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Abstract 

In this paper, a model reduction method for high-order multivariable aircraft system is 

presented based on the fast Haar transform algorithm. The transfer function is one of the 

important factors that determine the characteristics of a system. This transfer function of 

the MIMO (Multiple Inputs and Multiple Outputs) system is easily derived from the SISO 

system. However, a transfer function of the MIMO system often contains high order and 

has little effect on the system response. Thus, it is desirable to find a reduced model from 

a given high-order MIMO system. Therefore the analysis and design effort can be 

reduced. The Haar function set forms a complete set of orthogonal rectangular functions 

similar in several respects to the Walsh functions. If factorization algorithm is employed 

to the conventional Haar transform then the fast Haar transform can be obtained. The 

model reduction method adopted in this paper is that of system approximation algorithm 

using the fast Haar transform. This approach provides more convenient and efficient 

results. 
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1. Introduction 

Related to the transfer function, it can be obtained by the Laplace transform of the 

differential equations and the characteristic equation of system are defined by setting the 

denominator polynomial of the transfer function to zero. The addition of poles and zeros 

or cancellation of undesirable poles and zeros of the transfer function are often necessary 

to achieve satisfactory analysis and design of the control system. It is important to 

determine the poles that have an important effect on the system response. However, high-

order transfer function system open has insignificant poles that have little effect on the 

system performance and response. In this case, less significant poles can be disregarded 

and the system can be approximated as a low-order system. Therefore, in this reduced 

model by neglecting the less important poles case, the time domain response that is based 

on the characteristic equation of control system shows dynamic properties similar to those 

of the original high-order system. Therefore, simplification and reduction of high-order 

system are among the major concerns in the system analysis and design. In the present 

paper, fast Haar functions and transform that were described by Alfred Haar are used for 

model reduction design of the aircraft MIMO system. The fast transform has the 

advantage of faster processing speed than the general transform method. The algorithm 

and method proposed in this paper are useful for system approximation and reduction and 
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the results are accurate and convenient. 

 

2. Haar Functions 

The Haar functions form an orthogonal and orthonormal system of periodic square 

waves. The amplitude value of these square waves does not have uniform values, but 

assume a limited set of values, 0,±1,±√2 etc [1]. If we consider the time base to be 

defined as 0 ≤ t ≤ 1 then, the set of Haar functions can be described as follows: 

 

𝐻𝑎𝑟(0, 𝑡) = 1    𝑓𝑜𝑟  0 ≤ 𝑡 ≤ 1                                 (1) 

𝐻𝑎𝑟(1, 𝑡) = {
  1    𝑓𝑜𝑟  0 ≤ 𝑡 ≤

1

2

−1    𝑓𝑜𝑟  
1

2
≤ 𝑡 ≤ 1

                              

𝐻𝑎𝑟(2, 𝑡) =

{
 
 

 
   √2    𝑓𝑜𝑟  0 ≤ 𝑡 ≤

1

4

−√2    𝑓𝑜𝑟  
1

4
≤ 𝑡 ≤

1

2

  0    𝑓𝑜𝑟  
1

2
≤ 𝑡 ≤ 1 

   :    

𝐻𝑎𝑟(𝑖, 𝑡) =

{
 

 √2𝑝     𝑓𝑜𝑟    
𝑛

2𝑝
≤ 𝑡 ≤

𝑛+
1

2

2𝑝
                          

−√2𝑝    𝑓𝑜𝑟  (𝑛 +
1

2
)/2𝑝 ≤ 𝑡 ≤ (𝑛 + 1)/2𝑝  

0                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                         

 (2) 

 

where i=2𝑝 + 𝑛 , 𝑝 = 0, 1, 2, … . , 𝑙𝑜𝑔2
𝑚

2
 and  𝑛 = 0, 1, … , 2𝑝 − 1. In Figure 1, the 

first eight Haar functions are shown. 

 

 

Figure 1. The First Eight Haar Functions 
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3. General Haar Operational Matrix and Transform 

The integration of the Haar functions with respect to time t form a ramp and triangular 

waveforms. And it is related approximately to the Haar functions operational matrix itself. 

We can describe the Haar operational matrix P in a mathematical form [2][3]. The 

subscript in Eq. (4) means dimension of square matrix P. In this case for example the P(4x4) 

is shown in Eq. (5). 

 ∫ 𝐻(𝑖, 𝜏 )𝑑𝜏 ≅ 𝑃𝐻(𝑖, 𝑡)
𝑡

0
                                       (3) 

 

𝑃(𝑚×𝑚) = [

𝑃
(
𝑚

2
×
𝑚

2
)

−
1

√2
𝑚

−3

2 𝐻
(
𝑚

2
×
𝑚

2
)

1

√2
𝑚

−3

2 𝐻𝑇
(
𝑚

2
×
𝑚

2
)

0
(
𝑚

2
×
𝑚

2
)

]                       (4) 

 

𝑃(4x4) =

[
 
 
 
 
 
 1

2⁄  −1 4⁄

1
4⁄ 0

−√2
16
⁄ −√2

16
⁄

√2
16
⁄ −√2

16
⁄

√2
16
⁄ −√2

16
⁄

√2
16
⁄ √2

16
⁄

0            0
0            0

]
 
 
 
 
 
 

                      (5) 

 

A function f(t) is absolutely integral in t∈[0, 1), then it can be expanded in an infinite 

series using Haar transform. 

 

𝑓(𝑡) = 𝑓0𝐻0(𝑡) + 𝑓1𝐻1(𝑡) + ⋯ = ∑ 𝑓𝑖𝐻𝑖(𝑡) 
∞
𝑖=0                        (6) 

                                                                                

where fi is the ith sequentially ordered coefficient of the Haar functions expansion of 

function f(t) and Hi(t) is the ith ordered Haar functions. The coefficient of the Haar 

functions expansion is given in Eq. (7). To obtain the coefficients of Haar transform, the 

mean square error 𝜀 must be minimized [4]. 

 

𝑓𝑖 = ∫ 𝑓(𝑡)𝐻(𝑖, 𝑡)𝑑𝑡  
1

0
                                           (7) 

 

𝜀 = ∫ [𝑓(𝑡) − ∑ 𝑓𝑖𝐻(𝑖, 𝑡)]
2𝑑𝑡𝑚−1

𝑖=0
1

0
                                   (8) 

 

If f(t)=t2, then f(t) can be expressed using Haar operational matrix P, we can get 

approximated f(t) from Eq. (9) and Figure 2. 

𝑓(𝑡) = 2∫ 𝑓𝑖𝐻𝑖(𝜏)𝑑𝜏
𝑡

0
   

         = 0.3359𝐻0(𝑡) − 0.25𝐻1(𝑡) − 0.0442𝐻2(𝑡) − 0.1326𝐻3(𝑡)  

−0.0078𝐻4(𝑡) − 0.023𝐻5(𝑡) − 0.039𝐻6(𝑡) − 0.0547𝐻7(𝑡)          (9) 
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Figure 2. Haar Transform of f(t)=t2 with Operational Matrix P 

4. Fast Haar Transform Algorithm 

Due to its computational simplicity, the fast Haar transform algorithm yields the fastest 

linear transform. This transform method is particularly valuable for a large system to have 

multiple inputs and outputs [5]. The computational signal flow graph for 8 points fast 

Haar transform is shown in Figure 3. Since the operational matrix of fast Haar transform 

is not symmetrical, the inverse fast Haar transform is required Figure 4. In Figure 4, the 

solid lines show addition and the dotted lines show subtraction at each point.  

 

 

Figure 3. Computational Signal Flow Graph of the Fast Haar Transform with 
n=8 
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Figure 4. Computational Signal Flow Graph of the Inverse Fast Haar 
Transform with n=8 

Multiplication of the sum or differences by 1 or √2 is indicated in the graph. It can be 

seen that, in each step of the calculation, half the points require no further calculation [6]. 

The total number of addition and subtraction can be stated as Eq. (10). The transform time 

is depends on the number of terms N. The fast Haar transform has less complicated 

computational lines as compared to the general Haar transform. Therefore, the fast Haar 

transform is better than the general Haar transform in terms of computational time and 

efficiency. 

𝑁 +
𝑁

2
+
𝑁

4
+⋯+ 2 = 2(𝑁 − 1)                                 (10) 

Although the fast Haar transform algorithm has the fastest computation advantage, it 

may not be the most desirable, because the transform process is accomplished by means 

of a structured system. This system hardware for transform and calculation depends on 

processor hardware and computational logic. Many real time applications, particularly 

those concerned with structured system or processor hardware require special purpose 

hardware either to accomplish the required operating speed or to accomplish system 

efficiency. Hybrid transform which combines the advantages of the Haar and Walsh 

transform has been developed by Rao as shown in Figure 5 [7].  
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Figure 5. Computational Signal Flow Graph of the Haar and Walsh 
Transform 

5. Model Reduction Design of High-Order MIMO System 

In general, a linear time invariant control system can be modeled mathematically using 

the transfer function derived from a differential equation. The transfer function is used for 

the analysis of the control system. For examples, even though controllability and 

observability are concepts and tools of the modern control theory, they are closely related 

to classical properties of the transfer function. The transfer function is also widely used in 

electric network systems, mechanical systems and electrical systems. This transfer 

function G(s) is related to the Laplace transform of the system input and output. The 

definition of the transfer function is easily extended to a system with multiple inputs and 

outputs that is called MIMO or a multivariable system [8]. In a MIMO system, a 

differential equation of the form of Eq. (11) may be used to describe the relationship 

between a pair of input and output variables [9].  

 
𝑑𝑛𝑦(𝑡)

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦(𝑡)

𝑑𝑡𝑛−1
+⋯+ 𝑎1

𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑎0𝑦(𝑡)  

 

= 𝑏𝑚
𝑑𝑚𝑦(𝑡)

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑦(𝑡)

𝑑𝑡𝑚−1
+⋯+ 𝑏1

𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑏0𝑦(𝑡)                (11) 

 

Figure 6 shows, the block diagram representation of a multivariable system with p 

inputs and q outputs. 
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Figure 6. Block Diagram Representation of a Multivariable System 

Normally, this MIMO system transfer function with p inputs and q outputs is expressed 

in matrix form GM(𝑠).  

 

𝐺𝑀(𝑠) =

[
 
 
 
𝐺11(𝑠) 𝐺12(𝑠)
𝐺21(𝑠) 𝐺22(𝑠)

⋯ 𝐺1𝑝(𝑠)

⋯ 𝐺2𝑝(𝑠)

⋮ ⋮
𝐺𝑞1(𝑠) 𝐺𝑞2(𝑠)

⋯ ⋮
⋯ 𝐺𝑞𝑝(𝑠)]

 
 
 

                            (12) 

The model reduction design is based on the theory that the frequency responses of high 

and low order system must be similar. Let the high order transfer function be written by 

Eq. (13) and the transfer function of the approximating low order be represented by Eq. 

(14). 

𝐺𝑖𝑗(s) = 𝑘
1+𝑎1𝑠+𝑎2𝑠

2+⋯+𝑎𝑚𝑠
𝑚

1+𝑏1𝑠+𝑏2𝑠
2+⋯+𝑎𝑛𝑠

𝑛                                     (13) 

𝐺𝑖𝑗(s) = 𝑘
1+𝑐1𝑠+𝑐2𝑠

2+⋯+𝑐𝑞𝑠
𝑞

1+𝑑1+𝑑2𝑠
2+⋯+𝑑𝑝𝑠

𝑝                                     (14) 

 

where n≥m, n≥p≥q. When s=jw is applied to above equations, thus we can obtain Eq. 

(15) and (16) respectively. 

 

𝐺𝑖𝑗(𝑗𝑤) = 𝑘
(1−𝑎2𝜔

2+𝑎4𝜔
4−⋯)

(1−𝑏2𝜔
2+𝑏4𝜔

4−⋯)
+
𝑗𝑤(𝑎1−𝑎3𝜔

2+𝑎5𝜔
4−⋯)

𝑗𝑤(𝑏1−𝑏3𝜔
2+𝑏5𝜔

4−⋯)
= 𝑘

𝛼(𝑤)+𝑗𝑤𝛽(𝑤)

𝛾(𝑤)+𝑗𝑤𝛿(𝑤)
    (15) 

 

 

𝐺𝑖𝑗(𝑗𝑤) = 𝑘
(1−𝑐2𝜔

2+𝑐𝜔4−⋯)

(1−𝑑2𝜔
2+𝑑4𝜔

4−⋯)
+

𝑗𝑤(𝑐1−𝑐3𝜔
2+𝑐5𝜔

4−⋯)

𝑗𝑤(𝑑1−𝑑3𝜔
2+𝑑5𝜔

4−⋯)
= 𝑘

𝛼̂(𝑤)+𝑗𝑤𝛽̂(𝑤)

𝛾̂(𝑤)+𝑗𝑤𝛿̂(𝑤)
         (16) 

 

The zero frequency gain k of the two transfer functions is the same. Thus, we can 

obtain the similar relationship of Eq. (17) to determine the unknown low order Ĝij(s) from 

the original high order Gij(s) [10]. 

 

|𝐺𝑖𝑗(𝑗𝑤)|
2
= |𝐺𝑖𝑗(𝑗𝑤)|

2
= 1    𝑓𝑜𝑟 0 ≤ 𝜔 ≤ ∞                    (17) 
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This similarity condition means that the amplitude characteristics of the two systems in 

the frequency domain and the time responses of the two systems are similar. Then, we can 

obtain approximating solutions for the low-order transfer function by meeting the 

similarity condition. We can apply the fast Haar transform to the high and low order 

MIMO system transfer function Gij(s) and Ĝij(s). We can also approximate high- order 

transfer function as low-order transfer function Ĝij(s) based on the similarity condition 

and the fast Haar transforming algorithm [11]. Now we can express Eq. (16) as follows 

and apply the fast Haar transform to determine the coefficients.  

𝛼̂(𝑤) = ∑ 𝛼̂𝑖𝐹𝐻𝑖(𝑤), 𝛼̂𝑖 = ∫ 𝛼(𝑤)𝐹𝐻𝑖(𝑡)𝑑𝑡
1

0
𝑛−1
𝑖=0                      (18) 

 

𝛽̂(w) = ∑ 𝛽̂𝑖𝐹𝐻𝑖(𝑤), 𝛽̂𝑖 = ∫ 𝛽(𝑤)𝐹𝐻𝑖(𝑡)𝑑𝑡
1

0
𝑛−1
𝑖=0                      (19) 

 

𝛾(w) = ∑ 𝛾𝑖𝐹𝐻𝑖(𝑤),   𝛾𝑖 = ∫ 𝛾(𝑤)𝐹𝐻𝑖(𝑡)𝑑𝑡
1

0
𝑛−1
𝑖=0                      (20) 

 

𝛿(w) = ∑ 𝛿𝑖𝐹𝐻𝑖(𝑤), 𝛿𝑖 = ∫ 𝛿(𝑤)𝐹𝐻𝑖(𝑡)𝑑𝑡
1

0
𝑛−1
𝑖=0                      (21) 

 

Therefore, we can define the coefficients of low-order transfer function Ĝij(s) from the 

original high-order MIMO system using the fast Haar transform. This method is useful 

and convenient for simplification design of the high-order MIMO system.   

 

6. Simulation 

Examples of MIMO systems can be found in a variety fields and plentiful practice. For 

example, in an automobile engine system there are two inputs of steering and accelerator, 

and two outputs of heading and speed. These two controls and two outputs are mutually 

independent. Another example is an aircraft turbo propeller engine shown in Figure 7 [9]. 

In this case, inputs are the fuel rate and the propeller blade angle and outputs are the speed 

of rotation of engine and the turbine inlet temperature.     

 

 

Figure 7. Aircraft Turbo Propeller Engine 

Let u’s consider the forward path transfer function matrix and feedback path matrix of 

the MIMO system. 
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𝑌1(s) = 𝐺11(𝑠)𝑅1(𝑠) + 𝐺12(𝑠)𝑅2(𝑠)                              (22) 

 

𝑌2(s) = 𝐺21(𝑠)𝑅1(𝑠) + 𝐺22(𝑠)𝑅2(𝑠)                              (23) 

 

where Y1(s) is the speed of rotation of engine, Y2(s) is the turbine inlet temperature, R1(s) 

is the fuel rate and R2(s) is the propeller blade angle. Thus this engine system is a MIMO 

system with two inputs and outputs. In this case, G11(s) is the transfer function between 

the fuel rate and speed of rotation of engine with the propeller blade angle R2(s) is zero 

and G22(s) is the transfer function between the propeller blade angle and turbine inlet 

temperature. The high-order transfer function for this MIMO aircraft turbo propeller 

engine system can be written as shown in Eq. (24). 

 

𝐺𝑀(s) = [
𝐺11 𝐺12
𝐺21 𝐺22

] = [

7

𝑠3+1.2𝑠2+11.8𝑠+7

1

𝑠+2
2

3𝑠+2

5

𝑠3+5𝑠2+7.5𝑠+5

]               (24) 

 

Now we can apply the presented simplification design method to the high-order aircraft 

MIMO system transfer function GM(s). In this case, we set the series term and ordering 

number of the fast Haar transform to 8 and time period to 0.5 sec. The approximated low 

order transfer function Ĝ11(s) can be obtained from Eq. (25). We can apply the fast Haar 

transform to get the Ĝ11(s). 

 

𝐺11(𝑠) =
1

0.14𝑠3+0.17𝑠2+1.69𝑠+1
                                     (25) 

 

𝐺11(𝑗𝑤) =  
1

0.14(𝑗𝑤)3+0.17(𝑗𝑤)2+1.69𝑗𝑤+1
=

1

(1−0.17𝑤2)+𝑗𝑤(1.69−0.14𝑤2)
      (26) 

 

𝐺11(𝑗𝑤) =
1

1+𝑚1𝑗𝑤+𝑚2(𝑗𝑤)
2  =

1

(1−𝑚2𝑤
2)+𝑗𝑤𝑚1

                       (27)  

 

According to the similarity condition, m1 and m2 can be obtained by Eq. (28) and 

𝛼̂, 𝛽̂, 𝛾 and 𝛿̂ are determined also.  

 

𝑚1 = 1.69 − 0.14𝑤
2, 𝑚2 = 0.17                                 (28) 

 

𝛼̂ = 1, 𝛽̂ = 0, 𝛾 = 0.17, 𝛿 =  1.69 − 0.14𝑤2                        (29) 

 

We can apply the fast Haar transform to 𝛼̂, 𝛽̂, 𝛾 and 𝛿̂ for the coefficients decision 

process. This fast Haar transform is based on the Cooley-Tukey algorithm [12]. The fast 

Haar transform can also be computed using this algorithm. Figure 8 shows the Cooley-

Tukey algorithm.  
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Figure 8. Computational Signal Flow Graph of the Cooley-Tukey Algorithm  

 

Figure 9. Fast Haar Transform for Aircraft MIMO System   
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The fast Haar transform for this aircraft MIMO system is shown in Figure 9. The 

coefficients of the fast Haar transform are determined by addition and subtraction for 

three steps operations. In the first step, the addition and the subtraction value are assigned 

to determine the second half of four fast Haar coefficients and the first half of four fast 

Haar coefficients are determined through the process shown by a quadrangle. Therefore, 

the coefficient is determined only by the addition and subtraction process and this fast 

Haar transform is faster than the general Haar transform. We can get the approximated 

low-order transfer function 𝐺̂11(s) based on the suggested transform algorithm. 

 

𝐺11(s) =
2.1

𝑠2+1.73𝑠+2.1
                                           (30) 

 

Now we can define the low-order transfer function 𝐺22(𝑠) from the high order 

transfer function of Eq. (31) using the same presented transform algorithm and process. 

 

𝐺22(𝑠) =
1

0.2𝑠3+𝑠2+1.5𝑠+1
                                         (31) 

 

𝐺22(𝑗𝑤) =
1

1.12𝑠2+1.53𝑠+1
                                        (32) 

 

The aircraft MIMO system analysis between the original third-order system and the 

proposed and approximated second-order system are shown. The time domain response 

results are shown and the frequency domain response results are shown in Figure 10(a) 

and Figure 10(b) respectively. The dashed line is for the original third- order system and 

the dash-dotted graph displays the proposed second-order system.  

 

 
(A) Time Domain Analysis 
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(B) Frequency Domain Analysis 

Figure 10. Aircraft MIMO System Analysis in Time and Frequency Domain 

7. Conclusions 

The third-order aircraft MIMO system was approximated by a second order system 

using the proposed fast Haar transform algorithm. In a control system, we can obtain a 

reduced MIMO model by removing insignificant eigenvalues of the original MIMO 

system if the original MIMO system is stable. In Figure 10(a), the system time responses 

such as delay time, setting time and damping ratio, show almost the same results between 

the original third-order system and the approximated second-order system. In Figure 

10(b), a slight difference in frequency responses is shown. This frequency responses gap 

is dependent on the initial system values and operational conditions. The fast Haar 

transform can reduce and save computational time by a simple addition and subtraction 

operation. Overall the result of the proposed method is better than the result of normal 

method in terms of accuracy and efficiency. Thus, the method for the high-order 

multivariable aircraft turbo propeller engine system presented in this paper is valuable and 

useful. 
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