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Abstract 

A high performance on-chip bus for system-on-chip design is presented in this paper. 

The proposed bus employs the use of two channels for data transfer. This allows for 

simultaneous transactions to be performed. Each of these channels is built as a full-

duplex bus, allowing concurrent read and write transactions. The arbiter is designed so 

that it allocates the bus resources to requesting masters depending on the availability of 

the resources. The preferred arbitration scheme used for this bus is TDMA (Time Division 

Multiple Access) although any arbitration scheme will work fine. The internal workings of 

the bus are kept from the bus interface which makes the bus interface simple. The 

proposed bus is designed at RTL with Xilinx ISE 14.7 and simulated with Modelsim SE-64 

10.1c. Various tests are performed and the results are compared with AMBA AHB. 

Experimental results show an increase in bus efficiency in terms of transfer time. A 

10.67% reduction in transfer time is realized in test case 1, while a 49.80% and 58.95 for 

that of test case 2 and 3 respectively. A complete SoC platform with the proposed bus as 

the communication channel was designed and implement with Virtex-4 FPGA. 
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1. Introduction 

With the advancement of process technology, the frequency and amount of data 

communication that occurs between IPs increases considerably [1]. In a SoC, the 

overall system performance depends heavily on efficient communication among 

functional components and computation among them [2]. AMBA AHB [3] and AXI 

[4] are popular bus protocols which provide high-performance interconnection of 

various modules known as IPs on a single chip. AMBA AHB mainly uses a shared 

bus architecture in which various IP’s communicate through the shared channel. As 

more and more IP cores are connected, the efficiency of the system is degraded due 

to the fact that the available bandwidth has to be shared by all the IPs  [5]. The 

efficiency of the bus is affected due to factors such as long wait cycles, bus transfer 

cycle and priorities in bus arbitration [6]. Most often the shared bus architecture 

does not guarantee efficient communication since only one transaction can be 

performed at a time [1]. AXI uses a crossbar architecture where each master has a 

separate connection to each slave. Multiple simultaneous transactions can be 

performed and hence AXI provides higher data bandwidth. Despite this, the crossbar 

architecture comes at a higher cost. This owes to the complexity of the 

interconnection and the many wires and hardware resources need to implement this 

topology. 

We propose a bus architecture for high-performance SoC designs. The proposed 

bus architecture uses two channels through which data can be routed through. It 

resembles a 2x2 crossbar architecture but without dedicated connections to any 

modules. The channels are only granted to a requesting IP module by an arbiter 
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which controls access to the channels, and allocates bus resources provided they are 

available. 

 

2. Bus Protocol 

 
2.1. Overview 

The proposed bus is made up of two channels, capable of performing 

simultaneous transactions. Each channel consists of separate read and writes 

channels which allows simultaneous read and write transfers. A read or  write 

channel consists of address, controls and data buses. A single pair of handshake 

signals is used for both address and data buses. Bus allocation is done by the arbiter 

who also determines which channel a master is assigned to. 

 

2.2. Architecture 

Figure 1 shows the architecture of the proposed bus. A central arbiter is 

responsible for granting a master access to a channel. The channel to which master 

may be granted depends on the availability of the channel. A signal from the master 

is used to request for bus access. The master-to-slave mux is used to route address, 

control and write data signals from a master to a slave. Select signals from the 

arbiter are used to select the appropriate address, control and data information 

coming from the masters in both channels to the slave selected by the decoder. The 

srouter is used to route the signals to the appropriate slave only. It is made up of 

AND gates and OR gates which select the channel which has valid address control 

and data signal for the selected slave and routes the data to it. Similarly, the slave-

to-master mux routes read data and response signals from the slave to the requesting 

master. The mrouter also ensures that read data and response signals from the right 

channel is selected and routed to the right master. Hence data is not broadcasted to 

all slaves or masters. The master of slave does not need to care about the channel 

through which data is routed. These details are shielded from the master and slave 

interfaces. 

 

 

Figure 1. Bus Interconnection 
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2.3. Signal Description 

Table 1 show the signals used in the proposed bus and a brief description of those 

signals. 

Table 1. Signals Description 

Signal Source Description 

CLK Clock source All inputs are sampled on the rising edge of CLK 

RESET_N Reset source Active low signal used to reset the bus 

WR_ACTIVE Master 
Signals the arbiter that the master is ready to perform 

a write transaction and requires access to the bus. 

WR_READY Slave 
Indicates that the slave is able to receive an address 

or data 

WR_VALID Master 
Indicates that the master has valid address or data 

information on the channel 

WR_ADDR Master Write address for initial transfer in a burst 

WR_DATA Master Write data 

WR_CTRL Master 
Write control signals. Includes burst length, size and 

type 

RD_ACTIVE Master 
Signals the arbiter that the master is ready to perform 

a read transaction and requires access to the bus. 

RD_READY Slave 

Indicates that the slave is ready to receive address. It 

also indicates that the slave has valid read data on the 

channel 

RD_VALID Master 
Indicates that the master has valid address. It also 

indicates that the master is ready to receive read data 

RD_ADDR Master Read address for initial transfer in a burst 

RD_DATA Slave Read data 

RD_CTRL Master 
Read control signals. Includes burst length, size and 

type 

WR_BOID Arbiter 
Bus owner id. Shows the id of the master currently 

using the write bus 

RD_BOID Arbiter 
Bus owner id. Shows the id of the master currently 

using the read bus 

WR_SEL Decoder 

Indicates the selected slave for a write transaction 

and is used when routing information to the 

appropriate slave 

RD_SEL Decoder 

Indicates the selected slave for a read transaction and 

is used when routing information to the appropriate 

slave 

 

2.4. Arbitration 

Arbitration is necessary to coordinate the activities of IPs in an on-chip bus. 

Different arbitration schemes have different performances in terms of data load and 

traffic [7]. The TDMA bus arbitration scheme used in this architecture is based on 

dynamic timeslot allocation used in [8] with some improvements. A master asserts 

its ACTIVE signal to request for the bus when it is ready to perform a transaction. 

When any of the channels is available, the arbiter grants the requesting master 

access to the available channel, and assigns a time slot to that master, with the 
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condition that the slave with which the master wants to communicate is not being 

accessed by another master on a different channel. With this, simultaneous 

transactions can occur on both channels provided different slaves are being 

accessed. Grant signals from the arbiter are used as selection signals in the master -

to-slave mux. In this scheme, bus cycles are not wasted because the bus is only 

granted to masters who are ready to perform transactions. When the time allocated 

to a master is up and there is a current transaction which is yet to complete, the 

arbiter allows the transaction to complete before granting the bus to the next master. 

In the same way, if a transaction is completed before the time elapses, the master 

must de-assert its ACT signal to relinquish the bus access. The bus can then be 

allocated to the next master. Figure 2 shows the block diagram of the arbiter. 

 

 

Figure 2. Block Diagram of Arbiter 

In Channel 1 arbiter, an FSM (Finite State Machine) is used. The FSM begins by 

checking the ACTIVE signal of the first master, if it is high; it assigns the bus to the 

first master by setting the output CH1_BOID, to the id of that master. Once the 

master has access to the bus, it can perform any number of transactions as far as it 

still has the bus. The FSM moves to a state where a timer has begun. The timer 

begins counting till it reaches a pre-programmed number of cycles, which defines 

the time slot allowed for each master. When the time elapses, the arbiter checks to 

see if the master has begun another transaction which is yet to complete. If so, it 

allows the master to complete the transfer otherwise it moves on to the next bus 

master. If it's the turn of a master which does not have any transactions to perform, 

the arbiter moves to the next master in line in a round robin manner. This helps 

prevent wasted time slots since no time slot is generated for a master which is not 

ready to perform a transaction. The diagram in Figure 3 shows a simplified state 

diagram used in the arbiter. It shows arbitration between three masters. In state TS0, 

master 0 has the highest priority hence its ACTIVE signal is checked first before the 

rest of the masters. A state transition is not made until master 0 or any other master 

has its active signal high. It then moves to state WAIT0, where the timer starts 

counting. When the time elapses, master 1 which is the next in line is given the 

highest priority. If master 1 or none of the masters have their ACTIVE signal 

asserted, it moves to state TS1, otherwise the master is granted access immediately 
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and the state moves to state WAIT1. This happens in all the other states until it gets 

to state TS0 then it all begins again. A master may relinquish its access to the bus by 

de-asserting its ACTIVE signal. In this case, the bus is granted to the next 

requesting master. Bus masters are encouraged to relinquish bus access to improve 

the effectiveness of the entire system. Channel 2 arbiter checks for the bus owner of 

channel 1 and excludes it from its arbitration process. It then checks for the slave 

with which the requesting master wishes to communicate. If it is different from the 

slave in communication with the bus owner in channel 1, then the master is granted 

access to that slave through channel 2. The output of channel 1 and channel 2 

arbiters is CH1_BOID and CH2_BOID respectively, which is the id of the masters 

occupying those channels at that point in time. These signals are used to route the 

appropriate address, control and data information from a master to the slave it 

wishes to communicate with. 

 

 

Figure 3. State Diagram of Arbiter 

The master can only use the bus for the predetermined timeslot and can relinquish 

the bus if it has not exhausted all the timeslot before its transactions are completed. 

In the course of a transfer, if the timeslot is exhausted, the arbiter allows the 

transaction to complete before allocating the bus to another master. This prevents 

invalid data from been transferred. Grant signals from the arbiter are used as 

selection signals in the master-to-slave mux. In this scheme, bus cycles are not 

wasted because the bus is only granted to masters who are ready to perform 

transactions. Figure 4 shows a waveform for arbitration. 
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Figure 4. Waveform Showing Arbitration 

 

2.5. Bus Operation 

The proposed bus is made up of write address and control bus, read address and control 

bus, write data bus, read data and response bus. A simple handshaking process is used 

between a master and slave after the master has been granted access to the bus. The 

same handshaking signals (READY and VALID) are used for both address and data 

phase. Control signals include burst size, burst length and burst type. A bus operation is 

initiated by the master, by making a request to a slave. The slave, is responsible for 

responding to requests from the master. To perform a write transaction, the master 

drives address and control information on the bus and asserts its VALID signals. This 

begins the handshaking process for address and control information. The ACTIVE signal 

is also asserted to request for bus access from the arbiter. When access is granted to the 

master, its address and control information is routed to the target slave through one of the 

channels. The slave accepts the transfer and responds to the master. A READY signal 

from the slave completes the handshaking process. The master can then proceed with data 

transfer in a write transaction using the same handshaking signals. The READY signal is 

kept high during data transfer in a write transaction. Figure 5 show an example waveform 

for a write transaction. 

 

 

Figure 5. Waveform Showing a Write Transaction 
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In a read transaction, the VALID signal from the master, must remain high after the 

address is transferred in order to receive read data from the slave. The slave then uses its 

READY signal to indicate valid read data. A waveform for a read transaction is shown in 

Figure 6. 

 

 

Figure 6. Waveform Showing a Read Transaction 

 

3. Implementation and Results 

The proposed bus was designed at RTL with Verilog HDL using Xilinx ISE 14.7 

design tool and simulated with ModelSim SE-64 10.1c. A real hardware test was 

performed by implementing a SoC platform using the proposed bus as the 

underlying communication architecture in the SoC platform. The SoC architecture 

shown in Figure 7 was designed and simulated for testing purposes. 

 

 

Figure 7. SoC Architecture for Simulation 

The following test cases were used: 

Test 1: Master 1 performs 256 byte read after write in burst of 4 and 8 to slave 3.  

Test 2: Master 2 and master 3 perform 256 bytes write and read in burst of 4 and 

8 to slave 1 and slave 2 respectively.  

Test 3: Master 1 performs 256 bytes write and read in burst of 4 and 8 to slave 1 

whiles master 2 and master 3 perform write and read in burst of 4 and 8 to slave 2. 

All simulations were performed at a clock frequency of 50 MHz. The results of 

all the tests compared with AHB are shown in Table 2. 
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Table 2. Results of Test Cases 

Test Case AHB (ns) Proposed Bus (ns) Effieciency (%) 

Test 1 16480 14720 10.67 

Test 2 29320 14720 49.80 

Test 3 45600 18720 58.95 

Simulation results show that in all the test cases, the proposed bus has a greater 

efficiency than AHB. In test 3, it is seen that the transfer time is reduced by 58.96% 

which is approximately equal to 2.4 times that of AHB. This is due to master 1 

using one channel whiles masters 2 and 3 use the other channel since master 1 

accesses a different slave from both masters 2 and 3. 

For the real board test, an image processing SoC platform, shown in Figure 8 was 

used. The image processing controller performs image rotation, scaling, changes to 

different color format and switching between displays. All these are controlled by 

the processor through the UART. All modules were designed at RTL with Xilinx 

ISE 14.7 and the proposed bus was used as the underlining communication channel. 

The design was implemented on HBE-SoC-IPD test board equipped with Virtex-4 

FPGA device. 

 

 

Figure 8. SoC Platform for Hardware Emulation 

Some results of the hardware emulation are shown below. 
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Figure 9. TFT-LCD Shows x2 Scaled Image 

 

Figure 10. TFT-LCD Shows a Rotated Image 

 

4. Conclusion 

An on-chip bus architecture which provides high-performance communication 

architecture for SoC designs has been described in this paper. The proposed bus is 

made up of two independent channels, which allows simultaneous transactions to 

occur. The arbitration scheme used was TDMA where time slots (number of cycles) 

are assigned in a round robin manner to masters which are ready to perform a 

transaction. Simulation results have shown that the proposed bus used less time in 

the three tests that were performed compared to AHB, hence it has a higher 

efficiency than AHB. The proposed bus is suitable for small to medium scale SoC 

designs with data-intensive requirements and lower cost. 
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