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Abstract 

The steady flow around a moving circular pipe in a thermo-viscous fluid in the 

absence of pressure gradient is examined in this paper. The flow under the constant 

temperature gradient is considered. The solutions for the velocity and temperature fields 

have been obtained in terms of Modified Bessel functions with appropriate boundary 

conditions. The Nussult number and the Drag force on the boundary have been 

calculated. The effect of thermo-viscous material parameters on the Drag, velocity and 

temperature fields have been shown in the form of graphs and discussed in the 

conclusions part. 
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Nomenclature 

 

p1 :  The Fluid Pressure 

 

 23    :   is the coefficient of classical(Newtonian) viscosity 

 

c 25   : c  is the coefficient of (Reiner-Rivlin) cross-viscosity 

 

6            : Thermo mechanical stress interaction coefficient 

 

8             : Thermo stress viscosity coefficient 

 

3          : Strain thermal conductivity coefficient 

 

k 1   : Fourier Thermal conductivity coefficient 

 

 6a         : Thermo mechanical stress interaction coefficient (non dimensional form) 

 

3b             :  Strain thermal conductivity coefficient (non dimensional form) 

 

1. Introduction 

The non-Newtonian nature of materials has been the subject of extensive study for over 

one and half centuries. It is only in last seven or eight decades that serious attempts have 

been made to extend these investigation in the realm of non-linearity. The failure of the 

linear theories in predicting to a reasonable extent the mechanical behaviour of materials 

such as liquid polymers, fluid plastic, the molten metals etc., subjected to stresses has 
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been the motivating force behind study of the non-linear theories for material description. 

A non- linear generalization of the Voigt type materials was proposed by Koh Eringen[5]. 

Some of the non-liner theories proposed so far (listed in references) have not taken into 

account the strong dependence of visco-elastic behaviour upon thermal conduction i.e. 

interaction/interrelation between mechanical and non mechanical (such as thermal, 

chemical, electromagnetic etc.,) effects even though the large amount data of 

experimental evidence indicate a strong dependence of visco-elastic nature of the fluid 

upon thermal behaviour. For example materials such as solid propellants exhibit a 

mechanical behaviour at moderate temperature variations, where as little or no correlation 

between them would be observed with that under the isothermal condition. 

The concept of thermo-viscous fluids which reflect the interaction between thermal and 

mechanical responses in fluids in motion due to external influences was introduced by 

Koh and Eringin[5]. Kelly[4] studied some simple shear flows of non-Newtonian second 

order thermo-viscous fluids . Green and  Naghdi[2,3] has given a new theory on thermo-

viscous fluids. Nageswara Rao and Pattabhi Ramacharyulu[8]  later studied some steady 

state problems of certain flows dealing with thermo-viscous fluids. Some more problems 

of thermo-viscous flows studied by Anuradha[1] and Nagaratnam[7] in different 

geometries. Muthuraj and Srinivas[6] studied flow of a thermo-viscous fluid through an 

annular tube with constriction. Nageswara rao and Pattabhi Ramacharyulu[9] examined 

steady flow of a second order thermo-viscous fluid over an infinite plate. Nageswara rao 

and Pattabhi Ramacharyulu[10] presented steady flow of a thermo-viscous fluid through 

straight tubes. Nageswara rao and Pattabhi Ramacharyulu[11] studied A note on steady 

slow motion of thermo-viscous fluid through a circular tube. Pothanna and Srinivas et al., 

[14] examined the problem Linearization of thermo-viscous fluid in a porous slab 

bounded between two fixed permeable horizontal parallel plates in the absence of thermo-

mechanical interaction coefficient in 2014.  Pothanna et al., [13,14,15] examined some 

steady and unsteady state problems dealing with certain flows of thermo-viscous fluids 

between parallel plates with various assumptions. As proposed by Koh and Eringin the 

stress-tensor ‘ t ’ and heat flux bi vector ‘ h ’ are expressed as polynomial functions, viz.,  

the rate of deformation tensor ‘ d ’: 

 

)(8

2

6

2

531 bddbbddIt    

 and  

 

)(31 dbbdbh    

 

with 

2/)( ,, ijjiij uud   

 

and thermal by gradient bi vector ‘b ’ 

kijkijb   

 

where 
iu  is the 

thi  component of fluid velocity and   is the fluid temperature. The 

constitutive parameters
i ,

i  being polynomials in terms of d  and b  in which the 

coefficients depend on fluid density(  ) and the temperature( ). The  fluid is called 

Stokesian fluid if the stress tensor depends on the rate of deformation tensor ‘ d ’ and it is 

called Fourier-heat-conducting fluid when the heat flux bi-vector depends on the 

temperature gradient, the coefficients 1 and 
3  may be identified as the fluid pressure 
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and coefficient viscosity coefficient respectively and 
5  as that of cross-viscosity 

coefficient. 

The flow of incompressible thermo-viscous fluids in general satisfies the usual 

following conservation laws(equations): 

 

Law of conservation of mass(equation of continuity): 

 

0
,

v
i i

  

 

Law of conservation of momentum(equation of momentum): 

 

ijikkik
i tFvv
t

v
,, 
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







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and the energy equation(Law of Conservation of energy): 

 

  iiijij qdtc ,

.

   

 

where   
 

th

k kF   Component of external force per unit mass, 

 

c  Specific heat, 

 

 =Thermal energy source per unit mass  

 
th

i iq   Component of heat flux bivector  = 2/jkijk h  

 

ijt  The components of stress tensor 

 

ijd  The components of rate of deformation tensor 

The investigation of the flow of thermo-viscous flows has become an important 

topic due to the recovery of crude oil from the pores of reservoir rocks , the 

extraction and filtration of oil from wells, the oil reservoir treated by the reservoir 

engineer, the extraction of energy from geo-thermal regions are some of the areas in 

which thermo-viscous flows have been noticed. Keeping this in mind the relevance 

and growing importance of thermo-viscous fluids in geophysical fluid dynamics, 

chemical technology and industry; the present paper attempts to study the various 

material parameters effects on Drag, velocity and temperature fields in the steady 

flow around a moving circular pipe in a thermo-viscous fluid in the absence of 

pressure gradient. 

 

2. Mathematical Formulation and Solution 

Let us consider the cylindrical polar coordinate system ),,( zr  with the z-axis is along 

the axis of the pipe and r  is the radial distance from the centre of the pipe. The flow is 

represented by the velocity ))(,0,0( ru  and the temperature of the fluid )(r . This choice 
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of velocity satisfies the law of conservation of mass 0
,

v
i i

 . The flow is assumed under 

the constant temperature gradient and in the absence of pressure gradient.  
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Figure 1. Physical Model 

The flow is assumed under the constant temperature gradient and in the absence of 

pressure gradient. This assumption leads the basic governing equations characterizing the 

flow are the following: 

 

In the radial direction: 
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In the transverse direction: 
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In the axial direction(z-direction): 
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and the energy equation: 
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The boundary conditions of the problem are: 

 

finiteruuaru a  )(,)(                (5) 

 

and 

 

finiterar a  )(,)(                 (6) 
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The flow is generated is assumed in the absence of pressure gradient 












z

p
, external 

force in the Z-direction and the internal energy source. Further, for the slow steady 

motion of the fluid, the non-linear terms in the equations (3) and (4) could be neglected.  

 

Now the momentum equation in z-direction reduces to  

 

 2
26

20  cu                  (7) 

 

and the energy equation reduces to 

 

uckucc 2
23

2
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The equations (7) and (8) represent the coupled equations in  u  and  . 
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
2   is the constant temperature gradient, 6  is the thermo-stress coefficient 

and 3  is called thermal conductivity coefficient. 

 

The boundary conditions of the problem for the flow around the moving circular pipe are 

 

finiteruuaru a  )(,)(       (9) 

 

and 
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The following non-dimensional quantities are introduced to covert the above equations in 

non-dimensional form: 
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The boundary conditions in non-dimensional form are reduced to 

 

finiteRUURU a  )(,)1(      (13) 

and 

 

finiteRTRT  )(,1)1(       (14) 

 

Solving the equations (11),(12), (13) and (14), we get the velocity and temperature 

fields as  

 

aU
mK

mRK
RU

)(

)(
)(

0

0                (15) 

 

 and 

 

11
)(

)(1

1
)(

0

0

2
36

1 











 a

r

r U
mK

mRK

mpba

p
RT


     (16) 

 

Nussult number on the boundary is obtained as: 

 

a

r

r
R U

mK

mK

mpba

p

R

T

)(

)(1

1
|

0

1

36

1
1










 

 

Drag force on the boundary is obtained as: 
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Using the equations (15) and (16) in the equation (1) in the absence of external force in 

the radial direction. The Pressure Distribution is obtained as: 
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It is observed that the pressure distribution is effected by the physical parameters such 

as  the coefficient of (Reiner-Rivlin) cross-viscosity( c ),Thermo mechanical stress 

interaction coefficient )( 6a , Strain thermal conductivity coefficient )( 3b  and the prandtl 

number )( rp . 
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3. Graphs 
 

      

   Figure 2. Velocity  versus 6a  and               Figure 3. Velocity versus 6a  and  

                            
13 b                                                               33 b  

 

        
     Figure 4. Velocity  versus 6a and       Figure 5. Temperature  versus 6a and 

                          53 b
                                                          

13 b  

 

  

 Figure 6.Temperature versus 6a and       Figure 7.Temperature versus 6a and  

                               
33 b

                                                     
53 b  
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       Figure 8. Drag versus 6a  and                  Figure 9. Drag versus 6a  and  

                               
13 b

                                                      
33 b  

 

 

Figure 10. Drag versus 6a  and 53 b  

4. Results and Discussion 

The flow under the assumption of slow steady motion of a fluid is considered and this 

paper deals with steady flow around a moving circular pipe in a Thermo-viscous fluid in 

the absence of pressure gradient with the constant temperature gradient. 

The effects of material parameters such as Strain thermal conductivity coefficient(
3b ), 

and thermo-mechanical stress interaction coefficient on  the velocity field, temperature 

distribution and on the Drag have been illustrated  for the fixed  values 1 , 12 C ,

1rp , 11   and 11 a . 

The variations of velocity profiles for different values of Strain thermal conductivity 

coefficient(
3b ), and thermo-mechanical stress  interaction coefficient )( 6a  are shown in 

Figures (2-4). The variations of temperature profiles for different values of Strain thermal 

conductivity coefficient(
3b ), and thermo-mechanical stress  interaction coefficient )( 6a  

are shown in Figures (5-7). The Drag variations of the fluid for different values of Strain 

thermal conductivity coefficient(
3b ), and thermo-mechanical stress  interaction 

coefficient )( 6a  are shown in Figures (8-10).  

From the Figures (2-4), it is observed that the velocity of the fluid decreases at the 

slower rate as the value of  thermo-mechanical stress  interaction coefficient )( 6a
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increases. The Figures (2-4) also depicts that , the velocity of the fluid increases as the 

values of Strain thermal conductivity coefficient(
3b ) increases. 

It is noticed from the Figures (5-7) that the temperature of the fluid increases at the 

faster rate as the value of thermo-mechanical stress  interaction coefficient )( 6a and Strain 

thermal conductivity coefficient(
3b ) increases.  

From the Figures (8-10), it is observed that the Drag of the fluid increases at the slower 

rate as the value of thermo-mechanical stress interaction coefficient )( 6a increases. From 

the Figures (8-10) it is observed that, the Drag of the fluid decreases as the values of 

Strain thermal conductivity coefficient(
3b ) increases. 

From the Figures (2-10), it is found that the velocity of the fluid, for the various 

physical parameters of the flow, the temperature of the fluid and the Drag of the fluid 

decreases as the flow is far away from the circular pipe and this presents the physical 

insight of the problem. 

 

5. Conclusions 

The steady flow of a thermo-viscous fluid around a moving circular pipe in the absence 

of pressure gradient with the constant temperature gradient is considered. The following 

conclusions are drawn from the above illustrations: 

1. Increasing the value of thermo-stress viscosity coefficient decreases the velocity 

of the fluid and increasing the value of thermo conductivity coefficient increases 

the velocity of the fluid around the moving circular plate. 

2. The temperature of the fluid increases at faster rate for increasing both the values 

of thermo-stress viscosity coefficient and thermo conductivity coefficient. 

3. The Drag on the boundary of moving circular plate increases for increasing the 

value of thermo-stress viscosity coefficient and decreases for increasing the 

thermo conductivity coefficient. 
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