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Abstract 

Cloud computing is a new technology provides computing resources as services, and 

allows users to access these resources via the Internet without the need to own knowledge 

and experience, or even control of infrastructure that support these services. Job 

scheduling is considered one of the main issues in cloud computing. The main task of job 

scheduling is how to find an optimal mapping of set of jobs to a set of available resources. 

Unsuitable mapping of jobs to resources usually leads to inefficient cloud performance. 

The current methods for cloud job scheduling process produce acceptable solution but 

not optimal solution. This paper proposes a new job scheduling mechanism using 

Glowworm Swarm Optimization (GSO). The proposed mechanism aims to find the best 

mapping in order to minimize the execution time of jobs. The proposed mechanism based 

on information of jobs (cloudlets) and resources (virtual machines) such as length of jobs, 

speed of resources and identifier for both. The scheduling function in the proposed job 

scheduling mechanism firstly creates a set of jobs and resources to generate the 

population by assigning the jobs to resources randomly and evaluates the population 

using fitness values which represent the execution times of jobs. Secondly the function 

used iterations to regenerate populations based on glowworms behavior to produce the 

best job schedule that gives the minimum execution time of jobs. The methodology of this 

research is based on simulation of the proposed mechanism using the CloudSim 

simulator. The evaluation process of the proposed mechanism started with a set of 

different experiments. These experiments revealed that, the proposed mechanism 

minimized the execution time of jobs. The proposed mechanism is compared with the First 

Come First Servers (FCFS) algorithm and experimental results revealed that the 

proposed mechanism has a better performance than FCFS for minimizing the execution 

time of jobs.  
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1. Introduction 

Cloud computing is the practice of using a network of remote servers hosted on the 

Internet to store, manage, and process data, rather than a local server or a personal 

computer technology. Cloud computing and storage solutions provide users and 

enterprises with various capabilities to store and process their data in third-party data 

centers. It relies on sharing of resources to achieve coherence and economies of scale, 

similar to a utility (like the electricity grid) over a network. At the foundation of cloud 

computing is the broader concept of converged infrastructure and shared services [1]. 

NIST define of  Cloud computing as "a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction"[2]. 

Cloud Computing has become a widely accepted paradigm for high performance 

computing, because in Cloud Computing all type of IT facilities are provided to the users 
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as a service. The services of the cloud are provided through the Internet. In Cloud 

Computing the term Cloud is used for the service provider, which holds all types of 

resources for storage, computing etc. Mainly three types of services are provided by the 

cloud. First is Infrastructure as a Service (IaaS), which provides cloud users the 

infrastructure for various purposes like the storage system and computation resources. 

Second is Platform as a Service (PaaS), which provides the platform to the clients so that 

they can make their applications on this platform. Third is Software as a Service (SaaS), 

which provides the software to the users and hence the user don't need to install the 

software on their own machines and they can use the software directly from the cloud. 

Cloud Computing provides many benefits: it results in cost savings because there is no 

need of initial installation of much resource; it provides scalability and flexibility, the 

users can increase or decrease the number of services as per requirement; maintenance 

cost is very less because all the resources are managed by the Cloud providers[3]. 

Job scheduling is one of the major activities performed in all the computing 

environments. Cloud computing is one the upcoming latest technology which is 

developing drastically. To efficiently increase the working of cloud computing 

environments, job scheduling is one the tasks performed in order to gain maximum profit. 

The goal of scheduling algorithms in distributed systems is spreading the load on 

processors and maximizing their utilization while minimizing the total task execution time 

Job scheduling, one of the most famous optimization problems [4, 5]. Job scheduling has 

been considered as one of crucial problems in cloud computing. An optimized scheduler 

would improve many factors in scheduling of tasks in a cloud system such as throughput 

and performance. Different Approaches have tried to solve this problem like Genetic 

algorithm, Ant colony optimization, Particle swarm optimization and Firefly 

Algorithm[6]. 

Suppose that R= {r1,r2, r3 …r𝑠}are s cloud resources and J= {j1, j2, j3…j𝑚} are m 

independent jobs. The speed of each resource is expressed in form of MIPS (Million 

Instructions Per Second), and the length of each job is expressed in the form of number of 

instructions. The problem is how to allocate the submitted jobs to the available resource in 

order to complete the jobs efficiently and to minimize the execution time, such that an 

optimum execution time is achieved. The objective of this paper is to propose a new job 

scheduling mechanism with modified distance to minimize the execution time based on 

Glowworm Swarm Optimization algorithm and to evaluate the proposed mechanism 

using CloudSim simulator. 

This paper contains six sections. Section two describes the job scheduling on cloud 

computing. Section three describes the Glowworm Swarm Optimization (GSO) algorithm. 

Section four describes the proposed scheduling mechanism. Section five presents the 

evaluation and experimentation process. Section six provides the Conclusion and Future 

work. 

 

2. Cloud Job Scheduling 

One of the major concerns in cloud computing is job scheduling. It is an extensive 

research area in cloud computing. As in Figure (1), job scheduling of customers’ tasks 

means how to allocate resources to these tasks. Thus, the required tasks can be 

accomplished in minimum time according to time defined in user request. Most 

researches that used in grid computing can also be used in cloud computing setting. The 

central task of job scheduling system is to determine the most suitable resources for the 

user’s jobs in a cloud computing. Scheduling in cloud computing can be divided into two 

main views, from the cloud computing users (CCU) and from the cloud computing 

service provider (CCSP). From the user’s point of view, the scheduling algorithm should 

generally reduce both the execution time and cost. On the other hand, the main concern of 
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the cloud service provider is that the scheduling algorithm should improve the resource 

utilization and reduce the maintenance cost along with energy consumption[7]. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Job Scheduling 

3. Glowworm Swarm Optimization algorithm(GSO) 

Glowworm swarm optimization (GSO), introduced by Krishnanand and Ghose in 2005 

for simultaneous computation of multiple optima of multimodal functions. GSO is a new 

optimization algorithm, inspired by nature, which imitates the behavior of the lighting 

worms. Swarm intelligence (SI) is the collective behavior of decentralized, self-organized 

systems, natural or artificial. The concept is employed in work on artificial intelligence.SI 

systems consist typically of a population of simple agents or interacting locally with one 

another and with their environment. The inspiration often comes from nature, especially 

biological systems, including ant colonies, bird flocking, animal herding, bacterial 

growth, and fish schooling. The agents in GSO are thought of as glowworms that carry a 

luminescence quantity called luciferinLi(t) along with them. The glowworms encode the 

fitness of their current locations, evaluated using the objective function, into a luciferin 

value that they broadcast to their neighbors. The glowworm identifies its neighbors and 

computes its movements by exploiting an adaptive neighborhood, which is bounded 

above by its sensor rangerdi(t). Each glowworm selects, using a probabilistic mechanism, 

a neighbor that has a luciferin value higher than its own and moves toward it. These 

movements—based only on local information and selective neighbor interactions—enable 

the swarm of glowworms to partition into disjoint subgroups that converge on multiple 

optima of a given multimodal function. Each iteration consists of a luciferin-update phase 

followed by a movement-phase based on a transition rule and Local-decision range update 

phase [8-11]. 

 

3.1. Luciferin-update-phase 

At time t, the location of the glowworm i is xi(t), and its corresponding value of the 

objective function at glowworm i’s location at time t is J(xi(t)). The luciferin level 

associated with glowworm i at time t is given by equation (1) 

Li(t) = (1− ρ)Li(t − 1) + γJ(xi(t))               (1) 

 

3.2. Movement-phase 

Find the neighbors j for each glowworm i: Ni(t) using equation (2) 

j ∈ Nij iff dij < rdi(t) and Lj(t) > Li(t)              (2) 

. 

. 

. 

 

 
       Scheduler 

Resources Queues Jobs 
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Each Glowworm i moves towards a neighbor j with a certain probability computed by 

equation (3)          

pij(t) =
Lj(t)−Li(t)

∑k∈Ni(t)Lk(t)−Li(t)
                 (3) 

The glowworm i position is updated using equation (4) 

Xi(t + 1) =Xi(t) + s (
Xj(t)−Xi(t)

‖Xj(t)−Xi(t)‖
)               (4) 

where s is the step size. 
 

3.3. Local-decision Range Update Rule 

The neighborhood range is updated using equation (5) 

rdi(t + 1) = min{rs, max{0, rdi(t) + β(nt − |Ni(t)|)}}             (5) 

where β is a constant parameter, rs is the constant radial sensor range, nt is a parameter 

used to control the number of neighbors and |Ni(t)| is the actual number of neighbors [12, 

13]. 

At the beginning, all the glowworms contain an equal quantity of luciferin l0 and the 

same neighborhood decision range r0. Each iteration consists of a luciferin update phase 

followed by a movement phase based on a transition rule. Other involved parameters are 

the luciferin decay constant (ρ), the luciferin enhancement constant (γ), the step size (s), 

the number of neighbours (nt), the sensor range (rs) and a constant value (β)[14]. 

Parameters values of Glowworm Algorithm that are Kept Constant for all experiments 

are described in Table 1 [8, 9, 11, 15-17]. 

Table 1. Glowworm Optimization Parameters 

 
 

The basic Glowworm Swarm Optimization (GSO) Algorithm as follows[9, 17] 

Set number of dimensions = m 

Set number of glowworms = n 

Let s be the step size 

Let xi(t) be the location of glowworm i at time t 

deploy agents randomly; 

for i = 1 to n do Li(0) = L0 

for i = 1 to n do rdi(0) = r0 

Set maximum iteration number = iter max 

Set t = 1 

while (t ≤ iter max) do { 

 for each glowworm i do % Luciferin-update phase 

Li(t) = (1− ρ)Li(t − 1) + γJ(xi(t)) 

for each glowworm i do % Movement-phase { 

Ni(t) = {j : dij (t) < rdi(t); Li(t) < Lj(t)} 

for each glowworm j ∈ Ni(t) do 

𝑝𝑖𝑗(t)=
L𝑗  (t)-Li(t)

∑k ∈ Ni(t) Lk(t) − Li(t) 
 

j = select glowworm(p) 

xi(t + 1) = xi(t) + s (
x𝑗 (t)-xi(t)

‖x𝑗 (t)-xi(t)‖
) 

rdi(t + 1) = min{rs, max{0, rdi(t) + β(nt − |Ni(t)|)}v} } 

t ← t + 1 } 
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4. Proposed Glowworm Swarm Optimization for Cloud Job Scheduling 

In the proposed mechanism, Glowworm Swarm Optimization is employed in solving 

the problem of independent job scheduling and allocation of the jobs on resources. Each 

glowworm is a solution for allocation of jobs  Xij
⃗⃗ ⃗⃗  ⃗ , i = (1,2,3,… . , n)  j =

(1,2,3,… . , k), each element inside the glowworm population vector is a random number 

between 1 to m where: 

m is the total number of resources. 

n is number of glowworms. 

k is number of jobs that represent the length of each glowworm.  

We represented resources as a vector for storing the speed of each resource Ri
⃗⃗  ⃗ , i =

(1,2,3,… . ,m)  and also jobs as a vector for storing the length of each job Ji⃗⃗  , i =
(1,2,3,… . , k) , then assigned the luciferin for each glowworms Li(0) = L0 and local 

decision range rdi(0) = r0 for each glowworms as the same in the beginning. Then the 

proposed mechanism calculated the fitness function F( Xij
⃗⃗ ⃗⃗ )  for each glowworm by 

dividing each job length by the resource speed that the job is allocated to, and then find 

the summation of the division results, then find the maximum fitness, Glowworm that has 

maximum fitness either move randomly or not move at all. The next step is to calculate 

the distance between each two glowworms which is the number of non-corresponding 

elements in the glowworm population[18] and store it in  Dij
⃗⃗⃗⃗⃗⃗  , i = (1,2,3,… . , n)  j =

(1,2,3,… . , n). 

Finally the movement for all glowworm, which starts with the update of the luciferin 

for each glowworm according to equation (1): 

Li(t) = (1− ρ)Li(t − 1) + γF(xi(t))                           (1) 

Where: 

Li(t) is the new luciferin level for glowworm i. 

Li(t − 1) is the previous luciferin level for glowworm i. 

ρ is the luciferin decay constant. 

γ is the luciferin enhancement constant. 

F(xi(t)) is the fitness function value for glowworm i at current glowworm position (xi) 

at iteration t. 

Then each glowworm i determine the neighbor glowworm j according the higher 

luciferin and in the same local decision range  j ∈ Nijiffdij < rdi(t)andLj(t) > Li(t) , 

neighbors j that belongs to glowworm i decision range calculate the probability by 

equation (2) 

pij(t) =
Lj(t)−Li(t)

∑k∈Ni(t)  Lk(t)−Li(t)
                (2) 

Where: 

 j is one of the neighbor group Ni(t) of glowworm i. 

Lj(t)is the luciferin levels for glowworm j. 

Li(t)is the luciferin levels for glowworm i. 

Then glowworm i moves towards a neighbor j with the higher probability and updated 

the position of glowworm i by equation (3) 
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Xi(t + 1) =Xi(t) + s (
Xj(t)−Xi(t)

‖Xj(t)−Xi(t)‖
)               (3) 

Where: 

Xi(t + 1) is the new position for the glowworm i. 

Xi(t) is the current position for the glowworm i. 

 is a step size constant. 

Finally update the local decision range by equation (4)  

rdi(t + 1) = min{rs, max{0, rdi(t) + β(nt− |Ni(t)|)}s}   (4) 

Where: 

rdi(t + 1) is the new local decision range for glowworm i 

rdi(t) is the previous local decision range for glowworm i 

β is a constant parameter. 

rs is the constant radial sensor range. 

nt is a constant parameter used to control the number of neighbors. 

|Ni(t)| is the actual number of neighbors. 

 

4.1. Pseudo Code for the Proposed GSO Algorithm 

Begin 
Initialize parameter: l0,r0, ρ , γ, β ,nt,rd,m,t, iter_max. 

Generate initial population of glowworms 𝑋𝑖𝑗
⃗⃗ ⃗⃗ ⃗⃗   , 𝑖 = (1,2,3, … . , 𝑛)  𝑗 = (1,2,3, … . , 𝑘). 

Set maximum iteration number=iter_max. 
Set t=1 

For each resource do 

Set speed for each resource 𝑅𝑖
⃗⃗  ⃗ 

end for  
for each job do 

Set length for each job𝐽𝑖⃗⃗  
end for  

while(t<=iter_max) 
for each glowworm I do  

Set luciferin for each glowworms as the same Li(0) = L0 
end for  
for each glowworm i do 

Set local decision range for each glowworms as the same rdi(0) = r0 
end for  
for each glowworm i do 

Compute Fitness function F(𝑋𝑖𝑗
⃗⃗⃗⃗  ⃗) 

end for 
for each glowworm i do 

for each glowworm j do 

Compute the distance between glowworm i and glowworm j 𝐷𝑖𝑗
⃗⃗ ⃗⃗ ⃗⃗   

end for 
end for 
for each glowworm i do // Luciferin-update phase  

Li(t) = (1− ρ)Li(t − 1) + γF(xi(t)) 
end for 
for each glowworm i do // Movement-phase  

Find the neighbors j  
Ni(t) = {j : dij (t) <rdi(t); Li(t) <Lj(t)} 
For each neighbor glowworm j∈Ni(t) do 

Calculate the probability  

𝑝𝑖𝑗(𝑡) =
𝐿𝑗(𝑡) − 𝐿𝑖(𝑡)

∑𝑘 ∈ 𝑁𝑖(𝑡)𝐿𝑘(𝑡) − 𝐿𝑖(𝑡)
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end for 
Glowworm i move towards a neighbor j: Select glowworm j based on 
maximum 𝑝𝑖𝑗  

end for 
Update position of glowworm i 

𝑋𝑖(t + 1) =𝑋𝑖(t) + s (
𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)

‖𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)‖
) 

Update Local-decision range for glowworm i 
rdi(t + 1) = min{rs, max{0, rdi(t) + β(nt− |Ni(t)|)} 
end for 
t←t+1 

end while 
 

5. Evaluation and Experimentation 

This paper proposed a new scheduling mechanism on cloud computing using 

Glowworm Swarm Optimization algorithm.  

To evaluate the proposed Glowworm Swarm Optimization mechanism for cloud job 

scheduling this study implemented the algorithm using CloudSim simulator. Different 

scenarios are experimented to study various aspect of the mechanism. Execution time is 

used as measurement as illustrated previously. The experimentation phase scenarios are 

simulated as presented in the related works. The experiments setup and configuration and 

the values of the algorithm parameters are assigned based on the related works and the 

literature of the algorithm. 

 

5.1. The First Scenario 

In this scenario, the study considered number of 50 jobs and number of 20 resources. 

Table 2. The Execution Time of Ten Iterations in First Scenario 

Iteration Execution Time 

1 219.5833863 

2 125.1402317 

3 110.2781259 

4 108.7364261 

5 108.7364261 

6 97.40285329 

7 97.40285329 

8 97.40285329 

9 97.40285329 

10 97.40285329 

 

 

Figure 2. CloudSim Simulation Result in First Scenario 
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As described in Table 2 and Figure 2, the result of the initial execution time is 

219.5833863 gradually decreased until it reached 97.40285329 in the last iteration. 

 

5.2. The Second Scenario 

In this scenario we considered number of 60 jobs and number of 30 resources. 

Table 3. The Execution Time of Ten Iterations in Second Scenario 

Iteration Execution Time 

1 155.7707116 

2 155.7707116 

3 155.7707116 

4 155.7707116 

5 141.4966578 

6 141.4966578 

7 141.4966578 

8 133.7815208 

9 133.7815208 

10 133.7815208 

 

 

Figure 3. CloudSim Simulation Result in Second Scenario 

As described in Table 3 and Figure 3, the result of the initial execution time is 

155.7707116gradually decreased until it reached 133.7815208. 

 

5.3. The Third Scenario 

This scenario presents a comparison of the execution time between GSO and FCFS 

algorithm with the same number of jobs and resources (150 jobs and 70 resources). 

Table 4. The Comparison between GSO and FCFS Algorithm 

Algorithm Execution Time 

FCFS 898.3541286 

Random solution 611.8881145 

GSO  478.0460448 
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Figure 4. Comparison of Simulation Result in Third Scenario 

As described in Table 4 and Figure 4, as the proposed GSO has the shortest execution 

time. While the random distribution of jobs on the resources has the worst execution time. 

FCFS has larger execution time than the random distribution. GSO performed better than 

FCFS in term of execution time.  

 

5.4. The Fourth Scenario 

In this scenario, different numbers of jobs and resources are considered to evaluate the 

proposed mechanism and to examine the performance of the proposed mechanism in 

different workload and from different perspectives. 

Table 5. Average Execution Time between GSO and FCFS Algorithm 

 FCFS GSO 

Time 1 (20 jobs and 10 resources) 49.28968253968254 36.602777777777774 

Time 2 (60 jobs and 30 resources) 179.8496139276117 152.12253170980117 

Time 3 (100 jobs and 50 resources) 324.9602669164712 287.8011214968593 

Time 4 (120 jobs and 80 resources) 462.28344311491 292.8789355882527 

Time 5 (150 jobs and 100 resources) 599.9205338329427 331.3020118099746 

Average Time 323.2607080663236 220.14147567653310 

 

 

Figure 5. Comparison of Simulation Result in Fourth Scenario 

As described in Table 5 and Figure 5, in this case a comparison between GSO and 

FCFS algorithm is conducted after computing the average times for 5 executions, The 

GSO performed better than FCFS based on the execution time. As the problem size 

increases by adding more and more jobs the effectiveness of the proposed mechanism 

became better and better. The previous results revealed that the proposed Glowworm 
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Swarm Optimization algorithm for job scheduling in cloud optimizes the fitness value. As 

in all scenarios the fitness increase significantly which indicates that the execution time is 

decreased and enhanced. 

 

6. Conclusion and Future Work 

This research proposed a new job scheduling mechanism to solve the scheduling 

problems by minimizing the execution time of jobs using Glowworm Swarm 

Optimization (GSO). The research work started with a mapping process to map the cloud 

job scheduling mechanism with the GSO. In this mapping each job scheduling solution 

represents a glowworm. A random number of solutions have been selected to represent 

the initial glowworm population. The execution time of each scheduling is considered the 

fitness function of the schedule (glowworm). In each iteration the schedules (glowworms) 

move based on the Luciferin of the scheduling to generate a new population with 

enhanced fitness. To find the best solution in each iteration we select the schedule that has 

the best fitness. The evaluation of the proposed job scheduling mechanism is based on 

CloudSim simulator, conducting various experiments and a comparison with FCFS 

algorithm. The proposed GSO mechanism has significantly reduced the execution times 

of the cloud jobs. Using small number of jobs, the proposed mechanism has the best 

execution time. Certainly, when increasing the number of jobs the execution time has 

increased. However, the execution time of proposed mechanism is still less than First 

Come First Serves (FCFS). The results revealed that the proposed mechanism 

outperforms FCFS algorithm in minimizing the execution time of jobs. 
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