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Abstract 

Precise operation of Permanent Magnet Linear Synchronous Motor (LPMSM) requires 

information of speed and position of the motor which is generally sensed by a linear 

encoder.  The cost of linear encoder is about one third of the motor. Installation and 

maintenance of linear encoders are problematic in many cases. To overcome this problem 

and to reduce the cost of drive, sensor less control of LPMSM drive is proposed in this 

work. Different estimation methods are in vogue for determination of the mover position 

and speed from the knowledge of the motor current and voltage. Extended Kalman Filter 

(EKF) is one amongst them. In this method, the system matrix is linearised up to first order 

Taylor expansion, and this causes errors owing to truncation of higher order terms. To 

minimize the estimation error, Unscented Kalman Filter (UKF) is implemented in this 

paper. Observations confirm superior performance of UKF over EKF in tracking the speed 

during transient conditions of sudden changes in load and speed. Simulation is performed 

extensively using Simulink / embedded MATLAB and is validated experimentally using 

DS1104 controller board. 
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1. Introduction 

Linear Permanent Magnet Synchronous Motor (LPMSM) is a special case of linear 

motors. It competes well with the others in its field in view of the applications desirous of 

accurate and precise control. Linear motors continue to remain front runners in the area of 

advanced motoring applications. Their utility makes them a subject of intense research for 

improvements in control and performance.  Linear Synchronous Motors tend have an edge 

over Linear Induction Motors in view of their high precision and energy density [1]. Input 

information of speed and position are necessary for precise control of LPMSM which is 

generally achieved by linear encoders. Linear encoders have certain drawbacks as those of 

cost and space requirements. They tend to be the weakest link of the system in aggressive 

conditions. These disadvantages not only reduce the reliability of the system but also 

degrade the drive’s performance. The answer to this lies in the possible replacement of the 

linear encoder by an estimator to estimate the position and speed of the motor. 

Extensive research has been carried out in recent years to estimate the position and speed 

of the motor. Estimation methods as those of Sliding mode observer, Luenberger observer, 
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Neuro-Fuzzy observer and EKF etc. have been in vogue.  For nonlinear systems sliding 

mode observer is very much suitable and shows robust performance with parameter 

variation and load variation [2]. On the flip side it uses high speed switching to converge 

to the sliding mode plane. Because of discontinuous switching, it fails to give accurate 

results at low speed operation of the motor. MRAS is simple in structure and easier to 

execute, hence more popular [3]. However, the accuracy of reference model output mainly 

influences the precision of speed estimation [4]. EKF is a nonlinear stochastic estimator 

which is extensively used for state estimation [5]. The last few years have witnessed a 

profound use of EKF for nonlinear estimation. Few inherent demerits associated with the 

estimation process make EKF an unfavorable choice. In EKF, the nonlinear system matrix 

is linearised to the 1st order expansion of Taylor’s series to minimize the computational 

complexity [6]. Since during linearization of the state matrix higher order terms are 

truncated, as a result large estimation errors occur in case of EKF [7]. Calculation of 

Jacobians matrix and linearization of system matrix are some of the flaws associated with 

EKF. To overcome these drawbacks, UKF is proposed, which does away with linearization 

of the system matrix [8]. 

 

2. Modeling of LPMSM 

The dynamic modeling equations of LPMSM [9] 

 

𝑈𝑞 = 𝑟𝑠𝐼𝑞 + 𝑙𝑞
𝑑𝑖𝑞
𝑑𝑡

+
𝜋

𝜏
𝑙𝑑𝑣𝑟𝐼𝑑 +

𝜋

𝜏
𝑣𝑟𝛹𝑓                                             (1) 

 

 𝑈𝑑 = 𝑟𝑠𝐼 + 𝑙𝑑
𝑑𝑖𝑑
𝑑𝑡

−
𝜋

𝜏
𝑣𝑟𝑙𝑞𝐼𝑞                                                           (2) 

 

Where the motor voltages in d-q axis are Ud  & Uq, currents are Id   & Iq,   effective armature 

inductances are ld & lq. 𝑟𝑠  is the per phase resistance, 𝛹𝑓    is the permanent magnet  flux 

linkage per phase. The machine dynamism relates electromagnetic thrust 𝐹𝑒, mass of the 

mover  𝑀, frictional coefficient B, linear speed𝜈𝑟and load thrust 
lF is as below: 

𝐹𝑒 = 𝑀
𝑑𝜈𝑟

𝑑𝑡
+ 𝐵𝜈𝑟 + 𝐹𝑙                                                                                 (3) 

 

The electromagnetic thrust for the surface mounted LPMSM is: 

𝐹𝑒 =
3

2

𝜋

𝜏
𝛹𝑓𝐼𝑞   = 𝐾𝑓𝐼𝑞                                                                                                           (4) 

 

Where Kf   is the thrust constant in N/A. 

 

3. Nonlinear Estimation Techniques 
 

A. Extended Kalman Filter 

 

EKF is an optimum state-observer which is used to determine the states of a non-linear 

system affected by measurement noise and modeling inaccuracies. In this paper using EKF 

the LPMSM mover position and speed is estimated.  

The system equations are linearised by partial derivative and discretized using Taylor 

series. The discretized and linearised system matrix G’, Input matrix H’ & Output matrix 

C’ are 
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𝐺′ =
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                                                           (5) 

𝐻′ = 

[
 
 
 
 

1

𝐿𝑑
𝑇 0

0
1

𝐿𝑞
𝑇

0 0
0 0 ]

 
 
 
 

  and    C′  = [
𝑇 0 0 0
0 𝑇 0 0

]                                                                          (6) 

 

B. Unscented Kalman Filter 

 

UKF is a recursive type, derivative free nonlinear state estimator [10]. UKF works on 

principle of Unscented Transformation (UT). UKF uses deterministic sampling approach 

to overcome the flaws of EKF algorithm, in this UKF algorithm state distribution is 

approximated   using sigma points (a set of vectors) from the knowledge of the covariance 

and mean of the state vectors, states of the system can be estimated accurately with the help 

of these sigma points [11]. The Figure 1 depicts the estimation approach of both the 

estimators. 

 

 

Figure 1. Comparison between EKF and UKF Estimation Approach 

The three basic steps in the UKF algorithm comprise of Prediction of the states, 

weighting and correction of the states. Sigma point and hence sigma vectors are computed 

in weighting step. In UKF sigma points are calculated deterministically from the available 

covariance and mean. In the next step, those points are transformed with nonlinear function 

to estimate the transformed covariance and mean. Suppose K no. state variables represented 

as 𝑥 has covariance P and mean    𝑥̅ , matrix 𝜒 of 2K+1 sigma vectors   𝑥𝑖  (with related 

weights 𝑤𝑖), are represented as follow. 
 

𝑥𝑖 = (√(𝐾 + 𝜁)𝑃)
𝑖

𝑇
 ±  𝑥̅        𝑖 = 1, …… … . , 𝐾                             (7) 

 

The weighting coefficients are given as 
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𝑤0
(𝑐)

=
𝜁

(𝐾 + 𝜁)⁄  

𝑤0
(𝑚)

= (1 − 𝑎2 + 𝑏) +
𝜁

(𝐾 + 𝜁)⁄  

𝑤𝑖
(𝑐)

=
𝜁

2(𝐾 + 𝜁)⁄ = 𝑤𝑖
(𝑛)

     𝑖 = 1, … …… . . ,2𝐾                               (8) 

 

 Where 𝜁= 𝐾(𝑎2 − 1)  is a scaling parameter. And 𝛼 decides extend of the sigma points 

in the region of  𝑥̅ and its value is about 0.001, distribution of 𝑥 is determined by b and its 

value is considered as 2 for Gaussian distributions. These sigma vectors are distributed 

around the nonlinear function [12]. 

 

𝑦𝑖 = 𝑔(𝑥𝑖)   𝑖 = 0,1, …… ,2𝐾                                                     (9) 

 

𝑤0
(𝑐)

 𝑎𝑛𝑑 𝑤𝑜
(𝑚)

 are the weights of initialized target covariance matrix and state vector 

respectively, 𝑤𝑖
(𝑐)

𝑎𝑛𝑑 𝑤𝑖
(𝑚)

 are the weights of target state sigma point vector and their 

covariance matrix. 

  

 The LPMSM represented in discrete state space form with noise as: 

 

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑢𝑛) + 𝒲𝑘                                                                                                          (10) 

𝑦𝑛 = 𝒢(𝑥𝑛) + 𝒱𝑘                                                                                                                 (11) 

 

The proposed UKF algorithm steps are as follows: 

 

1. State vectors calculation with 2K+1 sigma points given as 

𝜒𝑛−1 =  [𝑥𝑛−1 ;     𝑥𝑛−1 ±(√(𝐾 + 𝜁)𝑃)
𝑖

𝑇
] 𝑖 =     1, … . . , 𝐾                                      (12) 

2. Transformation of sigma points  

 𝑥𝑖,𝑛|𝑛−1 = 𝑓( 𝑥𝑖,𝑛−1, 𝑢𝑛)                                                                                              (13) 

3. The predicted state is as given 

𝑥𝑛|𝑛−1 = ∑  𝑤𝑖
(𝑐)

∗2𝑘
𝑖=0 (𝑥𝑖,𝑛|𝑛−1  𝑥𝑖)                                                                                   (14) 

4. Covariance is Predicted from initial conditions is given as  

𝒫𝑛|𝑛−1 = ∑  𝑤𝑖
(𝑚)

∗2𝑘
𝑖=0 [𝑥𝑖,𝑛|𝑛−1 − 𝑥𝑛|𝑛−1][𝑥𝑖,𝑛|𝑛−1 − 𝑥𝑛|𝑛−1]

𝑇
+𝑄𝑛                            (15) 

5. Sigma points time update  

𝜒𝑛|𝑛−1 = [𝑥𝑛|𝑛−1 𝑥𝑛|𝑛−1 ± (√(𝐾 + 𝜁)𝒫𝑛|𝑛−1)
𝑖

𝑇

]  𝑖 =

1, . . 𝐾                                     (16) 

6. Sigma points transformation through output equation. 

𝑦𝑖,𝑛|𝑛−1 = 𝑔[𝑥𝑖,𝑛|𝑛−1]                                                                                                (17) 

7. Measurement Prediction is given as 

𝑦𝑛|𝑛−1 = ∑  𝑤𝑖
(𝑐)2𝑘

𝑖=0 ∗ 𝑦𝑖,𝑛|𝑛−1                                                                                       (18) 

8. The covariance of output  is updated as 

𝒫𝑦𝑦 = ∑ 𝑤𝑖
(𝑚)2𝑘

𝑖=0 [𝑦𝑖,𝑛|𝑛−1 − 𝑦𝑛|𝑛−1][𝑦𝑖,𝑛|𝑛−1 − 𝑦𝑛|𝑛−1]
𝑇

+ ℛ𝑛                                  (19) 

9. The updated cross covariance  

𝒫𝑥𝑦 = ∑ 𝑤𝑖
(𝑚)2𝑘

𝑖=0 ∗ [𝑥𝑖,𝑛|𝑛−1 − 𝑥𝑛|𝑛−1][𝑦𝑖,𝑛|𝑛−1 − 𝑦𝑛|𝑛−1]
𝑇
                                       (20) 
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10. Kalman gain is premeditated as 

𝐾𝑛 = 𝒫𝑥𝑦 ∗ 𝒫𝑦𝑦
−1                                                                                                  (21) 

11. The Predicted measurement update  

𝑥𝑛|𝑛 = 𝐾𝑛 ∗ [𝑦𝑛 − 𝑦𝑛|𝑛−1]   +   𝑥𝑛|𝑛−1                                                                          (22) 

12. Error covariance update is given as 

𝑃𝑛|𝑛 = 𝒫𝑛|𝑛−1 − 𝐾𝑛𝒫𝑦𝑦 ∗ 𝐾𝑛
𝑇                                                                                     (23) 

 

4. Proposed Controller with Nonlinear Estimator 

The proposed control scheme including the estimator is as shown in Figure 1. The outer 

speed loop consists of a PI controller to which ‘error in speed’ is input to get ‘reference 

thrust’ as the output. The reference current in d and q axis is obtained using field oriented 

Control, setting direct axis current as zero and generates only q-axis reference current. The 

inner current loop consists of nonlinear controller and gives control voltage; the motor 

position and speed is estimated from the inputs of motor current and voltage using EKF & 

UKF algorithm. These estimates are compared with actual values. 

 

 

Figure 2. Schematic Diagram of Proposed LPMSM Drive 

5. Result Analysis & Discussion 

The performance of UKF over EKF is depicted in various case studies with the help of 

MATLAB simulation. Finally, the elegance of estimation comparison has been reproduced 

in the form of r.m.s error which is tabulated at the end as a notified conclusion. 

Simulations for the following are carried out to estimate motor speed and position using 

EKF and UKF. 

 

i. Case-1  Sudden speed change  

ii. Case-2  Sudden thrust change  

iii. Case-3  Speed reversals  

 

i.Case-1: Sudden speed change  

The motor is set with a speed command of 0.2m/s and at 1 sec a step change in speed 

command of 0.4m/s is applied. Fig 2(a) to (d) depicts the motor speed and position with 

and without sensor using EKF and UKF.  

 

(a) Speed Estimation and its error :  

Estimated speed using UKF follows closely the actual speed during transient and steady 

state. In case of EKF, the estimated speed is deviating from the actual speed during transient 

state and a constant error is exists during steady state. Whereas error in speed estimation in 

steady state is almost zero in case of UKF as shown in fig 3(b) 
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Figure 3(a): Estimated motor speed  Figure 3(b): Error in estimated 
speed  

 

(b) Position Estimation and its error: The estimated position obtained from UKF tracks the 

actual position quite closely whereas estimation using EKF is trailing the actual position. 

Fig 3(c) & 3(d) depicts  the motor position and the position estimation error in both EKF 

& UKF. 

 

  

Figure 3(c): Estimated position  Figure 3(d): Position error  

 

ii. Case-2:  Sudden thrust change 

 

In this case the motor speed is 0.1 m/sec. and at 1secsudden load torque of 5N is applied, 

the response is shown in Fig-3(a) to (d).  

 

(a) Speed Estimation:  

It is clear from the fig 4 (a) that the estimated speed using EKF and UKF are within the 

limit at steady state whereas due to the sudden load applied at 1 sec speed estimation using 

EKF is deviating from the actual whereas UKF results are quite satisfactory. 

 

 

 

Figure 4(a): Estimated motor speed  Figure 4(b): Error in estimated 
speed  

 

(b)Position Estimation : The estimated position obtained from EKF tracks the actual 

position quite closely upto 1sec. When sudden thrust of 5N is applied the estimated position 

is deviated from the actual as shown in Fig-4(c), Whereas UKF is tracking the actual mover 

position very closely even when there is a step change in load thrust. For better 
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understanding the position is represented in radians. One polepitch dist (40mm) is 

corresponding to 2π rad. Position in radian are shown in 4(d). 

 

  

Figure 4(c): Estimated position  Figure 4(d): Position error  
 

iii. Case-3:Speed reversal 

 

In this case speed of the motor has reversed from 0.5 m/sec to -0.5m/sec.  

 

(a)  Estimation of speed   : In the case of  speed reversal command, the estimated speed 

using  UKF algorithm is extremely near to the actual speed for the entire speed profile. 

The error in speed estimation by UKF compare to EKF is decreasing 80% as shown in 

Fig-5(b). 

 

  

Figure 5(a): Estimated motor speed  Figure 5(b): Error in estimated 
speed  

 

(b)  Estimation of Mover position: Both the estimators are tracking the actual mover 

position up to 2sec. During speed reversal UKF is close to actual whereas EKF failing 

to track the actual mover position. Fig 5(d) gives the clear picture of the position error 

during speed reversal at 2.5s. 

 

 
 

Figure 5(c): Estimated position  Figure 5(d): Position error 
 

 

 

 



International Journal of Control and Automation 

Vol. 10, No. 11 (2017) 

 

 

230   Copyright © 2017 SERSC Australia 

6. Performance Comparison 

To compare the performance of both the Kalman estimators, R.M.S error (root mean 

square error) is calculated considering 500 samples and the estimated errors are shown in 

Table- 1 

𝑅.𝑀. 𝑆 𝐸𝑟𝑟𝑜𝑟 = √
1

𝑛𝑗

∑(𝒳𝑗 − 𝒳̂𝑗)
2

𝑛𝑗

𝑗=1

 

 

Where as no. of sample points are denoted as 𝑛𝑗, the actual state 𝑖𝑠 𝒳𝑗 and the estimated 

state  𝑖𝑠  𝒳̂𝑗 

Table 1. Comparison of RMS error using EKF and UKF 

Sl.

No 

Speed Command Speed  error Position error 

EKF UKF EKF UKF 

1 Case-1 Sudden change in speed  0.034 0.063 2.455 0.52 

 

2 Case-2 Sudden  change in thrust  0.042 0.0107 5.494 1.153 
 

3 Case-3 Reversal of speed command 0.029 0.0058 4.393 0.371 

 

 

7. Real Time Implementation 

To implement in real time the complete controller algorithm has programmed using 

embedded MATLAB and Simulink.DSP code is generated using dSPACE software 

integrated with MATLAB.DS-1104 control board is used for real time implementation and 

it provides the DAC and ADC ports and pulse width modulation ports to interface with the 

sensors and voltage source inverter. The voltage source inverter consists of IGBTs with 

opto-isolation and gate driver circuit. The DC link voltage and motor phase currents are 

measured by the LTS-6 Hall-effect sensors. Magnetic sensing type incremental linear 

encoder with 20μm resolution is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Experimental set-up 

 

LPMSM 

INVERTER 

CB DS1104 
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8. Experimental Results  

Step speed command: For a step change in speed of 0.05 m/s at a load thrust of 5N, the 

speed and position response with and without encoder (EKF & UKF) of the motor is shown 

in Fig-7(a) & (b) 

 

 
 

 

Figure 7(a): Estimated motor speed  

 

Figure 7(b): Estimated motor 
Position 

 

It has observed from Figure 7(a) that the estimated speed using UKF is very close to the 

actual speed. Though at steady state both the estimator performance is similar whereas 

during transients UKF is estimating quite better than EKF.  The estimated speed error for 

EKF is about 20% and almost zero in case of UKF.  

 

Experimental results of encoder less control using UKF : The performance of the 

LPMSM encoder less drive using UKF under various operating conditions are  depicted in 

the Fig. 8 & Fig.9 it has observed that the results are satisfactory.  

 

i. Step speed command of  0.1 m/s at a constant load thrust of 5N. 

 

 

 

Figure 8(a): Motor speed Figure 8(b): Motor  Position 
 

ii) Trapezoidal speed command of 0.3m/sec with an acceleration of 0.5m/sec2. 

 

 

Figure 9(a): Motor speed Figure 9(b): Motor Position 
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9. Conclusion 

This paper focus on the estimation of position and speed of a LPMSM drive from the 

information of motor voltage and current using EKF & UKF algorithms. A comparative 

analysis of both the nonlinear estimators has presented with the help of results and its error 

analysis. Though EKF is estimating correctly in steady state condition, it is not tracking the 

position and speed correctly during transient conditions like sudden variation in load thrust 

and speed. Simulation & Experimental results shows that UKF is performing better during 

transient as well in steady state conditions. The performance of UKF seems to be more 

promising with better filtering characteristics compare to EKF. Hence to reduce the cost of 

the high performance LPMSM drive, UKF is the better choice to replace the encoder. 
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