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Abstract 

In this paper, we propose a new lightweight compact block cipher for pervasive 

computing. The cipher consists of a 128-bit key and uses 8 rounds to encrypt a block of 

64-bit data. It makes use of the Feistel structure together with an S-Box and P-box. We 

implemented our cipher on iNEXT-V6 test board, which is equipped with virtex6 FPGA. 

The design synthesized to 196 slices at 337 MHz maximum clock frequency. The 

hardware results indicate that our cipher uses minimal hardware resources and has 

greater throughput as compared to other lightweight ciphers. 
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1. Introduction 

“The most profound technologies are those that disappear, they weave themselves into 

the fabric of everyday life until they are indistinguishable from it” [1]. This statement by 

Mark Weiser in his report in the early 90’s ushered the computing paradigm into the era 

of pervasive or ubiquitous computing. As of today, there is a mass deployment of 

pervasive computing in almost all sectors of human livelihood. In pervasive computing, 

devices with computing capabilities are attached to household items to keep track of 

sensitive information about the host they are attached to. These devices record, store, and 

update sensitive information about their hosts. Because the information on these devices 

is sensitive, it is therefore sad to note that not much work has been done to protect the 

information stored on these devices. With the mass deployment of pervasive computing, it 

is inherent to use low cost devices to alleviate the cost of implementation. Low cost 

devices indicate that these devices are constrained in terms of computing capabilities, 

memory capacitance, and power supply. Radio Frequency Identification (RFID) 

Technology is widely used in pervasive computing. An RFID tag consists of an antenna 

and an Integrated Circuit (IC). The IC normally has a user memory of less than 512-bit, 

and the response time of the tag should be less than 100us according to the ISO/IEC 

18000 standard [2]. With these constraints, implementing standard cryptographic 

algorithms like AES [3] on such a device is deemed impractical. The research focus has 

therefore shifted to lightweight cryptography. Most lightweight ciphers fall short of the 

ISO/IEC standard on lightweight ciphers, which mandate the number of LUT slices to be 

less than 300 [4]. Also, most lightweight ciphers use a large number of rounds which lead 

to low performance that requires over 100us to encrypt a block of data at 100 KHz. In this 

paper, we present the design and implementation of an entirely new ultra-lightweight 

block cipher that is both fast and efficient in hardware.  
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1.1. Features and Design Principle  

We propose a new ultra-lightweight block cipher. The cipher has a key size of 128-bit 

and uses 8 rounds to encrypt a data block of 64-bit. Some of the design decisions that 

were considered in the design of the cipher include: 

 The Feistel structure makes the encryption and decryption routines basically the 

same. This leads to the implementation of only one core for both encryption and 

decryption 

 The use of a 128-bit key size provides a high level of security because it 

discourages the mounting of a brute force attack 

 The only mathematical operator used in the cipher is the  XOR operator, which 

leads to the use of minimal hardware resources for implementation 

 To prevent a backdoor into the cipher, the substitution box (S-Box) of PRESENT 

[5] algorithm was used. This S-Box is extremely lightweight and resistant to 

linear and differential cryptanalysis 

 A completely new permutation box (P-Box) was designed. This is the Key 

Dependent One Stage Omega Permutation P-Box. This provides further security 

and leads to better permutation of bits 

 The key schedule algorithm involves only a shift operation leading to the use of 

minimal hardware resources and also on-the-fly computation of round keys. 

 

1.2. Cipher Comparison 

A number of lightweight ciphers have been proposed for pervasive computing: HIGHT, 

PRESENT [6], CLEFIA [7], TEA, DESL and LEA. Table 1 shows the comparisons of 

these algorithms. Two of these algorithms (PRESENT and CLEFIA) have been accepted 

as ISO/IEC standards. 

 PRESENT cipher is a 128-bit key size, 64-bit block size and a 31 round cipher. It 

has one of the smallest S-Boxes available. The downside to PRESENT algorithm 

is that it requires 31 rounds to encrypt a block of data. This translates to 310us per 

block at 100 KHz. This falls short of the 100us response time for RFID tags. 

 CLEFIA cipher is a 128-bit block cipher that uses 128, 192 or 256-bit key and 

requires 18, 22 or 26 rounds depending on the key size. CLEFIA uses two S-

Boxes and two P-Boxes and therefore requires more than the stipulated 512-bit of 

memory reserved in RFID tags. 

Table 1. Lightweight Ciphers 

Algorithm 

S-Box Memory 

requirement 

(bits) 

Cycles/block 

Time for 1 

encryption 

@100KHz 

(us) 

PRESENT 64 31 120 

TEA - 64 640 

HIGHT - 32 320 

CLEFIA 4096 18 180 

LEA - 24 240 

Proposed 64 8 80 
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2. Design of New Lightweight Cipher 

The design of the proposed cipher is tailored toward high efficiency and moderate 

security. In terms of efficiency, we simulated various ciphers and compared their real time 

processing speed to our proposed cipher. Lightweight ciphers trade minimal hardware 

resources and performance for security. Here we describe the design of the proposed 

cipher. 

 

2.1. State Representation 

Considering a 128-bit user input key, let key [127:0] represent the 128-bit key, let k[0], 

k[1], …, k[15] represent an array of 8-bits from key[127:0]. The key [127:0] is 

represented as four 32-bit words K[0], K[1], K[2] and K[3]. Each k[i] is taken from the 

key[127:0] as follow: 

 

k[i] = key[8i+7 : 8i] for 15 ≤ i ≤ 0               (1) 

 

Each K[i] is taken from the bytes k[i] as follows: 

 

K[i] = k[4i+3] || k[4i+2] || k[4i+1] || k[4i] for 3 ≤ i ≤ 0                                                 (2) 

 

Considering the user input 64-bit data, let state[63:0] represent the 64-bit data, let s[0], 

s[1], …, s[7] represent an array of 8-bits from state[63:0]. The state[63:0] is represented 

as two 32-bit words S[0] and S[1]. Each s[i] is taken from state[63:0] as follows 

 

s[i] = state[8i+7 : 8i] for 7 ≤ i ≤ 0                                                                                    (3) 

 

Each S[i] is taken from the bytes s[i] as follows 

 

S[i] = s[4i+3] || s[4i+2] || s[4i+1] || s[4i] for 1 ≤ i ≤ 0                                                   (4) 

 

2.2. Encryption and Decryption Algorithm Routine 

The proposed cipher uses the Feistel network structure together with an S-Box and P-

Box. It uses only 8 rounds to encrypt a 64-bit block data using a 128-bit key. In the Feistel 

structure of the cipher, each round consists of two stages. In stage 1, the input data passes 

through four unique processes and each process transforms the data. The processes 

include: Add_Round_Key layer, S-Box layer, P-Box layer and a second Add_Kound_Key 

layer. Stage 1 uses the first half of the 128-bit key.  In stage 2, data from stage 1 is passed 

through the same processes as in stage 1, but the second half of the 128-bit key is used. 

The beauty about the Feistel structure is that encryption and decryption routine are the 

same with the keys in reverse order. Figure 1 shows the top-level algorithm description of 

the encryption and decryption routines. 
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(a)                                                           (b) 

Figure 1. (a) Encryption Algorithm Description (b) Decryption Algorithm 
Description 

2.3. Add_Round_Key  Layer 

Each stage for each round in the algorithm routine consists of two Add_Round_Key 

processes. The 128-bit key key[127:0] is divided into four registers, each of which is 

allocated 32-bit (K[0], K[1], K[2], K[3]) as shown in Equation 1. The Add_Round_Key is 

a simple XOR operation and is applied four times in each round. For the encryption 

routine, stage 1 in each round uses K[0] and K[1] while stage 2 in each round uses K[2] 

and K[3]. For the decryption routine, stage 1 in each round uses K[2] and K[3] while 

stage 2 in each round uses K[0] and K[1]. Considering the first Add_Round_Key of the 

encryption routine, let K[0] = key[31:0] and let the current state S[0] = state[31:0]. The 

output of the Add_Round_Key is therefore given as: 

 

state[i] = key[i] XOR state[i] for 31≤ i ≤ 0                                                                       (5) 

 

This is the same for all Add_Round_Key layers for both encryption and decryption 

routines of the proposed cipher. 
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2.4. Substitution Box (S-Box) Layer 

Claude Shannon in his 1945 classified report “A Mathematical Theory of 

Cryptography” [8] identified confusion and diffusion as two important properties of a 

secure cipher. Confusion is a process that drastically changes data from input to output. 

This is achieved in modern cryptography by translating data through a non-linear table 

called the S-Box. The eight S-Boxes used in the Data Encryption Standard (DES) [9] 

were studied intensely because experts were sure there was a backdoor into the algorithm, 

which latter proved to be false. To clear all doubts about a backdoor into our cipher, the 

decision was made to employ the S-Box of PRESENT algorithm. The PRESENT 

algorithm S-Box is resistant to both linear and differential cryptanalysis, and is also 

extremely lightweight. Table 2 shows the S-Box used in our proposed cipher. The S-Box 

is a 4-bit input to 4-bit output S-Box. For the S-Box layer, the current state S[31:0] is 

considered as 4-bit words W[0], W[1], …, W[7] where: 

 

W[i] = S[4i+3] || S[4i+2] || S[4i+1] || S[4i] for 7 ≤ i ≤ 0                                                (6) 

 

The output nibble S[W] provides the updated state. The encryption and decryption 

algorithms use the same S-Box. 

Table 2. Substitution Box (S-Box) 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

S[W] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2 

 

2.5. Permutation Box (P-Box) Layer 

The diffusion aspect of Shannon’s theory says that changing a single bit of the input 

should lead to many bit changes in the output. When done properly, every part of the 

input affects every other part of the output, thereby making cryptanalysis much more 

difficult. In modern cryptography, Shannon’s diffusion is achieved by employing a 

permutation box (P-Box). Many block ciphers employ the use of fixed P-Boxes. With the 

advent of linear and differential cryptanalysis, a fixed P-Box is no longer secure. The P-

Box proposed in this paper is the One Stage Omega Permutation Network P-Box. As 

shown in Figure 2, the P-Box consists of 32 2-to-1 multiplexors. A 16-bit variable 

KEY_BITS serve as the select signals to the multiplexors. The lower half of the 128-bit 

key (key[63:0]) is used to calculate the KEY_BITS as follows: 

 

KEY_BITS[15:0] = key[63:48] ^ key[47:32] ^ key[31:16] ^ key[15:0]                           (7)  
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(b) 

Figure 2. (a) Top Level Description of Permutation Box (P-Box) (b) P-Box 
Algorithm 

The algorithm for generating the outputs of the P-Box is also shown in Figure 4. In the 

algorithm, in_data[31:0] indicates the outputs of the S-Box, and pbox[31:0] indicates the 

output of the P-Box. The encryption and decryption algorithms use the same P-Box.  

 

2.6. Key Schedule Algorithm 

The algorithm is designed with a 128-bit key, which is more than enough to prevent a 

brute force attack. For our cipher structure, the only difference between the encryption 

structure and the decryption structure is the key schedule algorithms. The key schedule 

algorithm is very simple since a lightweight cipher does not necessarily have to be as 

j=0 

For ( i=0; i<16; i=i+1 ) { 

if (!KEY_BITS[i]) {                      // Mux select signal – Key bits 

pbox[j] = in_data[i]                // 1 Key bit = 2 in_data → 2 pbox 

pbox[j+1] =in_data[i+16]       // 16 Key bit = 32 in_data → 2 pbox 

} 

else { 

pbox[j] = in_data[i+16] 

pbox[j+1] = in_data[i] 

} 

j=j+2 

} 
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strong as the standard algorithms. The key schedule algorithm for both encryption and 

decryption are shown in Figure 3. 

 

(a)            (b) 

Figure 3. (a) Encryption Key Schedule (b) Decryption Key Schedule 

 

3. Experimentation and Results 

The proposed cipher was designed using Verilog HDL and was verified using FPGA. 

Xilinx Virtex6 XC6VLX70 was used for the purpose of synthesis, and Mentor Graphics 

Modelsim SE-64 10.1c was used for the purpose of simulation. Figure 4 shows simulation 

results of an encryption/decryption core of the cipher, and Table 3 shows the synthesis 

results of the proposed cipher compared with other ciphers. 

 

Figure 4. Encryption/Decryption Core Simulation 
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Table 3. Synthesized Results Comparison  

Algorithm 

Max 

delay 

(ns) 

Cycles/block 

Block 

size 

(bits) 

Key 

size 

(bits) 

Area 

(slices) 

Throughput 

(Mbps) 

Throughput/area 

(Mbps/slice) 

PRESENT[10] 3.94 31 64 128 202 508 2.5 

AES[11] 20.00 46 128 128 222 139 0.62 

CLEFIA[12] 5.4 36 128 128 270 658 2.4 

XTEA[11] 15.97 112 64 128 254 35.78 0.14 

Proposed 2.97 8 64 128 196 2693 13.76 

 

3.1. Image Encryption/Decryption Application 

Here, a 480x272 JPEG format image is encrypted and decrypted using the proposed 

cipher. This is to investigate the real time processing performance of our design. The 

experiment is carried out on iNEXT-v6 test board. Here, the original image is converted 

into a coe file and stored in on-chip block ROM. Data from the ROM is sent to the 

encryption module and after encryption the data is stored in a RAM. The data from the 

RAM is sent to the decryption module and after decryption, another RAM is used to store 

this data. The original date, encrypted data, and decrypted data take turns to be displayed 

on the LCD of the iNEXT-v6 test board. This is shown in Figure 5. To investigate the 

time taken for both encryption and decryption of the image, the clock period of the 

simulation was set at 10ns and the time for the entire encryption and decryption was taken. 

The result of this experiment is shown in Table 4. 

Table 4. Encryption/Decryption Application Comparison 

Algorithm 
Image size 

(Pixels) 

Clock period 

(ns) 
Cycles/block 

Required time 

for ENC/DEC 

(S) 

AES 480x272 10 46 0.120 

PRESENT 480x272 10 32 0.080 

TEA 480x272 10 64 0.160 

Proposed 480x272 10 8 0.021 
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Figure 5. Image Encryption/Decryption Application 

Appendix 

Here, we present some test vectors for the proposed cipher. We keep the 128-bit 

cipher key (key [127:0] = ABCD_EF02_7581_91AD_185D_ABF0_4954_C78A) 

constant while changing the plaintext by 1-bit. This is to test the avalanche nature of 

the cipher. The hamming distance (bit change in two ciphertexts with plaintext 

change of 1-bit) is calculated by taking the exclusive-or of the two ciphertexts. All 

the data are expressed in hexadecimal notation and shown in Table 5. 
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Table 5. Investigating the Avalanche Effect 

Plaintext Ciphertext Hamming distance 

0000 0000 0000 0000 D0EB BFB0 02FC 211E 
28 

0000 0000 0000 0001 A801 3D57 25FC 8496 

0000 0000 0000 0002 1B9A 72BA CD39 8D34 
29 

0000 0000 0000 0003 D256 67B0 9B4D B802 

0000 0000 0000 0004 936F 3EDA 6019 7859 
35 

0000 0000 0000 0005 8959 DC89 9621 A7CF 

0000 0000 0000 0006 EB5B 8A40 466B AEC6 
30 

0000 0000 0000 0007 A884 59CA 673E 9FA2 

0000 0000 0000 0008 8906 477C 8E40 B4C7 
24 

0000 0000 0000 0009 45AF 2659 DDC0 9CF5 
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