. 
 

2. Related Work 

The applications of large scale distributed systems are ranging from cloud computing 

platforms to distributed embedded systems. In recent times, the distributed systems 
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having hybrid architecture have emerged involving wireless network based mobile 

platforms [1]. Traditionally, the distributed computing systems are modeled by employing 

discrete structural elements with assumptions that network topology is static [25]. 

However, the hybrid distributed systems are dependent on dynamic network topology, 

which are modeled by using dynamic graphs [28]. 

In recent time growing number of attempts are made to apply the concepts of algebraic 

and combinatorial topology to model and analyze distributed computing systems. The 

concepts of algebraic topology theory are employed to model and analyze synchronous as 

well as asynchronous distributed computing systems [3, 11, 21]. The structures of 

algebraic topology deal with higher dimensional geometrical objects resulting in the 

formation of higher dimensional automata representing concurrent computation [17, 18, 

24]. In general, the algebraic topological objects form simplicial complexes to model 

distributed processes and protocols [8, 21]. The connectivity properties of higher-

dimensional topological objects are employed to model and analyze the computability 

issues in distributed computing systems [11, 13]. The modeling and analysis of distributed 

systems employing asynchronous iterated shared memory (DSM) model are formulated 

utilizing combinatorial algebraic topological concepts [5, 10]. Furthermore, the concepts 

of persistent homology are employed to formulate the model of distributed computation in 

topological spaces [20, 23]. Researchers have proposed to employ homotopy theory to 

model the complexity of mutual exclusion involving concurrently executing programs [6, 

16]. Interestingly, the stability properties of distributed concurrent processes can be 

analyzed by applying homotopy theory [15]. It is illustrated that, the semaphore objects 

(for mutual exclusions) can be formed in topological spaces having partial ordering and, it 

can be extended to analyze deadlock and serializability properties of concurrent processes 

[14]. However, the application of homotopy theory cannot be made in distributed systems 

without considering directional property. This is because the general homotopy does not 

prevent reversal of time in a computing system.     

Often, the distributed computing systems require iterative computation of immediate 

snapshot. The topology theory is employed to compute the time complexity bounds of 

determining approximate agreement in iterated immediate snapshot model [12]. 

Interestingly, the simplicial complexes can be reduced to manifolds in case of immediate 

snapshot model in order to reduce structural complexities [13]. However, generally the 

topological structures are very complex having rigid structural geometries. Following the 

combinatorial computing approach, distributed systems are modeled in combinatorial 

topological spaces. In such cases, the combinatorial relations in topological spaces are 

defined to construct the model of asynchronous processes having wait-free computation 

[8]. These combinatorial relations are in static form without considering the interleaving 

computations in distributed systems. The object-oriented distributed systems are a class of 

designing distributed systems. The characterizations of object-based distributed systems 

are formulated by using topological structures [19]. The modeling of liveness and safety 

properties of concurrency in distributed systems are constructed by employing concepts of 

topological spaces [22].    
 

3. Distributed Computation in Monotone Spaces  

The simplicial complexes are the higher-dimensional objects analogous to structures of 

graphs representing the distributed processes [5, 6, 8]. Following the concepts of algebraic 

topological spaces, simplicial complexes are }0:{  ZnnwW nC  where, 
nw  is 

simplex and 
CW  is finite having properties: 

CmnCmnCmn WwwWwwWww  ,,, .  A simplicial map between simplexes 

(
1cW  and 

2cW ) is given by, 
21: cc WW  .  
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Let W  be a point set and, )(W  is power set. If )()(: WWg   is considered to 

be a monotone function such that, )(),(,)( AgAWAg   and, 

)()(),(, FgAgFAWFA   then, ),( gW  is a monotone space. Any 

arbitrary intersections of closed sets in monotone spaces are closed. 

 

3.1. Construction of Model 

Let a distributed computation be symbolically represented as D  comprised of a set of 

distributed processes given by }1:{  ZjNjpP j . All the distributed 

processes are considered as finite state machines and a process 
jp  has a set of 

deterministic execution states denoted by
jS , where 

jS .  Hence, D  can be identified 

by, 


N

j

jSDS
1

)(


                      (1) 

The distributed processes execute as state machines with inter-process communications 

and as a result state transitions occur in a process. Considering the processing of inputs to 

a process is the internal computation, the overall global dynamics of a set of processes 

can be modeled by using a simplified and system-wide state transition function defined as, 

  
}{\)(

),()(:

jjj
sSSsf

DSDSf

j 


                      (2) 

The distributed computation is considered to be deterministic if the system-wide state 

transition function is having convergence property within global state-space. Thus the 

overall system dynamics converge to a state-space and such converging space of D  is 

defined as,  

  






)(

,)(
1

DS

SDS
N

j

j
              (3) 

The set of all possible cuts on distributed computation D  is denoted by 

))(()( DSDC 
, where (.) generates power set. The set of boundary elements 

j
B  

of a process 
j

p  is defined as, Pp j  ,  

)()( DSSBf jj          (4) 

The concept of boundary elements represents the recognition of regions of 

convergences in state-space of a distributed computation.  If 
j

SBj   then a computation 

in D  is defined as, 

)(\)(
1


N

j

j
BfDSD



         (5) 

This indicates that, the executions in a distributed computation consider global states 

excluding the convergent region. However, it includes the boundary state-space.  

A monotone space over D  is ),( gD  having following properties: 
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)()(),(,

),(),(

,)(

),()(:

BgAgBADBA

AgADA

g

DDg










                     (6) 

This definition represents the monotone property of a distributed computation and the 

mapping of structural forms within the state-space of distributed computation under 

consideration. 

 

3.2. Inter-process Communication  

The set of distributed processes communicates through messages over the network in 

order to maintain synchrony and coordination. A partial ordering relation ( m
), 

representing message passing, is defined in global state-space of the respective distributed 

system by following axioms (where 
1is  and 

1is  denote previous/next states of 
ip  

before/after state 
is  due to state transition, respectively), 

 

)]([)]([]),(),[(

],),[(]),[(:,

),()(:,

1111 jjii

m

ij

m

ji

m

ij

m

jijjii

ijji

m

ji

sfssfsssss

ssssSsSs

SSSSPpp









 (7) 

 

A relation 
2)(|| DS  between any two states within state-space of the distributed 

computation under consideration is defined by following axioms, 

 

)||()||(

],),(:[)||(

],),[(]),[()||(

)),(())((:)(),(:

11

1111

ijji

m

ijjji

m

ij

m

jiji

iiiiiii

ssss

ssBsss

ssssss

sfssfsDSBsDSAsPp













 (8) 

 

Thus, the relation ||  maintains the consistency of cuts in execution state-space of 

distributed processes by following traditional concepts of consistent cuts [25].   

 

3.3. Convergence of Global Transition Function 

Let, (.), fi iPp   such that, iif SSi :  and, (S(D)))( fSi if  . The distributed 

computation is stable and deterministic if (.)f  is convergent transition function 

satisfying following axioms, where ))(()(2

iffi

o

f siisi  , 

)()(

),,1(

,,,

DSsi

n

SsZnPp

i

on

f

i

iiii

i 



 

       (9) 
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If ])()()([])([:, DSsDSsfssiSssPp ii

on

fiii
i    then, the 

global transition function is a discrete variety of Banach contraction map with finite 

ending. 

 

4. Consistent Slicing and Control of Computation 

In this section, the model of consistent slicing of distributed computation in monotone 

spaces is formulated. Furthermore, the axiomatic determination of controllability of a 

distributed computation is presented. 

 

4.1. Monotone Slicing Model 

In order to formulate an observable distributed computation, it is necessary to restrict 

the dynamics of distributed computation in monotone topological spaces. Let )(DA
j
  

and )(
jj

AgA  . Set of cuts )(DCC   in D  for |)(| DK   is given by, 


K

j

j
AgC

1

)}({


  such that, NcCc  ||,  and, ][],:[,, vuSySxcyxyxPpp vuvu  . 

Hence, a cut is comprised of states of processes spanning the entire set of processes in the 

distributed system in monotone spaces. Each element in a set of cuts is not consistent and, 

the consistency is formed by using lattice model. The set of consistent cuts forms a lattice 

),( L  in D where, CL  and, )]||([, yxcyxLc  . A set of lattice join-

irreducible elements of L is given by, LLJ )( . A distributed computation in monotone 

topological spaces is consistent if the run R  in D is defined as a sequence given below 

where, )(, DAA mk   such that, ))(),(( mk AgAg   and, 1 km , 

 

 ,.....2,1,0),(: kDAAR kk       (10) 

 

Let X  be a set of Boolean observation variables given by, 

}}1,0{:{  

nn xZnxX . The predicate }1,0{)|(  cX  is assumed to be 

computable at cut-state  Cc  in the corresponding distributed system. Thus, the slice of 

a distributed computation is defined as, 

))}(()1)|((:{)|( LJccXcLJ       (11) 

The lean slice of a distributed computation is )}|(:{  LJccl where, 1|| l . A 

state e is called critical state if )(}{ De   and, })({egl  . The elements of 

(.)g satisfying stable Boolean predicate (.) in a valid distributed computation are 

verified by, 

)]1))(|(())(())([()),((  xgXLxgDxxg    (12) 

Hence, the set of consistent and stable executions in a distributed computation can be 

found if the corresponding sequences of executions satisfy Equation (12). The Birkhoff’s 

representation theorem formalizes corresponding lattice isomorphism structure [4]. It is 

possible to incorporate the Birkhoff’s lattice isomorphism in the monotone slicing model 

by maintaining following axiom, 

))}(()),((:{)(

,:

LJxcxxLc

CL








     (13) 
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Thus, the proposed model of computation preserves Birkhoff’s representation theorem 

within the corresponding space of distributed computation. 

 

4.2. Controllability of Computation 

The determination of controllability of computation in monotone spaces requires 

observation of control states within topological spaces. It is denoted earlier that X  is a 

set of observation variables given by, }}1,0{:{  

nn xZnxX  and, let NX || . 

The elements of the set are assigned to different distributed processes such that,  

},:{ XxPpxX jjj  . Let 
jE  be a set of local events of Pp j   and, 

N

j

jEE
1

 . 

Furthermore, let }1,0{),(  jj Ex  be a Boolean predicate (local to a process) defined 

over 
jx  considering local set of events of the respective process in the distributed system 

under consideration. The integer valued function 
 Z: Er  imposes a total order of 

execution of events within the processes (locally). Let jyjxj Eee  ,  such that, 

)()( yjxj erer   then, the following axiomatic implications determine stable and consistent 

observation of ),( jj Ex , 

 

)0),(())0),(()0),(((

),1),(())1),(()1),(((

:)](),([)(,







zjjyjjxjj

zjjyjjxjj

yjxjjzjj

exexex

exexex

ererEerPp

   (14) 

 

The events satisfying Equation (14) in the processes are denoted by, 

 yjxjj eePp ,: . Furthermore, the segregated events for respective processes are 

computed as, },:{},,:{:  yjxjyjyjxjxjj eeeTeeeQPp . The anti-symmetric 

ordering relation R  is defined over TQR   such that, 

 

)()(),(

:

jyjixiyjxi

ji

EeEeRee

Ppp




                (15) 

 

The set of all possible combinatorial execution sequences in the distributed 

computation under consideration can be counted by permutation !n  where, || En  . On 

the contrary, every combinatorial execution sequences are not feasible exhaustively due to 

data-dependency between distributed processes. Let, the exhaustive and possible 

combinatorial sequences of executions for each process be computed as a finite set of 

permutations denoted by, )( jm  where mj EEEEjm  ......)( 21 . Hence, the 

entire combinatorial space of execution sequences in the distributed computation is 

computed as,  


N

j

jmU
1

)(


   where, Nm         (16) 
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The function recognizing the relation within a combinatorial sequence of execution is 

defined as, }{\)(:  RUg  . Thus, the filtered set of combinatorial executions (i.e. 

consistent set of combinatorial executions of processes) is given by, 

 

})(:{ RuUuuU gP         (17) 

It is important to note that, all combinatorial executions in Equation (17) may not be 

always controllable and a stronger axiom is required. The stronger axiomatic form for 

observing controllability of a distributed computation in the combinatorial execution-

space can be formulated as, 

 

)1),(()1),((:),(:)(

),(:





yjjxiiyjxiAS

gP

exexAeeuC

uAUu 
   (18) 

 

Hence, the set of all strongly observable and controllable combinatorial distributed 

computations is derived as, 

 

)}(:{ uCUuuU ASPPS        (19) 

 

However, the consistent observation and controllability of a distributed computation 

can be relaxed to a weaker form given by following axiom, 

 

)1),(()1),((:),(:)(

),(:





yjjxiiyjxiAW

gP

exexAeeuC

uAUu 
   (20) 

 

The corresponding weakly observable and controllable distributed computation is 

given by, 

)}(:{ uCUuuU AWPPW       (21) 

If the Boolean predicate evaluation function (.)  denotes the mutual exclusion 

detection on a shared data then, the consistency property can be maintained by refining 

the controllability axiom as, 

),(),(:),( yjjxiiyjxi exexAee       (22) 

Hence, the axiomatic determination of different degrees of observation and 

controllability of sliceable distributed computations can be measured and, the safety 

property of distributed mutual exclusion can be maintained in monotone space. 
 

4.3. The Control Algorithm 

The state of control of an asynchronous distributed computation can be algorithmically 

determined by following the strong and weak forms of axioms. The pseudo code 

representation of the algorithm in simplified form for observing the state of control of an 

asynchronous distributed computation is presented in Figure 1.   
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Figure 1. Algorithm for Observing State of Control 

 Each process in a system maintains a local vector storing the instantaneous values of 

distributed Boolean variables associated to the processes. The initial control states are 

marked as false by the processes. The distributed processes compute while generating or 

absorbing events in the system and, during computation the value of variables may 

change depending on the conditions such as, event ordering.  

A process determines the intervals for observing stable predicate and, in the end of 

such interval it sends the value of the predicate evaluation of associated variable to other 

processes. On receiving the values of the predicate from other distributed processes, a 

process will determine the global state of control in the system. The state of control can be 

strong or weak depending upon the values of predicate as evaluated by distributed 

processes. The message complexity of the algorithm is O(N2), because each process has to 

share the local values to other processes in the distributed system under consideration.   

 

5. Analytical Properties 

Let ))(( DSA   such that,  m

jiji ssAss ),(:, . Let in a rigid monotone be 

)(AgB   and 1||||  AB . Furthermore, if Bx  such that,  m

j xs ),(  then 

),( B  forms a sub-lattice chain if }{\ xAB  . Next, the rigidity of monotone is relaxed 

such that, nAB  ||||  where, 
 Znn ,1 . If )(AgB  such that, ),( B  is the only 

sub-lattice chain, then BBss ji \,   it is true that ji ss || . Hence, a sub-lattice chain is 

formed by the monotone function (.)g . 

 

5.1. Critical State Theorem 

If e  is a critical state of a distributed computation in monotone spaces then, 

)](})({:[)}),({( yegLyeg  . 

Proof: Let De  be a critical state of a distributed computation in monotone spaces. 

Thus, it is valid that, )|(})({  LJeg  for the distributed computation. Let LA such 

that, )()( ALJ  . However, following implication holds in the distributed computation 

under consideration, 

)](})({[)]()|([ LJegLJLJ       (23) 

Moreover, in the distributed computation in monotone spaces satisfying a stable 

predicate indicates that following biconditional exists, 
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)}),({()]|(})({[  egLJeg        (24) 

Thus, combining the above equations and considering the condition that 

)()|( LJLJ  , one can conclude that, 

)](})({[)}),({( Aegeg        (25) 

Furthermore, in the respective distributed computation in monotone spaces, stable 

predicate is satisfied such that, )](})({:[)}),({( yegAyeg  .  

Hence, )](})({:[)}),({( yegLyeg  .  

Descriptions: If a critical state exists in a distributed computation in monotone spaces 

satisfying a stable predicate then, the corresponding consistent cut in lattice is covered by 

Birkhoff’s representation.  

 

5.2. Message Passing Theorem 

If ))(( DSA   such that,  m

jiji ssAss ),(:,  then, 

 m

jiji ssAgss ),(:)(, . 

 

Proof: Let ))(( DSA   such that, Ass ji  ,  where,  m

ji ss ),( . However, 

)(AgA  indicating that, )(},{},{ AgssAss jiji  . Hence, )(, Agss ji   such 

that,  m

ji ss ),( .  

 

5.3. Metrizability Property 

In the proposed model of distributed computing, )(DS  represents the set of entire 

states of computation by multiple distributed processes. However, )(DS  is not directly 

metrizable.  

The real valued monotonically increasing function 
)(: DS  along with state 

transition function (.)f  enforce metrizability of )(DS  into )),(( sdDS  where, 

2)(: DSds
 is a distance metric on )(DS . Hence, the definition of (.)sd  is given 

by,  

 

0))(,(:1,

,0),(),(

|,)()(|),(

),,0[(.),),(







 

i

n

isi

iisi

jijis

sji

sfsdnPp

ssdDSs

ssssd

dZnDSss


     (26) 

 

This indicates that, distributed computing has metrizability property under the 

existence of suitable real valued function, where state transitions in a process form a chain 

as execution lattice. 

Furthermore, if a distributed system is designed and analyzed based on events, then 

metrizability becomes easier. Considering  
iE  be the set of events generated by Ppi   

and 
N

i

iEE
1

 , the corresponding monotone logical clock function is given by 
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 ZEr : . The distance metric function })0{(:  ZEEde  forms a metrized 

computing space in distributed systems by following axioms, 

 

0),(,

|,)()(|),(

),,0[(.),







iiei

jijie

eji

eedEe

erereed

dEee

       (27) 

 

This indicates that, the state-based as well as event-based distributed computing 

systems are metrizable if it is equipped with suitable real-valued functions, respectively. 

 

6. Conclusions 

The topological models of distributed computation offer a new insight to the inherent 

properties of distributed computation. The algebraic topological complexes impose rigid 

geometric structures on computing models needing greater flexibility. The enhanced 

flexibility facilitates determination of slice and observability of fine-grained control states 

of computations. The model of asynchronous distributed computation in metrized 

monotone topological spaces allows greater flexibility in designing observable and 

controllable distributed computation. The distributed algorithm in metrized monotone 

topological spaces can identify the variations in state of control in an asynchronous 

distributed computation.   
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