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Abstract 

It is proposed a translation methodology applied to temporal transient response 

characteristics to obtain parameters of the typical second order transfer function, in the 

frequency domain. This method based on automatic successive approximations, applying 

an inverse interpolation, will minimize overdesign and manual iteration in the process of 

searching for a controller in frequency. For each type of requirement, specific techniques 

are recommended to obtain specification translation, using the “ascending and 

descending differences Newton’s procedure” due to its practice advantages, compared to 

other interpolation procedures. It will be used as interpolation functions those describing 

step signal or pulse signal, with subcritical damping and approached with a second order 

transfer function. 

 

Keywords: Temporary specifications translation, frequency domain, inverse 

interpolation, quantitative feedback theory, tracking, sensitivity. 

 

1. Introduction 

In the technical design of controllers working in the frequency domain, as in QFT 

[9], the design specifications represent fulfillment requirements associated with the 

dynamics of the system to control in closed loop. These specifications or 

requirements are usually expressed in the time domain using temporary transient 

response characteristics [10], such as: 

 The rise time “tr” or “tr”, the maximum overshoot “Mp”, the maximum peak time 

“tMp”, the settling time “ts” or “ts” and settlement channel size or maximum 

permissible tolerance “dev”, typical of the response of a closed loop control 

system to a step change in the input. 

 The maximum peak value “fmax”, peak times “tp”, settling time “ts” or “ts” and 

settlement channel “dev”, associated with the response of a control system in 

closed loop disturbance rejection. 

The responses to these changes, unitary step or disturbance represented by 

unitary pulse, can be approximated well by the responses of underdamped second 

order systems of step or pulse, respectively, which are formally described based on 

the parameters, damping coefficient “” and natural frequency “n” [21]. 

If you start with time domain specifications and design stage of the control 

methodology used is performed in frequency, the initial requirements imposed must 

be transformed to the frequency domain. It is seeking transfer functions in the 

frequency domain that satisfy the envelope limits, upper and/or lower, generated by 

the temporary specification. Traditional methodologies, as described in [4], the 

technique in [17] or the model-based procedure used in [3], generally start with 

second order transfer functions, using different parameters of frequencies n and 

coefficients ; adding poles and zeros to the function, you get to go closer as you 

can to the original temporal specification. But in any case, all procedures are based 



International Journal of Advanced Science and Technology 

Vol.99 (2017) 

 

 

40   Copyright ⓒ 2017 SERSC 

on trial and error manual iteration, which ends when the designer decides that the 

function obtained is adequate enough. 

When you are talking about specifications translation from time domain to the 

frequency domain, actually you are not meaning to translate characteristics of the 

transient response (tr, ts, MP, ..) into specifications on the frequency response (gain 

margin and phase, bandwidth, M circles, ..). It is using the nomenclature, widely 

used by authors, as in [24] or [10], to reference the control stage that deals with the 

determination of any transfer function in the frequency domain, which provides an 

equivalent response to the given by temporary requirements imposed. 

 There are other ways to simplify the specifications transfer technique [21]: 

 Use classical hypothesis approximation of settling times; but only valid for 

tracking step inputs and settlement channels with 2% or 5% of the steady output 

value. 

 Graphically, using abacuses. 

A more accurate method which minimizes manual iteration and related 

overdesign problems [8], consists of using successive approximations to obtain the 

characteristics of transient response required, associated to specific parameters n 

and . This is possible because if you observe the formal description of the 

responses step type or pulse approximated to a second order system, you can see 

that they are doubly transcendental equations in the desired time characteristic 

(settlement or rise), respect to n and  . A particular method is presented in [15], 

for temporary specifications transfer tracking to obtain the lower frequency limit, 

described in the form of transfer functions with underdamped second order 

response. This method, specific for tracking requirements, uses inverse interpolation 

techniques described in this paper for step type responses. 

The aim of this work is to find techniques that provide transfer functions of 

second order in the frequency domain, whose responses are equivalent to those 

provided by the specifications imposed in the time domain. Its application in the 

design stage of frequency controllers must ensure a reduced overdesign and minimal 

iteration in the controller search process, for purposes of compliance with these 

temporal specifications and frequency transferred too. 

This paper is the continuation of the study begun to achieve the goal described 

above in Spanish in [16]. 

 

2. Temporary Specifications Translation to the Frequency Domain 

The importance of having a precise, automatic and specific methodology to 

translate temporary specifications to frequency is obvious, especially in the final 

stage of system responses analysis in control techniques, where the controller design 

is done in the frequency domain [13]. With a precise temporary specification 

transfer to the frequency domain, the specifications compliance in frequency will 

also mean fulfilling of them in time with a higher probability. Thus, the necessary 

degree of manual iteration can be reduced simply carrying out an adequate 

translation of specifications. 

The use of successive approximations to the time parameter searched, applying 

any inverse interpolation method [14], specific for each type of requirement, will 

provide a tool for reducing manual iteration in the design process.  

Specific techniques for specifications translation developed will be based on the 

“Newton‟s method by ascending and descending differences of 5
th

 order”. This 

method was chosen over other traditional ones for interpolation, such as the 

Lagrange‟s polynomial, because of its practical advantages [11]: 

 It requires less arithmetic operations. 
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 No need to restart the computer, if you want to add or remove a set point that is 

used to construct the final polynomial. 

In this sense, the first thing to consider is the type of function and, secondly, the 

temporal response characteristic to interpolate. The function is directly related to the 

type of specification to be treated. 

 There are the specifications based on responses to step inputs tracking: 

 Upper limit tracking, an input reference with maximum value “rmax” will be 

tracked by an output which must not exceed the amplitude “ymax” [18]. See 

Figure 1, case (a) 

 Lower limit tracking, an output signal will track a step input in an 

underdamped way, not exceeding a maximum specific values of overshoot, 

rise time, settling time and settlement channel [20]. See example in Figure 2. 

 Also, there are specifications associated with responses typed underdamped 

pulse, induced by an input disturbance, such as: 

 Generic sensitivity, a disturbance “In” produces an output response pulse, not 

exceeding maximum specific amplitude “Out” and settling on after a specific 

maximum time T [5]. See in Figure 1, case (b). 

 Specific sensitivity, an input disturbance generates a pulse output between two 

specific values “[± Out, ± Outmax]”, but for a limited time T ,  settling into a 

channel with amplitude ±Out [7]. See example in Figure 4. 
 

 
 

Figure 1. Specification Examples: (a) Upper Frequency Tracking Limit 
(Minimum Times and Maximum Overshoot), (b) Generic Sensitivity 

(Upper Frequency Limit) 
 

The main objective of this work is to associate each time specification indicated 

with a transfer function, representative of a second order underdamped system with 

parameters n and , as an approximation in the frequency domain. Why use a 

second order approximation and not any other order? With this type of approach the 

process can be automatic. In [15] is also developed an approach to the envelope of 

lower and upper limits for tracking specifications based on higher order systems, but 

requires manual implementation procedure; compared to the automatic second order 

method, it is concluded that are not better the results with the higher-order system. 

In the second order approximation, the way to relate the specification response 

(time domain) with the equivalent parameters n and  (frequency domain) is 

through the function that formally describes the temporal response generated by the 

specification. That is, using the descriptive function of the unitary step signal or the 
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unitary pulse signal. Thus, it is used as a time dependent function any of the 

following: 
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Observe how in the functions (1) and (2) is implicit the temporal relationship to 

the frequency domain, through the parameters n and .Therefore, they can be used 

as interpolation functions of times (tr and/or ts) for different values of n and . In 

practice, the response characteristics to interpolate for each of the functions 

indicated will be, 

 The rise time and settling time of the step function (1), when working with 

tracking specifications of upper or lower limit. 

 The rise time and/or the settling time of the pulse function (2), when working 

with generic or specific sensitivity specifications. 

On the other hand, it can be argued that there are powerful tools such as Matlab 

functions that solve transcendental equations as proposed above. For example, with 

“solve” and “fsolve” really is so. In particular, “solve” searches analytical solutions 

(exact), while “fsolve” solves nonlinear equations by Gauss-Newton‟s method of 

least squares, using a mix of quadratic and cubic potential functions approximation. 

However, in the latter case, there is not an interpolation procedure, but an 

alternative method of nonlinear parametric adjustment [19]; i.e. “fsolve” can solve 

transcendental equations as proposed but, using an adjustment method, 

approximates to the function data, not to the function itself, as interpolation methods 

do; also, the approach is in one strict way, while the technique of differences that 

we use here, decides at each point if is more interested the progressive case 

(ascending) or the regressive one (descending), optimizing then the approach to 

each point and, obtaining a final function with minimal error respect  to the initial 

desired. Moreover, it is important to note that in the differences method proposed is 

selected a specific range of interpolation for each equation to be treated, in each 

particular situation, while “solve” and “fsolve” use generic criteria applicable to any 

function. This makes these functions are not able to find the desired times in some 

situations, particularly the settlement one, on the step/pulse function considered; 

specifically, for ts you need to search by intervals (between peak to valley or peak to 

peak) and, “solve/fsolve” work with the whole function directly. On the other hand, 

“solve” provides solutions in the complex plane (by requiring an exact solution), 

which in the case of step/pulse functions don‟t interest; searching temporary 

response characteristics by interpolation are only valid real positive solutions, which 

“solve” does not give in many cases. 

In conclusion, we will develop specifically independent technical for 

interpolation of temporal response characteristics on the step function and the pulse 

function, adapted and optimized to the type of specification that is intended to 

translate. In addition, a comparison of results will take place between interpolation 

techniques presented and resolution of the same problems with functions “solve” 

and “fsolve”. 
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3. Inverse Interpolation Technical on the Step Function 

It will be used a technique of inverse interpolation on the step function (1), for 

the translation of tracking specifications to the frequency domain, for both the  upper 

limit, as the lower. We will try to find the set of possible pairs (n,) associated 

with the underdamped second order functions that fulfill all temporary requirements 

for tracking required. 

The technique described in this section is an outline of the inverse interpolation 

technique on the step function, which can be found developed with more detail in 

[14] and [15]. 

It is used automatic iteration process, within the range of subcritical damping and 

limited by the maximum overshoot imposed (i.e., 1>>min, with min corresponding 

to Mp), so that for each damping coefficient is sought: 

1. On one hand, the rise time tr specified, associated to the pair (nr,). To do this, 

use the following relationship, demonstrated in [15]: 

 

nr

rt

tr
1                   (3) 

 

That is, given the initial temporary specification tr and, calculated by 

interpolation tr1 associated to the pair (n=1,), is obtained from (3) the value 

nr, related to tr for the coefficient .  

2. On the other hand, it is sought the settlement time ts required too, from which the 

response is adapted to a particular settlement channel and, which corresponds 

another pair (ns,). To do this, use the next relationship obtained from [15]. 

 

ns

st

ts
1                   (4) 

 

So, with the temporary specification ts, is calculated by interpolation ts1 

associated to the pair (n=1,), and then the parameter ns can get clearing in 

(4), related to ts for the damping coefficient . 

3. Choose as possible valid pair (n,), the one which represents the most 

restrictive condition for temporary joint condition (tr, ts): for the lower frequency 

limit  specification, n will be the greater value between nr and ns; for the 

upper frequency limit specification, n will be the lower value between both.  

4. Determine times trfinal and tsfinal associated with each possible pair (n,) found, 

again using on (1) inverse interpolation; if both trfinal and tsfinal fulfill the initial 

requirements given for tr and ts, the pair  (n,) associated will serve to generate 

a second order transfer function, possible solution in frequency. 

Note that, in any case of interpolation, the natural frequency is a parameter given: 

initially n=1 or n found later to verify possible validity of the pair (n,). 

Obtaining the equations (3) and (4) is detailed in [15], and the sense of the steps 

outlined above, when attempting to translate temporary specifications associated 

with step-like responses. 

 

3.1. Inverse Interpolation of the Rise Time tr(n,)
 
on the Step Function 

The rise time tr of an underdamped step response is common to define between 10 

and 90%, 5 to 95% or 0 to 100%, of its final value [21]. Here, we will apply the first 

interval (10 to 90%), because it is more complex, although for underdamped 

systems is more used the interval 0 to 100%. Therefore, using Alc as range 
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percentage parameter of final steady value, tr is defined associated to the pair (n,)  

as, 
 

     %10,,%90,,, 1090  AlctrAlctrt nnnr                (5) 

 

Thus, in this case, the statement is reduced to develop a technique for parameter 

interpolation type-like trAlc(n,,Alc), on the second order step function f(t) with 

subcritical damping. Considering that for any time t, the function f(t) is described as 

in (1), then, 
 

 tftf step)( ,   with 0<<1              (6) 

 

To trAlc, equation (6) takes the value, 
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If used for interpolation of f(t) the Newton‟s method by differences, accurately of 

5th order, generic formulas to be applied are as follows [1]: 

 In the case of “Descending Differences”: 
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(8) 

 

 In the case of “Ascending Differences”: 
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Where h is the time interval chosen for differences i of order i (1º,2º, ..).  The 

general procedure consists of calculating the parameter  per iteration. To do this, 

=F() is cleared and assigned an initial value F(0)=1. 

If 1 is appropriate, the process is terminated. Otherwise, continue assigning 

values F(1)=2, F(2)=3, .., until a result is obtained such that, |i-i-1|<|i-1-i-2|, 

with i=1,2,.. 

 Then, clearing  in equation (8) or (9); for example, in the descending 

differences (8) and, substituting, it has got, 
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To start the iteration is chosen, 
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For generic function (6) in question, the particular sequence of steps to be taken 

would be: 

1. Define the time interval h. Since the maximum overshoot Mp is reached in time 

tMp, a valid practical value of interval is 1/10 of it. That is to say, 
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And as discrete times using the following, 
 

};....;;0{ 1121 htthtttt nni  
 , with i=1,..,n              (13) 

 

Later, we will see that the choice of interval h of 10% tMp is not random. For the 

moment, consider that to cover with intervals h the time between 0 (t1) and tMp 

(t11) is needed 11 time instants, ie, n=11. 

2. Replace the values of earlier times (13) in the function f(t) (6), taking into 

account the known value of n 

3. Obtain the differences  of 1
st
, 2

nd
, 3

rd
, 4

th
 and 5

th
 order, from the relationships 

expressed in a table of differences, such as the one built in Table 1. Note how to 

obtain a differences table of 5
th

 order is necessary to sample 11 time instants. 

This is the reason to be for the chosen value h in (12). The user can increase the 

accuracy of interpolation using interpolation intervals h smaller, for example, 

1/20 or 1/30 times the tMp  

4. Find the t0 parameter to define the initial parameter 0 (11), choosing the most 

appropriate differences procedure (ascending or descending), from the following 

criteria (for example in Table 1 above, with 11 time instants sampled), 

If 
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That is, it is the nearest “point” with less value than the desired one. 

If 
100

)(
Alc

tf i   , with i=7,8,..,11. Then use, 

o Ascending Differences and, 
 

)()()( 0 tftftf i  , with 
ii ttt 1
(15) 

 

That is, the nearest “point” with higher value than desired. 

Being t the time to find, in this case defined as trAlc 

 
Table 1. Differences  for functions f(t) of 1st, 2nd, 3rd, 4th and 5th order  

 

f(t) 1
st
 Order 2

nd
 Order 3

rd
 Order 4

th
 Order 5

th
 Order 

f(t1) 11= f(t2)- f(t1) 21=12-11 31=22-21 41=32-31 51=42-41 

f(t2) 12= f(t3)- f(t2) 22=13-12 32=23-22 42=33-32 52=43-42 

f(t3) 13= f(t4)- f(t3) 23=14-13 33=24-23 43=34-33 53=44-43 

f(t4) 14= f(t5)- f(t4) 24=15-14 34=25-24 44=35-34 54=45-44 

f(t5) 15= f(t6)- f(t5) 25=16-15 35=26-25 45=36-35 55=46-45 

f(t6) 16= f(t7)- f(t6) 26=17-16 36=27-26 46=37-36 56=47-46 

f(t7) 17= f(t8)- f(t7) 27=18-17 37=28-27 47=38-37  

f(t8) 18= f(t9)- f(t8) 28=19-18 38=29-28   

f(t9) 19= f(t10)- f(t9) 29=110-19    

f(t10) 110= f(t11)- f(t10)     

f(t11)      

Descending differences: Start at the last value f(t11) 

Ascending differences: Start at the first value f(t1) 

5. Calculate initial 0,  using the expressions, 
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6. Calculate the values i (i=1,2,..) and the error in each iteration: it is used to 

control the correct or not loop output (Errori-1=|i-1-i|), besides the accuracy of 

the approximation.  

If descending differences, use: 
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Apply the following process: 

If Error1<Eps, then =2 and t=t0+h 

  

If Error1Eps, then continue iteration. 

 

Note 1: The accuracy obtained depends on the „Eps‟ user-defined parameter, that tells you 

the maximum error allowed in the iteration of applied research. 

If ascending differences, use: 
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211  Error                 (24) 

 

Apply the following process: 

If Error1<Eps, then =2 and t=t0+h 

  

If Error1Eps, then continue iteration. 

 

Note 2: For each  i (i=1,2,..), then 1º
=1i, 

2º
=2i, ... 

 

3.2. Inverse Interpolation of the Time ts(n,,dev)
 
on the Step Function 

The search procedure for settling time ts required is, in principle, the same as 

described for the previous rise time tr, except for the following special 

considerations: 

o With the parameter dev, it is defined the settlement channel with values in 

unitary percentage in the range given by, 
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100
1

desv
                 (25) 

 

o To obtain the settling time, it is going to observe the behavior of each signal 

semicycles at the zero-maximum_peak interval, for the first and, 

maximum_peak-minimum_peak, for the others: 

 If the first maximum peak is within the settlement channel, the settling time 

will be in the first semicycle, in the ascending interval (rise), before the peak 

considered. 

 If not, when a full semicycle (maximum_peak-minimum_peak) is within the 

settlement channel, time sought will be within the previous semicycle; 

otherwise, the settling time will be the time in reaching firstly the settlement 

channel plus the time sum of every semicycles 21  nn , until the signal 

is within the channel. 

The inverse interpolation of ts is performed between 0 and t1 (first semicycle), t1 

and t2 (second semicycle) and, so on until you find the appropriate value (Figure 3). 

It is true that for the determination of establishment time you can use the 

envelope of the function described in (1), without losing too much precision and, 

therefore, no numerical method would be necessary to find these parameters. 

However, the interpolation method proposed has been developed to search for rise 

times, impossible to determine accurately through the envelope said and, its use 

takes advantage of determining with more accurate ts or combinations type-like ts-tr, 

such as those that will be proposed in section 4 on the pulse function. 

 

3.3. Example application of Inverse Interpolation on the Step Function 

In the example of Figure 2, it has been used the application TD2WD.M, as 

indicated in Section 5, for obtaining the lower frequency limit in tracking. Resolved 

(6) applying different procedures, 

1. The inverse interpolation technique described in Section 3. 

2. The function „solve‟ on independent equations with one unknown (n and  

known), combined with the procedure associated with equations (3) and (4).  

3. The „fsolve‟ function with one unknown equations, combined with the procedure 

associated with (3) and (4). 

4. The „solve‟ function on a system of four equations with unknowns, 

tr10(n,,Alc=10%), tr90(n,,Alc=90%), n and ts(n,). The time ts, in this case, 

is described from the equation of the envelope on the step function, i.e. with, 

 

  
21

1







 snt

s

e
tf                (26) 

 

5. The „fsolve‟ function on a system of four equations with the unknowns indicated 

in paragraph 4 above. 

A summary of the results achieved is described in comparison between 

procedures of Table 2, where it is given the deviation obtained with each, as to the 

rise time (f(tr)-f(t)) and the settlement time (f(ts)-f(t)). 

a) Temporary specifications required were: 30% overshoot; maximum rise and 

settlement times of 5s and 20s, respectively, on a ±4% settlement channel. 
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Table 2. Results and Deviations Obtained with the 5 Procedures 
Proposed, for the Example in Section 3.3 

 

Method 
f(t)=0.9 f(t)=0.1 f(t)[0.96,1.04] 

tr(s) f(tr)  f(tr)- f(t) tr(s) f(tr)  f(tr)- f(t) ts(s) f(ts)  f(ts)- f(t) 

1 6.4993 0.90116 0.00116 1.4993 0.0953 -0.0047 17.0061 1.04 0 

2 10.0268 0.30058 -0.5994 5.02678 0.1 0 10.2866 0.31177 -0.6482 

3 3.6802 0.9 0 0.52787 0.1 0 20 1 0.04 

4   No possible - -     No possible - -    No possible - - 

5 5.8965 0.9 0 0.89645 0.1 0 20 1 0.04 

  1, Inverse interpolation by Newton‟s method of 5
th

 order  

  2, Function „solve‟ on independent equations 

  3, Function „fsolve‟ on independent equations 

  4, Function „solve‟ on system of equations 

  5, Function „fsolve‟ on system of equations 
 

b) Inverse interpolation response by Newton‟s method. Results shown in Figure 2a: 

o Maximum time response characteristics: 

 Final Mp of 19.83%. 

 Rise time calculated of 5s. Good deviations and perfect approach 

result to tr demanded. 

 Settling time calculated of 17s. Exact approach, with no deviation. 
 

 

Figure 2. Example of Tracking Specification with Maximum Time 
Response Characteristics, (a) Approximated by Inverse Interpolation, 

(b) Approximated Applying ‘Solve’ with Independent Equations 
 

c) The results obtained with the other four proposed comparative methods are: 

 Response applying „solve‟ with independent equations, shown in Figure 2b: 

o Maximum time response characteristics: 

 Final Mp of 1.35%. 

 Rise time calculated of 5s. But, because of the enormous deviation 

obtained for f(t)= 0.9 (90%), the tr(resp) is almost 25s. 
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 Settling time calculated of 10.29s. With the large deviation obtained 

for f(t)=0.96, ts(resp) is more than 35s. 

 Response applying „fsolve‟ with independent equations, shown in Figure 3a: 

o Maximum time response characteristics: 

 Final Mp of 0.0028%. 

 Rise time calculated of 3.15s. Perfect approach result to tr demanded. 

 Settling time calculated of 20s. With the bad deviation obtained for 

f(t)=0.96, ts(resp) is about 5s for ts(calculated) of 20s. 

 Response using „solve‟ with system of equations: For this example, there is no 

solution. 

 Response applying „fsolve‟ with equation system, shown in Figure 3b: 

o Maximum time response characteristics: 

 Final Mp of 0.11%. 

 Rise time calculated of 5s. Very good result that matches the required 

tr. 

 Settling time calculated of 20s. Bad results obtained for f(t)=0.96, so 

ts(resp) is about 8s with ts(calculated) of 20s. 
 

 

Figure 3. Example of Tracking Specification with Maximum Time 
Response Characteristics, (a) Approximated Applying 'Fsolve' with 

Independent Equations, (b) Approximated Applying 'Fsolve' with 
System of Equations 

d) There is no any procedure comparable with the inverse interpolation proposed. 

Approaches for tr are good using „fsolve‟ application, but no so to obtain ts. In 

general, results are not practical, except for inverse interpolation. 
 

4. Inverse Interpolation Technical on the Pulse Function 

For translation of sensitivity specifications in the frequency domain, in both generic 

and specific, as defined in section 2, is applying an inverse interpolation technique on the 

pulse function (2). We will try to find the set of possible pairs (n,) representing the 

second order functions, which fulfill all temporary requirements for regulation imposed. 
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As is the case in section 3, the technique described here is an outline of the inverse 

interpolation technique on the pulse function, developed in detail in [14]. 

It is used an automatic iteration process, within the range of subcritical damping; i.e. 

1>>0, so that for each damping coefficient and depending on the sensitivity type 

considered, is sought: 

1. For generic sensitivity, you only need to work with settling time ts, which must not 

exceed the specified T, associated with the pair (n,). To do this, use the relationship: 

 

n

st

ts
1                        (27) 

 

That is, given ts=T as time specification and ts1 associated with the pair (n=1,), 

calculated by interpolation, it is obtained from (27) the parameter n, related to ts for 

the damping coefficient . The validity of the pair (n,) is checked, applying again 

inverse interpolation on the function (2), to obtain tsfinal, such that:  

o If tsfinal(n,)T and maximum amplitude imposed is not exceeded, the pair (n,)  

will be a possible second order solution in frequency. 

2. For specific sensitivity, it is necessary to use inverse interpolation as on settling time ts 

as the rise time tr, although associated in both cases at the same amplitude on the pulse  

function (2). To do this, use the relationship described by: 

 

 
n

st

trts


 11                  (28) 

 

That is, given the time specification ts=T, it is calculated by interpolation (ts1-tr1), time 

difference associated with the same pair (n=1,), clearing in (28) the parameter n, 

related with ts for the coefficient . Note that you have to find separate ts1 and tr1, so 

interpolation is used twice. The pair (n,) obtained is checked by applying again 

inverse interpolation on the function (2) for getting (ts-tr)final, such that:  

o If (ts-tr)final(n,)T
 
 and maximum amplitude imposed is not exceeded, the pair 

(n,) can be a possible solution. 

Obtaining the equations (27) and (28) is detailed in [14] and, the sense of the steps 

outlined above, when trying to translate temporary specifications associated with pulse 

type responses. On the other hand, the approach is equivalent to that defined in section 3, 

when working with step functions. 

4.1 Inverse Interpolation of the Rise Time tr(n,,Alc)
 
on the Pulse Function 

It is about finding the rise time tr on pulse signal f(t), when it takes the rising value 

“Alc” and is defined by the parameters ωn and . The approach reduces to the technique 

development for parameter interpolation type-like trAlc(n,,Alc), on the second order 

pulse function f(t) with subcritical damping. 

The function f(t) is defined for each time t, as in (2), that is: 

 

 tftf pulse)(   ,   with  0<<1             (29) 

 

For trAlc, equation (29) takes the value, 

 

 Alcn

trn
Alc trsene
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1100
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International Journal of Advanced Science and Technology 

Vol.99 (2017) 

 

 

Copyright ⓒ 2017 SERSC   51 

Interpolation procedure by Newton‟s differences of 5
th
 order on f(trAlc) is the same as 

described in section 3.1, with the following exceptions: 

1. Time interval h of differences interpolation. Considering that the maximum peak value 

fmax is reached at the time instant tmax given by, 

 

2

2

max

1

1
arctan





















 



n

t  (31) 

 

A valid practical value of interval h is 1/10 of the time tmax, for the same reason to 

define the interpolation interval used in section 3.1. That is, 

10

maxt
h             (32) 

 

And use as discrete times those given in (13). 

2. Substitute the values of previous times (13) in the interpolation function f(t) (29), 

given the known value n. 

From here, the interpolation technique follows the same steps as in section 3.1, i.e.: 

3. Get the values  of 1
st
, 2

nd
, 3

rd
, 4

th
 and 5

th
 order, using Table 1 of differences.  

4. Find the t0 parameter, using the criteria described in section 3.1 from equations (14) 

and (15). 

5. Calculate initial 0 using (16) and the value h in (32). 

6. Calculate i values (i=1,2, ..) and the error in each iteration (Errori-1=|i-1-i|), by a 

method as indicated between equations (17) and (24). 

 

4.2. Inverse Interpolation of the Time ts(n,,As)
 
on the Pulse Function 

The search procedure for settling time ts required, for the pulse function, is similar to 

that described for the rise time tr above, in section 4.1, except for the following special 

considerations (see Figure 4a): 

o The “As” parameter defines the settlement channel of pulse response with values in 

unitary percentage within the range given by, 

 

   
100

As
                  (33) 

 

o The settling time is obtained by observing the behavior of each signal semicycles in 

the range, peak (positive maximum) and valley (negative minimum) or valley-peak: 

 If the first peak is within the settlement channel, then settling time ts  is zero. 

 If not, when a full semicycle (peak-valley or valley-peak) is located within the 

settlement channel, other than the first, the time ts will be associated with the 

previous semicycle; otherwise, the settling time will be this time, plus the sum of 

time of each semicycle 
21 



n

, until the peak or valley of the function is 

within the channel. 

 The temporal interpolation interval h is provided between a peak or valley and the 

next zero function, temporarily located on tp and tc, respectively. Where, 
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21 
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Both with n=0, 1, .... Note that tp(n=0)=tmax 

 

The inverse interpolation of ts within the range h (tp to tc) is between tp and t1, t1 and t2, 

and so on, until completion in tc (t1, t2, .., are discrete times given in (13)) . 

 

4.3. Example application of Inverse Interpolation on the Pulse Function 

In the examples of Figure 4 and Figure 5, it has been used the application 

ESENSIB.M, accessible from section 5, to obtain the lower frequency limit for specific 

sensitivity. Resolved (29) using the following procedures: 

1. The inverse interpolation technique described in Section 4.  

2. The function „solve‟ on independent equations with one unknown (n and  known), 

combined with the procedure associated with equation (28). 
3. The „fsolve‟ function with one unknown equations, combined with the procedure 

associated with (28). 

4. The „solve‟ function on a system of three equations with unknowns, 

trAlc(n,,Alc=Out), n and ts(n,). The time ts, in this case, is described from the 

equation of the envelope on the pulse function, i.e. with, 

 

 tsn netsf




 




21
)(                 (36) 

 

5. The „fsolve‟ function on a system of three equations with the unknowns indicated in 

the preceding paragraph. 

 

Table 3: Results and Deviations Obtained with the 5 Proposed Procedures, 
for Example in Section 4.3 

 

Method 
f(t)=0.25 f(t)=±0.25 

tr(s) f(tr)  f(tr)- f(t) ts(s) f(ts)  f(ts)- f(t) 

1 0.38 0.2498 -0.0002 10.05 0.2501 0.0001 

2 0.45 0.25 0 6.31 -0.3399 -0.0899 

3 8.9*10
-5

 5.4*10
-5 

-0.2500 5.91 -0.3562 -0.1062 

4 0.37 0.25 0 10.37 0.1613 -0.0887 

5 0.54 0.2490 -0.0010 10.54 0.2090 -0.0411 

  1, Inverse interpolation by Newton‟s method of 5
th

 order  

  2, Function „solve‟ on independent equations 

  3, Function „fsolve‟ on independent equations 

  4, Function „solve‟ on system of equations 

  5, Function „fsolve‟ on system of equations 

Note: In Table 3 is being used f(t)=Out/In 
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A summary of the results achieved is described in comparison between procedures of 

Table 3, where it is given the deviation obtained with each, as to the rise time (f(tr)-f(t)) 

and the settlement time (f(ts)-f(t)). 

 

a) Temporary specifications required are: amplitude of the pulse type response ranging 

between 1.5 and 4.35, for no more than 10s. Therefore, the settlement channel is in the 

range ± 1.5. 

b) Response by inverse interpolation, Newton‟s method. Results are shown in Figure 4a: 

o Maximum time response characteristics: 

 fmax=4.153 which does not exceed the value imposed of 4.35 

 Rise time calculated response 0.38s. For f(t)=1.5 (Out or Out/In=0.25), it is 

obtained the trout indicated in the first semicycle, between 0 and tc1. 

 Settling Time calculated response, 10.05s. For f(t)=±1.5 (settlement channel) 

the obtained tsout produces Tout=tsout-trout=9.67s10s.The first semicycle full 

enter into settlement channel is number 4. 

 

Figure 4. Example of Sensitivity Specification with Characteristics of 
Maximum Response, (a) Approximated by Inverse Interpolation, (b) 

Applying ‘Solve’ with Independent Equations 

c) The results obtained with the other four proposed comparative methods are: 

 Response applying „solve‟ with independent equations, shown in Figure 4b: 

o Maximum time response characteristics: 

 fmax=3.674 which does not exceed the value imposed of 4.35 

 Rise time calculated response, 0.45s, for f (t)=1.5. No deviation. 

 Settling time calculated response, 6.31s. For f(t)=±1.5, it is obtained   

Tout=tsout-trout=5.86s10s. High deviation, so the actual Tout does not match. 

 Response applying „fsolve‟ with independent equations, shown in Figure 5a: 

o Maximum time response characteristics: 

 fmax=3.674 which does not exceed the value imposed of 4.35 

 Rise time calculated response, 9*10
-5

s, for f(t)=1.5. Very high deviation, so 

the trout does not match the real. 

 Settling Time calculated response, 5.91s. For f(t)=±1.5, it is obtained   

Tout=tsout-trout=6.91s10s. High deviation, so Tout differs from the actual. 
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Figure 5. Example of Sensitivity Specification with Characteristics of 
Maximum Temporal Response, (a) Approximated Applying ‘Fsolve’ with 

Independent Equations, (b) Approximated Applying ‘Solve’ with System of 
Equations, (c) Approximated Applying ‘Fsolve’ with System of Equations 

 

 Response using „solve‟ with system of equations, shown in Figure 5b: 

o Maximum time response characteristics: 

 fmax=4.161 which does not exceed the value imposed of 4.35 

 Rise time calculated response, 0.3675s, for f(t)=1.5. No deviation. 

 Settling Time response 10.3675s. For f(t)=±1.5, it is obtained             

Tout=tsout-trout=10s10s. High deviation, so the actual Tout does not match. 

 Response applying „fsolve‟ with equation system, shown in Figure 5c: 

o Maximum time response characteristics: 

 fmax=3.428 which does not exceed the value imposed of 4.35 

 Rise time calculated response, 0.5367s, for f(t)=1.5. Correct deviation. 

 Settling Time calculated response 10.5363s. For f(t)=±1.5, it is obtained   

Tout=tsout-trout=9.9996s10s. Middle deviation, so Tout differs from the actual. 

d) Noting that data obtained, maximum precision and final results are given by inverse 

interpolation, against the implementation of „solve‟ and „fsolve‟: compare deviations 

shown in Table 3 and graphically in Figure 4 and Figure 5. 

 

5. Application Development 

The author has developed in Matlab [2] applications to verify all examples given in 

this paper and also serve to translate the main temporary specifications to frequency 

domain already named. 

The “Specifications Translation” folder contains the various techniques described for 

upper/lower limit tracking and generic/specific sensitivity, which can be downloaded 

from the address [22], 

6. Conclusions 

 It has been discussed and presented sufficient arguments to justify the 

importance of having a methodology for temporary specifications translation to 

frequency domain with precise, automatic and specific character, for each type of 

requirement. To get it, a solution is to use successive approximations to the 

temporal response characteristic sought (rise time and/or settling time), applying an 

inverse interpolation method. 
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Specific techniques for specifications translation presented will be based on the 

“Newton‟s method by ascending and descending differences of 5
th

 order”, 

advantageous in practice against other traditional use for interpolation too, as can be 

Lagrange‟s polynomial. 

Justified the need to use successive approximations by interpolation for 

specifications translation, next is to consider the type of function and characteristics 

of temporal response to interpolate. The function is directly related to the type of 

specification to be treated. Thus, for responses based on specifications for tracking 

step inputs, such as tracking lower limits and/or higher, the function is the step type. 

For sensitivity specifications, both general and specific, are based on underdamped 

pulse type responses. In any case, the function will be that descriptive of the step 

signal or pulse signal, with subcritical damping (0<<1) and approximated by a 

second order system. 

In this paper, it has been developed independent techniques, for interpolation of 

time response characteristics on the step function and the pulse function, adapted to 

the type of specification that is intended to translate. 

The goodness of each is demonstrated by the proposed practical examples and 

comparative results raised, respect to the implementation of functions for direct 

solving equations, „solve‟ and „fsolve‟ in Matlab. 

On the other hand, applications developed for each type of specification are 

offered with free access by the author, from the URL indicated in the previous 

section. 
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