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Abstract 

This paper deals with the study of unsteady flow of a conducting dusty fluid due to 

linearly stretching cylinder with variable viscosity and variable thermal conductivity. 

Present work investigates effects of temperature dependent viscosity and thermal 

conductivity on the velocity, temperature and species concentration profiles. The partial 

differential equations governing the boundary value problem are transformed into 

ordinary differential equations with the help of similarity transformations. Resultant 

equations are solved numerically using fourth order Runge–Kutta method with shooting 

technique. The influences of various parameters that characterize the flow on velocity, 

temperature and species concentration profile have depicted graphically and analyzed for 

both the fluid and dust phases. Numerical values of skin-friction coefficient, Nusselt 

number and Sherwood number are tabulated for various parameters. 

 

Keywords: Variable viscosity, variable thermal conductivity, unsteady flow, stretching 

cylinder and Shooting technique. 

 

Nomenclature: 

 

0a        constant  

cm        specific heat of dust particles at constant  

           pressure 

cp        specific heat of fluid at constant pressure 

Dm      mass diffusivity  

K         Stokes’ resistance(drag co-efficient) 

l          mass concentration 

m         mass of the dust particle 

N         umber density of the particle phase 

(u,w)   velocity components in the r and z 

directions  

           of the fluid phase 

Sc      Schmidt number 

T         temperature of the fluid inside the 

boundary  

           layer 

Tp        temperature of the dust particles inside 

the  

           boundary layer 

(up,wp)  velocity components in the r 

and  

             z directions of the dust phase 

z and r  cylindrical polar coordinates  

             measured in axial and  

             radial directions, 

β         constant of expansion/ 

contraction  

            strength 

β*        volumetric coefficient of 

thermal  

            expansion 

c        thermal conductivity variation  

            parameter 

r        viscosity variation parameter, 

         coefficient of dynamic 

viscosity 

p           density of the particle phase 
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Tp∞      temperature of the dust particles in the 

free- 

           stream 

T       temperature of the fluid at free Stream 

       kinematic viscosity of the fluid in the free  

           stream 

        density of the fluid 

              

       coefficient of dynamic 

viscosity  

            of the ambient fluid  

        electrical conductivity 

       relaxation time of particle phase 

       constant density ratio   

1. Introduction 

The hydromagnetic flow, heat and mass transfer of a dusty fluid over a stretching 

cylinder has gained considerable attention due to its applications in various fields of 

engineering and environmental sciences. In recent years, engineers and scientists have 

interested in gas-solid particle flows which arise in many industrial applications. It has 

several applications in the fields of combustion, fluidization, gas cooling systems, 

petroleum industry, hot rolling, electrostatic precipitation, purification of crude oil, 

polymer technology, cement process industry, steel manufacturing industry, fluid droplets 

sprays etc. In such situations, the quality of the product depends on the rate of cooling 

process and the process of stretching/shrinking (Bachok et al. [1]). 

Sparrow and Gregg [2] have found the first approximate solution for the boundary 

layer flow over a vertical cylinder with heat flux using the power series expansion and 

similarity method. The boundary layer axi-symmetric flow of a viscous fluid towards a 

stretching circular cylinder with slip condition at the boundary has been presented by 

Mukhopadhyay [3]. The effect of first order thermal slip and second order momentum slip 

on the flow of viscous incompressible fluid over a shrinking cylinder was investigated by 

Mishra and Singh [4]. Hakiem and Rashad [5] analyzed the non-Darcy natural convection 

flow over a vertical cylinder in saturated porous medium with temperature-dependent 

viscosity. Chamkha et al. [6] discussed the effect of temperature dependent viscosity on 

the heat and mass transfer by non-Darcy free convection flow of viscous fluid over a 

vertical circular cylinder embedded in a porous medium. Abbas et al. [7] studied laminar 

MHD flow and heat transfer over a stretching cylinder in porous medium with thermal 

radiation. The numerical solutions of steady stagnation point flow of an incompressible 

viscous electrically conducting nano fluid towards a stretching cylinder with thermal 

radiation  and heat exchanges at the surface was obtained by Akbar et al. [8].  

It is interesting that in the above-mentioned works, fluids are considered in pure form. 

But, it is well known that air and water, by nature, contain impurities like dust particles 

and foreign bodies. In fact, the problem of two-phase flows in which solid particles are 

distributed in clean fluid has several practical applications such as the environmental 

pollution, sedimentation, centrifugal separation of particles, blood rheology, purification 

of crude oil and physiological flows. There are many investigations on this topic. Saffman 

[9] carried out pioneering work on the motion of dust particles in a laminar flow. He 

derived the equations for the flow satisfied by small disturbances of a laminar steady flow 

and discussed the effects of the dust on the motion of a gas carrying fluid. Nayfeh [10] 

studied oscillating dusty flow through a rigid pipe. Gupta and Gupta [11] have discussed 

flow of a gas containing solid particles in a channel with arbitrary time varying pressure. 

Flow of a dusty fluid in boundary layer over a semi-infinite flat plate was analyzed by 

Datta and Mishra [12]. Ramamurthy [13] investigated the effects of free convection on 

the Stokes problem for the flow of dusty fluid in an infinite vertical plate. Attia [14] has 

analyzed unsteady MHD Couette flow and heat transfer of dusty fluid with variable 

physical properties. Palani and Kim [15] obtained the approximate solution for the flow of 

a dusty-gas along a semi-infinite vertical cylinder. Gireesha et al. [16-18] discussed 
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interesting results on the flow of dusty fluid due to linear and exponential stretching of 

porous and non porous sheet with various effects like radiation, source/sink parameter, 

viscous dissipation etc. Recently Manjunatha [19] was studied effect of radiation on MHD 

flow and heat transfer of dusty fluid over a stretching cylinder in a porous medium.  

In most of the studies, mentioned above, authors restricted their studies to steady flows 

of a dusty fluid over stretching sheet. But recently, boundary layer unsteady flow of a 

dusty fluid over stretching cylinder has received considerable importance due to its many 

applications. It is also seen that, a number of investigators restricted their investigations 

by assuming viscosity and thermal conductivity of the fluid as constant.  However, it is 

known from the work of Herwig and Wicken [20] that these properties may change with 

temperature. A theoretical investigation of the effects of temperature dependent viscosity 

on forced convection over a flat plate in porous medium has been presented by Ling and 

Dybbs [21]. So, more accurate prediction for the flow, heat transfer and mass transfer can 

be achieved by taking into account the variation of such properties with temperature. 

Hazarika and Konch [22] and Konch and Hazarika [23] have studied the influence of 

varying viscosity and thermal conductivity on convective heat and mass transfer in the 

flow of dusty fluid with radiation and viscous dissipation.  

In this paper, we consider unsteady flow of a dusty fluid over a stretching cylinder and 

taking viscosity and thermal conductivity are functions of temperature. Here we focus on 

the effects induced by governing parameters on the flow, heat and mass transfer 

phenomena in presence of magnetic field.  

The partial differential equations of the flow problem are reduced into ordinary 

differential equations employing similarity transformations. The resultant nonlinear 

ordinary differential equations are solved numerically by fourth order Runge-Kutta 

method together with shooting technique. Numerical results are presented as graphs and 

scrutinized. Effects of the parameters governing the flow on the velocity and temperature 

fields for both fluid and dust particle phase are discussed. Moreover, numerical results for 

the skin-friction coefficient, Nusselt number and Sherwood number are presented in a 

table. 

 

2. Mathematical Formulation 

Consider an unsteady laminar boundary layer flow of viscous incompressible 

dusty fluid over a stretching cylinder. The z-axis is measured along the axis of 

cylinder and r-axis is measured in the radial direction as shown in Fig. 1. Diameter 

of the cylinder is assumed to be a function of time with radius 0( ) 1r a t a t   . 

Further, a magnetic field of uniform strength B  is introduced along radial direction. 

 

 
 

                       Figure 1. Schematic Diagram of the Flow Problem 
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The analysis of this study is based on following assumptions: 

 Physical properties are assumed as constant except for the fluid viscosity and 

thermal conductivity. 

 Magnetic Reynolds number is assumed to be small therefore the induced 

magnetic field is negligible (Sutton [24]). 

 Dust particles are assumed as electrically non-conducting, spherical in shape 

having the same radius and mass, and un-deformable.  

 Number density of dust particles is taken as constant throughout the flow. 

 

Using these assumptions together with usual boundary layer approximations and 

following Saffman [9] we get the equations of motion as: 

 

For the fluid phase: 

 

Equation of continuity:  

1 ( )
0

ru w

r r z

 
 

 
                                                      (1) 

Equation of momentum:  

2

0

1
( )p

w w w w
u w r KN w w B w

t r z r r r
  

       
        

       
              (2) 

Equation of energy: 

21
( ) ( )

p

p p p

T v

NcT T T T N
c u w r T T w w

t r z r r r
 

 

       
         

       
          (3) 

Equation of species concentration: 

1
( )p

c

m
C C C C mN

u w rD C C
t r z r r r 

     
     

     
                                      (4) 

 

For the dust phase: 

 

Equation of continuity:   

( ) ( )1
0

p p p pr u w

r r z

  
 

 
                                                                                            (5)  

Equations of momentum:  

( )
p p p

p p p
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u w u u

t r z m
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Equation of energy:    
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                                                         (8) 

Equation of species concentration: 

( )
p p p
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C C C mN
u w C C

t r z 
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The boundary conditions for the flow problem are given by: 

At   ( )r a t :   0u  , 
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z
w
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(1 )

w

Az
T T z t T
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w
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C C z t C
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As  r  :    pu u , 0w , 0pw  , p  , T T , 
pT T , 0pw  ,      (10)     

                         
p  , T T  , 

pT T , C C ,  
pC C    

                                      

where  A and B are positive constants. 

In order to reduce the nonlinear partial differential equations, governing the flow, into 

ordinary differential equations we can use the following similarity transformations: 
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where ( )f  , ( )   and ( )   are the dimensionless stream function, temperature and 

species concentration of the fluid phase, respectively. ( )F  , ( )p   and ( )p 
 
are the 

dimensionless velocity, temperature and species concentration of the dust phase, 

respectively. 
 
is the similarity variable, 

p

r





 is the relative density. The prime ( ' ) 

denotes derivative with respect to η. 

Viscosity of the fluid is assumed to be an inverse linear function of temperature, 

and it can be expressed as following Lai and Kulacki [25]:   

 
1 1

1 T T
 





                                                        (12)              

or,  
1

rT T

  , where 






  and       1
rT T


   

Moreover, thermal conductivity of the fluid varies with temperature. Following 

Choudhury and Hazarika [26], we assumed thermal conductivity of the fluid as:  

 
1 1

1 T T
 





                                                                           (13) 

or,  
1

cT T

  , where 





  and 

1
cT T


  . 

Here α,  ,  ,  , 
rT   and  

cT   are constants and their values depend on the reference 

state and thermal properties of the fluid i.e.,   ( kinematic viscosity) and  λ (thermal 

conductivity).  
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Let us introduce two dimensionless parameters as: r
r

w

T T

T T
 







is the 

dimensionless reference temperature corresponding to viscosity, called the viscosity 

variation parameter and c
c

w

T T

T T
 







is the dimensionless reference temperature 

corresponding to thermal conductivity, called the thermal  conductivity variation 

parameter. It is also important to note that r and c are negative for liquids and positive 

for gases (Kuppalapalle et al. [27]). 

Using these two parameters in Eqs.(12) and (13) we get coefficient of viscosity 

and thermal conductivity as: 

                           r

r

 


 
 


 and c

c

 


 
 


.                                                (14) 

Substituting Eqs. (11)-(14) into Eqs. (2)-(10), we get the following nonlinear ordinary 

differential equations: 
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2 2

1 22
Pr( ) Pr ( ) Pr ( ) 0
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                                                                                                                              (19) 
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2
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                     (21) 
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The boundary conditions Eq. (10) reduces to: 

 

0, 1, 1, 1f f        at   1  , 

0, , 0, , 0, 0, 0, 0p pf F f G H                  as                  (23) 

 

where the dimensionless parameters are defined as follows: 
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 is fluid particle interaction parameter for velocity, 
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  is fluid particle interaction parameter for temperature, 
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number, 

2

0B
M

c




 is magnetic field parameter, Pr

pc







 is Prandtl number, 

2

0

4

a
S





  

is unsteadiness parameter, l= mN/ρp  is mass concentration, τ= m/K   is relaxation time of 

the particle phase, ρr=ρp /ρ is relative density, 
p

m

c

c
    is a constant.  

 

2.1. Skin-friction Coefficient, Nusselt Number and Sherwood Number 

 

Skin-friction coefficient (Cf), Nusselt number (Nu) and Sherwood number (Sh) are the 

parameters of physical and engineering interest for the present problem, which physically 

indicate the wall shear stress, rate of heat transfer and rate of mass transfer, respectively.  

 

Skin-friction coefficient is defined as 

2
2/

w
f

w

C
w




 ,  where w
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is the shearing stress. 

Using the non-dimensional variables we get the skin-friction coefficient as 
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.                                                                                     

The Nusselt number is defined as 

( )
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  is the heat transfer from the sheet. 

Using the non-dimensional variables we get 

2
(1)

1

c

c
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.      

The Sherwood number which is defined as 

( )

w

w

xm
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Dm C C 




, where  w

r a

C
m Dm

r 

 
  

 
is the mass flux at the surface and 

mD  is the diffusion constant at free stream.  

Using the non-dimensional variables we get 

1 2
(1)

1

r

r

Sh Sc





 


. 

 

3. Results and Discussion 
 

The Eqs. (15)–(22) governing the flow subject to boundary conditions Eq. (23) are 

solved numerically using fourth order Runge-Kutta method together with shooting 

technique. Numerical values are computed by developing suitable codes in MATLAB for 

the method. 

In order to analyze the problem physically, a representative set of numerical results is 

shown graphically for velocity and temperature fields in Figures 2–11, to illustrate the 

influence of physical parameters embedded in the flow system. Numerical values of the 

parameters used for simulation are: M=0.5, Pr=0.71, β=8, Ec=0.05, S=-2, Sc=0.22, 

Scp=0.22, 5r   and 3c  , unless otherwise stated. 
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The effects of viscosity variation parameter r on velocity and temperature profiles are 

shown through Figures 2 and 3, respectively. From Figure 2 it is observed that the 

velocity decreases with the increase of the viscosity variation parameter for both the fluid 

and dust phases. This is because of the fact that when temperature increases, viscosity of 

gas increases and hence velocity decreases. It is in good agreement with the work of 

Rashed [28]. On the other hand an increase in the value of r  results in an increase in the 

thermal boundary layer thickness. Hence the temperature increases (Figure 3) as viscosity 

variation parameter increases.  
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        Figure 4. Velocity Profile for         Figure 5. Temperature Profile for  
                          Different Өc                                               Different Өc 

 

Figure 4 shows the influence of the thermal conductivity variation parameter 
c on 

velocity profiles of both fluid and dust phase. It is seen from this figure that velocity 

increases with the increase of the thermal conductivity variation parameter. It is due to the 

fact that temperature decreases with the increasing values of 
c  and as a result viscosity 

decreases and so velocity increases.  

From Figure 5 it is observed that temperature of both the fluid and dust phases 

decreases with the increasing values of 
c . It is due to the reason that the thermal 

conductivity decreases when 
c increases and as result temperature decreases.  

Velocity and temperature fields for different values of the magnetic parameter M are 

depicted in Figures 6 and 7, respectively. From these figures it is seen that velocity 

decreases for increasing values of the parameter M while temperature increases as M 
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increases for both the fluid and dust particles. This is because of the fact that when a 

transverse magnetic field is introduced to an electrically conducting fluid, the fluid 

experiences a resistive type of force known as the Lorentz force. Due to this force, friction 

between adjacent layers increases and as a result motion of the fluid decreases and 

temperature increases of both the fluid and dust phases in the boundary layer.  
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     Figure 6. Velocity Profile for            Figure 7. Temperature Profile for  
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       Figure 8. Velocity Profile for       Figure 9. Temperature Profile for  

                         Different S                                            Different S 
 

Figure 8 represents the velocity profile of both fluid and dust phases for different 

values of unsteady parameter S. From this figure one can seen that velocity increases with 

the increase of S. It is also observed that thickness of boundary layer increases with 

increasing values of S. 

Figure 9 shows that temperature of the fluid increases with increasing values of S. It is 

due to the reason that rate of heat transfer decreases with increasing the value of S, as a 

result temperature increases. 

Figure 10 indicates the velocity field of fluid and dust particles for various values of 

Prandtl number Pr. Here it is noticed that the effect of Prandtl number values greatly 

affects the velocity of the fluid and dust phase. The velocity of the fluid and dust phases 

increases as the Prandtl number Pr increases.  

Figure 11 demonstrates the effects of Prandtl number (Pr) on temperature profile. We 

infer from this figure that temperature of the fluid and dust particle decreases significantly 

with the increase in Pr. This is because of the fact that increase in Pr indicates the 

increase of fluid heat capacity or decrease of the thermal diffusivity, which causes a 

diminution of the influence of the thermal expansion to the flow. As a result temperature 

decreases in the boundary layer. 
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    Figure 10. Velocity Profile for           Figure 11. Temperature Profile for  
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  Figure 12. Concentration Profile for      Figure 13. Concentration Profile for  

                          Different r                                                     Different  
c  

 

Figures 12 and 13 display the effect of r and c  on species concentration profile 

within the boundary layer. We observed that species concentration decreases with the 

increasing values of both r  and c . It is due to the fact that increasing value of r  and 

c  
, mass diffusivity increases and as a result species concentration decreases for both the 

fluid and dust phases. 

The calculated values of skin-friction coefficient, Nusselt number and Sherwood 

number for various values of flow governing parameters are presented in Table 1. It is 

observed that an increase in the viscosity variation parameter r leads to increase in the 

values of skin-friction coefficient, where as a decrease in the values of the Nusselt 

number. This effect arises because as the viscosity variation parameter increases, fluid 

boundary layer thickness decreases. Hence the value of the wall velocity gradient to 

increase yielding decreases in the skin friction coefficients and increases in the Nusselt 

number. 

It is also noticed that with increase in the parameters 
c  and S the skin-friction 

coefficient decreases but it increases with M increased. A significant decrease is remarked 

in case of Nusselt number when there is an increase in the value of the parameters M and 

S. From the table it is also observed that an increase in the value of 
c leads to a decrease 

in the Nusselt number. It is due to the reason that thickness of the thermal boundary layer 
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decreases with the raise of  
c  and as a result wall temperature gradients decreases. 

Physically negative values of fC mean that surface exerts a drag force on the fluid, so 

that stretching surface will induce the flow. From the table it is also observed that 

Sherwood number decreases significantly for increasing values of S. 

 

Table 1. Effects of r ,
 c , M  and  S  on Local Skin-friction Coefficient( fC ), 

Local Nusselt Number( Nu ) and Sherwood Number (Sh) 

 

r  
c  M S 

fC  Nu Sh 

3 

5 

7 

 

3 

 

0.5 

 

-2 

-3.7757 

-3.70327 

-3.67615 

4.269967 

4.249719 

4.241769 

13.9999 

13.4527 

13.2368 

 

5 

3 

5 

7 

 

0.5 

 

-2 

-3.70327 

-3.69998 

-3.69869 

4.249719 

4.243165 

4.243022 

13.4527 

13.4073 

13.3902 

 

5 

 

3 

1 

2 

3 

 

-2 

-3.86581 

-4.16282 

-4.43051 

4.243082 

4.231584 

4.221891 

13.4460 

13.4344 

13.4247 

 

5 

 

3 

 

0.5 

-3 

-2 

-1 

-4.57301 

-3.70327 

-2.93163 

5.056291 

4.249719 

3.607416 

15.46842 

13.45271 

11.52169 

 

 

4. Conclusions 

The unsteady flow of an incompressible, viscous and electrically conducting dusty 

fluid over a stretching cylinder in the presence of a magnetic field has been studied 

numerically. The effects of various physical parameters such as viscosity variation 

parameter ( r ), magnetic parameter (M), thermal conductivity variation parameter (
c ) 

and unsteady parameter (S) on flow, heat and mass transfer characteristics are discussed 

with the help of graphs and table. Some of the significant findings have been made for 

this study as presented below:  

 An increase in the value of viscosity variation parameter retards the velocities of fluid 

and dust phase while it enhances the temperature profiles of both the phases. 

 Velocities of fluid and dust phase increases for increasing values of thermal 

conductivity variation parameter whereas temperature of fluid and dust phase 

decreases in the boundary layer with it.  

 The effect of magnetic parameter is to decrease the fluid and particle velocities, which 

is due to Lorentz force. 

 The effect of unsteady parameter is seen to increase in both the velocity and 

temperature profile of fluid and dust particles. 

 Velocity of fluid and dust particles increases with increasing Prandtl number whereas 

temperature of fluid and dust particles decreases with it. 



International Journal of Advanced Science and Technology 

Vol.99 (2017) 

 

 

68   Copyright ⓒ 2017 SERSC 

 Increasing values of viscosity variation parameter, thermal conductivity variation 

parameter and unsteady parameter increases skin-friction coefficient of dusty fluid but 

decreases rate of heat transfer. 

 Rate of heat transfer decreases with increasing values viscosity variation parameter 

and thermal conductivity variation parameter 

 Velocity and skin-friction coefficient of dust particles behaves same as dusty fluid. 

 Species concentration decreases with increasing variable viscosity parameter and 

thermal conductivity parameter. 
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