
International Journal of Control and Automation

Vol. 10, No. 1 (2017), pp.187-198

http//dx.doi.org/10.14257/ijca.2017.10.1.17

ISSN: 2005-4297 IJCA

Copyright © 2017 SERSC

The Efficient Hardware Design of a New Lightweight Block

Cipher

Gookyi Dennis A. N.1, Seungyong Park2 and Kwangki Ryoo*

Department of Information and Communication Engineering, Hanbat National

University, Daejeon, 305-719, South Korea
1dennisgookyi@gmail.com, 2srrr.kr@gmail.com, *kkryoo@gmail.com

Abstract

In this paper, we propose a new lightweight compact block cipher for pervasive

computing. The cipher consists of a 128-bit key and uses 8 rounds to encrypt a block of

64-bit data. It makes use of the Feistel structure together with an S-Box and P-box. We

implemented our cipher on iNEXT-V6 test board, which is equipped with virtex6 FPGA.

The design synthesized to 196 slices at 337 MHz maximum clock frequency. The

hardware results indicate that our cipher uses minimal hardware resources and has

greater throughput as compared to other lightweight ciphers.

Keywords: lightweight cipher, pervasive computing, Feistel, S-Box, P-Box, FPGA.

1. Introduction

“The most profound technologies are those that disappear, they weave themselves into

the fabric of everyday life until they are indistinguishable from it” [1]. This statement by

Mark Weiser in his report in the early 90’s ushered the computing paradigm into the era

of pervasive or ubiquitous computing. As of today, there is a mass deployment of

pervasive computing in almost all sectors of human livelihood. In pervasive computing,

devices with computing capabilities are attached to household items to keep track of

sensitive information about the host they are attached to. These devices record, store, and

update sensitive information about their hosts. Because the information on these devices

is sensitive, it is therefore sad to note that not much work has been done to protect the

information stored on these devices. With the mass deployment of pervasive computing, it

is inherent to use low cost devices to alleviate the cost of implementation. Low cost

devices indicate that these devices are constrained in terms of computing capabilities,

memory capacitance, and power supply. Radio Frequency Identification (RFID)

Technology is widely used in pervasive computing. An RFID tag consists of an antenna

and an Integrated Circuit (IC). The IC normally has a user memory of less than 512-bit,

and the response time of the tag should be less than 100us according to the ISO/IEC

18000 standard [2]. With these constraints, implementing standard cryptographic

algorithms like AES [3] on such a device is deemed impractical. The research focus has

therefore shifted to lightweight cryptography. Most lightweight ciphers fall short of the

ISO/IEC standard on lightweight ciphers, which mandate the number of LUT slices to be

less than 300 [4]. Also, most lightweight ciphers use a large number of rounds which lead

to low performance that requires over 100us to encrypt a block of data at 100 KHz. In this

paper, we present the design and implementation of an entirely new ultra-lightweight

block cipher that is both fast and efficient in hardware.

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

188 Copyright © 2017 SERSC

1.1. Features and Design Principle

We propose a new ultra-lightweight block cipher. The cipher has a key size of 128-bit

and uses 8 rounds to encrypt a data block of 64-bit. Some of the design decisions that

were considered in the design of the cipher include:

 The Feistel structure makes the encryption and decryption routines basically the

same. This leads to the implementation of only one core for both encryption and

decryption

 The use of a 128-bit key size provides a high level of security because it

discourages the mounting of a brute force attack

 The only mathematical operator used in the cipher is the XOR operator, which

leads to the use of minimal hardware resources for implementation

 To prevent a backdoor into the cipher, the substitution box (S-Box) of PRESENT

[5] algorithm was used. This S-Box is extremely lightweight and resistant to

linear and differential cryptanalysis

 A completely new permutation box (P-Box) was designed. This is the Key

Dependent One Stage Omega Permutation P-Box. This provides further security

and leads to better permutation of bits

 The key schedule algorithm involves only a shift operation leading to the use of

minimal hardware resources and also on-the-fly computation of round keys.

1.2. Cipher Comparison

A number of lightweight ciphers have been proposed for pervasive computing: HIGHT,

PRESENT [6], CLEFIA [7], TEA, DESL and LEA. Table 1 shows the comparisons of

these algorithms. Two of these algorithms (PRESENT and CLEFIA) have been accepted

as ISO/IEC standards.

 PRESENT cipher is a 128-bit key size, 64-bit block size and a 31 round cipher. It

has one of the smallest S-Boxes available. The downside to PRESENT algorithm

is that it requires 31 rounds to encrypt a block of data. This translates to 310us per

block at 100 KHz. This falls short of the 100us response time for RFID tags.

 CLEFIA cipher is a 128-bit block cipher that uses 128, 192 or 256-bit key and

requires 18, 22 or 26 rounds depending on the key size. CLEFIA uses two S-

Boxes and two P-Boxes and therefore requires more than the stipulated 512-bit of

memory reserved in RFID tags.

Table 1. Lightweight Ciphers

Algorithm

S-Box Memory

requirement

(bits)

Cycles/block

Time for 1

encryption

@100KHz

(us)

PRESENT 64 31 120

TEA - 64 640

HIGHT - 32 320

CLEFIA 4096 18 180

LEA - 24 240

Proposed 64 8 80

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

Copyright © 2017 SERSC 189

2. Design of New Lightweight Cipher

The design of the proposed cipher is tailored toward high efficiency and moderate

security. In terms of efficiency, we simulated various ciphers and compared their real time

processing speed to our proposed cipher. Lightweight ciphers trade minimal hardware

resources and performance for security. Here we describe the design of the proposed

cipher.

2.1. State Representation

Considering a 128-bit user input key, let key [127:0] represent the 128-bit key, let k[0],

k[1], …, k[15] represent an array of 8-bits from key[127:0]. The key [127:0] is

represented as four 32-bit words K[0], K[1], K[2] and K[3]. Each k[i] is taken from the

key[127:0] as follow:

k[i] = key[8i+7 : 8i] for 15 ≤ i ≤ 0 (1)

Each K[i] is taken from the bytes k[i] as follows:

K[i] = k[4i+3] || k[4i+2] || k[4i+1] || k[4i] for 3 ≤ i ≤ 0 (2)

Considering the user input 64-bit data, let state[63:0] represent the 64-bit data, let s[0],

s[1], …, s[7] represent an array of 8-bits from state[63:0]. The state[63:0] is represented

as two 32-bit words S[0] and S[1]. Each s[i] is taken from state[63:0] as follows

s[i] = state[8i+7 : 8i] for 7 ≤ i ≤ 0 (3)

Each S[i] is taken from the bytes s[i] as follows

S[i] = s[4i+3] || s[4i+2] || s[4i+1] || s[4i] for 1 ≤ i ≤ 0 (4)

2.2. Encryption and Decryption Algorithm Routine

The proposed cipher uses the Feistel network structure together with an S-Box and P-

Box. It uses only 8 rounds to encrypt a 64-bit block data using a 128-bit key. In the Feistel

structure of the cipher, each round consists of two stages. In stage 1, the input data passes

through four unique processes and each process transforms the data. The processes

include: Add_Round_Key layer, S-Box layer, P-Box layer and a second Add_Kound_Key

layer. Stage 1 uses the first half of the 128-bit key. In stage 2, data from stage 1 is passed

through the same processes as in stage 1, but the second half of the 128-bit key is used.

The beauty about the Feistel structure is that encryption and decryption routine are the

same with the keys in reverse order. Figure 1 shows the top-level algorithm description of

the encryption and decryption routines.

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

190 Copyright © 2017 SERSC

(a) (b)

Figure 1. (a) Encryption Algorithm Description (b) Decryption Algorithm
Description

2.3. Add_Round_Key Layer

Each stage for each round in the algorithm routine consists of two Add_Round_Key

processes. The 128-bit key key[127:0] is divided into four registers, each of which is

allocated 32-bit (K[0], K[1], K[2], K[3]) as shown in Equation 1. The Add_Round_Key is

a simple XOR operation and is applied four times in each round. For the encryption

routine, stage 1 in each round uses K[0] and K[1] while stage 2 in each round uses K[2]

and K[3]. For the decryption routine, stage 1 in each round uses K[2] and K[3] while

stage 2 in each round uses K[0] and K[1]. Considering the first Add_Round_Key of the

encryption routine, let K[0] = key[31:0] and let the current state S[0] = state[31:0]. The

output of the Add_Round_Key is therefore given as:

state[i] = key[i] XOR state[i] for 31≤ i ≤ 0 (5)

This is the same for all Add_Round_Key layers for both encryption and decryption

routines of the proposed cipher.

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

Copyright © 2017 SERSC 191

2.4. Substitution Box (S-Box) Layer

Claude Shannon in his 1945 classified report “A Mathematical Theory of

Cryptography” [8] identified confusion and diffusion as two important properties of a

secure cipher. Confusion is a process that drastically changes data from input to output.

This is achieved in modern cryptography by translating data through a non-linear table

called the S-Box. The eight S-Boxes used in the Data Encryption Standard (DES) [9]

were studied intensely because experts were sure there was a backdoor into the algorithm,

which latter proved to be false. To clear all doubts about a backdoor into our cipher, the

decision was made to employ the S-Box of PRESENT algorithm. The PRESENT

algorithm S-Box is resistant to both linear and differential cryptanalysis, and is also

extremely lightweight. Table 2 shows the S-Box used in our proposed cipher. The S-Box

is a 4-bit input to 4-bit output S-Box. For the S-Box layer, the current state S[31:0] is

considered as 4-bit words W[0], W[1], …, W[7] where:

W[i] = S[4i+3] || S[4i+2] || S[4i+1] || S[4i] for 7 ≤ i ≤ 0 (6)

The output nibble S[W] provides the updated state. The encryption and decryption

algorithms use the same S-Box.

Table 2. Substitution Box (S-Box)

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S[W] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

2.5. Permutation Box (P-Box) Layer

The diffusion aspect of Shannon’s theory says that changing a single bit of the input

should lead to many bit changes in the output. When done properly, every part of the

input affects every other part of the output, thereby making cryptanalysis much more

difficult. In modern cryptography, Shannon’s diffusion is achieved by employing a

permutation box (P-Box). Many block ciphers employ the use of fixed P-Boxes. With the

advent of linear and differential cryptanalysis, a fixed P-Box is no longer secure. The P-

Box proposed in this paper is the One Stage Omega Permutation Network P-Box. As

shown in Figure 2, the P-Box consists of 32 2-to-1 multiplexors. A 16-bit variable

KEY_BITS serve as the select signals to the multiplexors. The lower half of the 128-bit

key (key[63:0]) is used to calculate the KEY_BITS as follows:

KEY_BITS[15:0] = key[63:48] ^ key[47:32] ^ key[31:16] ^ key[15:0] (7)

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

192 Copyright © 2017 SERSC

(a)

(b)

Figure 2. (a) Top Level Description of Permutation Box (P-Box) (b) P-Box
Algorithm

The algorithm for generating the outputs of the P-Box is also shown in Figure 4. In the

algorithm, in_data[31:0] indicates the outputs of the S-Box, and pbox[31:0] indicates the

output of the P-Box. The encryption and decryption algorithms use the same P-Box.

2.6. Key Schedule Algorithm

The algorithm is designed with a 128-bit key, which is more than enough to prevent a

brute force attack. For our cipher structure, the only difference between the encryption

structure and the decryption structure is the key schedule algorithms. The key schedule

algorithm is very simple since a lightweight cipher does not necessarily have to be as

j=0

For (i=0; i<16; i=i+1) {

if (!KEY_BITS[i]) { // Mux select signal – Key bits

pbox[j] = in_data[i] // 1 Key bit = 2 in_data → 2 pbox

pbox[j+1] =in_data[i+16] // 16 Key bit = 32 in_data → 2 pbox

}

else {

pbox[j] = in_data[i+16]

pbox[j+1] = in_data[i]

}

j=j+2

}

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

Copyright © 2017 SERSC 193

strong as the standard algorithms. The key schedule algorithm for both encryption and

decryption are shown in Figure 3.

(a) (b)

Figure 3. (a) Encryption Key Schedule (b) Decryption Key Schedule

3. Experimentation and Results

The proposed cipher was designed using Verilog HDL and was verified using FPGA.

Xilinx Virtex6 XC6VLX70 was used for the purpose of synthesis, and Mentor Graphics

Modelsim SE-64 10.1c was used for the purpose of simulation. Figure 4 shows simulation

results of an encryption/decryption core of the cipher, and Table 3 shows the synthesis

results of the proposed cipher compared with other ciphers.

Figure 4. Encryption/Decryption Core Simulation

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

194 Copyright © 2017 SERSC

Table 3. Synthesized Results Comparison

Algorithm

Max

delay

(ns)

Cycles/block

Block

size

(bits)

Key

size

(bits)

Area

(slices)

Throughput

(Mbps)

Throughput/area

(Mbps/slice)

PRESENT[10] 3.94 31 64 128 202 508 2.5

AES[11] 20.00 46 128 128 222 139 0.62

CLEFIA[12] 5.4 36 128 128 270 658 2.4

XTEA[11] 15.97 112 64 128 254 35.78 0.14

Proposed 2.97 8 64 128 196 2693 13.76

3.1. Image Encryption/Decryption Application

Here, a 480x272 JPEG format image is encrypted and decrypted using the proposed

cipher. This is to investigate the real time processing performance of our design. The

experiment is carried out on iNEXT-v6 test board. Here, the original image is converted

into a coe file and stored in on-chip block ROM. Data from the ROM is sent to the

encryption module and after encryption the data is stored in a RAM. The data from the

RAM is sent to the decryption module and after decryption, another RAM is used to store

this data. The original date, encrypted data, and decrypted data take turns to be displayed

on the LCD of the iNEXT-v6 test board. This is shown in Figure 5. To investigate the

time taken for both encryption and decryption of the image, the clock period of the

simulation was set at 10ns and the time for the entire encryption and decryption was taken.

The result of this experiment is shown in Table 4.

Table 4. Encryption/Decryption Application Comparison

Algorithm
Image size

(Pixels)

Clock period

(ns)
Cycles/block

Required time

for ENC/DEC

(S)

AES 480x272 10 46 0.120

PRESENT 480x272 10 32 0.080

TEA 480x272 10 64 0.160

Proposed 480x272 10 8 0.021

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

Copyright © 2017 SERSC 195

Figure 5. Image Encryption/Decryption Application

Appendix

Here, we present some test vectors for the proposed cipher. We keep the 128-bit

cipher key (key [127:0] = ABCD_EF02_7581_91AD_185D_ABF0_4954_C78A)

constant while changing the plaintext by 1-bit. This is to test the avalanche nature of

the cipher. The hamming distance (bit change in two ciphertexts with plaintext

change of 1-bit) is calculated by taking the exclusive-or of the two ciphertexts. All

the data are expressed in hexadecimal notation and shown in Table 5.

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

196 Copyright © 2017 SERSC

Table 5. Investigating the Avalanche Effect

Plaintext Ciphertext Hamming distance

0000 0000 0000 0000 D0EB BFB0 02FC 211E
28

0000 0000 0000 0001 A801 3D57 25FC 8496

0000 0000 0000 0002 1B9A 72BA CD39 8D34
29

0000 0000 0000 0003 D256 67B0 9B4D B802

0000 0000 0000 0004 936F 3EDA 6019 7859
35

0000 0000 0000 0005 8959 DC89 9621 A7CF

0000 0000 0000 0006 EB5B 8A40 466B AEC6
30

0000 0000 0000 0007 A884 59CA 673E 9FA2

0000 0000 0000 0008 8906 477C 8E40 B4C7
24

0000 0000 0000 0009 45AF 2659 DDC0 9CF5

Acknowledgment

This research was supported by the MSIP (Ministry of Science, ICT and Future

Planning), Korea, under the Global IT Talent support program (IITP-2016-R0134-

16-1019) and Human Resource Development Project for Brain scouting

program(IITP-2016-R2418-16-0007) supervised by the IITP(Institute for

Information and Communication Technology Promotion).

References

[1] M. Weiser, “The Computer for the 21st Century”, Scientific America Issue on Communication,

Computers and Networks, (1991) September.

[2] M. Feldhofer, S. Dominikus and J. Wolkerstorfer, “Strong Authentication for RFID Systems Using AES

Algorithm”, Cryptographic Hardware and Embedded Systems - CHESS, LNCS 3156, Springer-Verlag,

(2004), pp. 357-370.

[3] National Institute of Standards and Technology, “Advanced Encryption Standard (AES)”, Federal

Information Processing Standards Publication 197, (2001).

[4] G. Bansod, N. Raval and N. Pisharoty, “Implementation of a New Lightweight Encryption Design for

Embedded Security”, IEEE Transaction on Information Forensics and Security, vol. 10, (2015), pp. 142-

151.

[5] A. Bogdanov, C. Paar and A. Poschmann, “PRESENT: An Ultra-Lightweight Block Cipher”,

Cryptographic Hardware and Embedded Systems - CHESS, LNCS 4727, Springer-Verlag, (2007), pp.

450-466.

[6] W. L. Cho, K. B. Kim and K. W. Shin, “A Hardware Design of Ultra-Lightweight Block Cipher

Algorithm PRESENT for IoT Applications”, Journal of Information and Communication Convergence

Engineering, vol. 20, No. 7, (2016) July, pp. 1296~1302.

[7] G. C. Bae and K. W. Shin, “An Efficient Hardware Implementation of Lightweight Block Cipher

Algorithm CLEFIA for IoT Security Applications”, Journal of Information and Communication

Convergence Engineering, vol. 20, No. 2, (2016) February, pp. 351~358.

[8] C. E. Shannon, “A Mathematical Theory of Cryptography”, Bell System Memo, MM 45-110-02, (1945).

[9] National Institute of Standards and Technology, “Data Encryption Standard (DES)”, Federal

Information Processing Standards Publication 197, (2001).

[10] M. Sbeiti, M. Silbermann, A. Poschmann and C. Paar, “Design Space Exploration of PRESENT

Implementation for FPGA”, 5th Southern Conference on Programmable Logic, Sao Paulo, Brazil, (2009)

April 01-03.

[11] Y. Panasayya and K. Jen-Peter, “Lightweight Cryptography for FPGAs”, International Conference on

Reconfigurable Computing and FPGAs, Quintana Roo, (2009) December 09-11.

[12] P. Paulo and C. Ricardo, “Compact CLEFIA Implementation on FPGAs”, International Conference on

Field Programmable Logic and Applications, Chania, (2011) September 05-07.

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

Copyright © 2017 SERSC 197

Authors

Gookyi Dennis Agyemanh Nana received his BSC Degree in

Computer Engineering from the Kwame Nkrumah University of

Science and Technology, Ghana in 2013. He is currently pursuing a

MENG Degree in Information and Communication Engineering at

Hanbat National University, South Korea. His research interests

include SoC Design and Verification Platforms and Lightweight

Cryptography.

Seungyong Park received his BS Degree and MENG Degree in

Information and Communication Engineering from Hanbat National

University, South Korea, in 2010 and 2012 respectively. He is

currently pursuing a PhD Degree in Information and Communication

Engineering at Hanbat National University, South Korea. His

research interests include SoC Design and Verification Platforms,

Image Signal Processing and Multimedia Codec Design.

Kwangki Ryoo received his BS, MS and PhD Degrees in

Electronic Engineering from Hanyang University, South Korea in

1986, 1988 and 2000 respectively. From 1991 to 1994, he was an

Assistant Professor at the Military Academy in South Korea. From

2000 to 2002, he worked as a Senior Researcher at ETRI, South

Korea. From 2010 to 2011, he was a Visiting Professor at University

of Texas at Dallas. Since 2003, he has been a Professor at Hanbat

National University, South Korea. His research interests include

Engineering Education, SoC Design and Verification Platforms,

Image Signal Processing and Multimedia Codec Design.

International Journal of Control and Automation

Vol. 10, No. 1 (2017)

198 Copyright © 2017 SERSC

