
International Journal of Advanced Science and Technology

Vol.95 (2016), pp.57-72

http://dx.doi.org/10.14257/ijast.2016.95.06

ISSN: 2005-4238 IJAST

Copyright ⓒ 2016 SERSC

Performance Evaluation of Parallel Sorting Algorithms on

IMAN1 Supercomputer

Maha Saadeh1*, Huda Saadeh2 and Mohammad Qatawneh3

Department of Computer Science, King Abdullah II School for Information

Technology, University of Jordan, Amman, Jordan
1maha.k.saadeh@gmail.com, 2huda.saadeh@gmail.com, 3mohd.qat@ju.edu.jo

Abstract

Many sorting algorithms have been proposed and implemented in previous years. These

algorithms are usually judged by their performance in term of algorithm growth rate

according to the input size. Efficient sorting algorithm implementation is important for

optimizing the use of other algorithms such as searching algorithms, load balancing

algorithms, etc. In this paper, parallel Quicksort, parallel Merge sort, and parallel Merge-

Quicksort algorithms are evaluated and compared in terms of the running time, speedup,

and parallel efficiency. These sorting algorithms are implemented using Message Passing

Interface (MPI) library, and results have been conducted using IMAN1 supercomputer.

Results show that the run time of parallel Quicksort algorithm outperforms both Merge sort

and Merge-Quicksort algorithms. Moreover, on large number of processors, parallel

Quicksort achieves the best parallel efficiency of up to 88%, while Merge sort and Merge-

Quicksort algorithms achieve up to 49% and 52% parallel efficiency, respectively.

Keywords: Parallel Merge Sort, Parallel Quicksort, MPI, Supercomputer

1. Introduction

The aim of sorting algorithm is to order N items in an efficient way considering

run time, memory space, and data structure complexity. Different types of sorting

algorithms have been implemented such as selection sort, insertion sort, bubble sort,

Quicksort, merge sort, and heap sort (see Table 1) [1]. In 1960s computer

manufacturers estimate that 25% of their computers running time was spent on

sorting. As a results, it is important to enhance sorting algorithms and implement them

efficiently to enhance the performance of applications with huge amount of data such

as search engines [2].

In order to enhance the performance of sorting algorithms, parallel versions have

been implemented which reduce the overall execution time and increase the fault-

tolerance of sorting based applications [3 - 5]. The performance of these parallel

algorithms depends on its implementation and the underlying architecture of the

parallel machine [16-21].

The goal of this paper is to evaluate the performance of three different parallel

sorting implementations, which are parallel Quicksort, parallel Merge sort, and hybrid

Merge-Quicksort algorithms. The three algorithms are implemented using MPI which

is a standard library for message passing that can be used to develop portable parallel

programs using C, C++ or FORTRAN [6].

The evaluation is done in terms of the required running time, speedup, and parallel

efficiency according to different data size and number of processors. The results were

* Corresponding author,

E-mail: maha.k.saadeh@gmail.com

Postal Code: Amman 11942 Jordan

International Journal of Advanced Science and Technology

Vol.95 (2016)

58 Copyright ⓒ 2016 SERSC

conducted using IMAN1 supercomputer which is Jordan's first and fastest

supercomputer. It is available for use by academia and industry in Jordan and the

region and provides multiple resources and clusters to run and test High Performance

Computing (HPC) codes [7].

The rest of the paper is organized as follows; Section 2 summarizes some related works.

Section 3 introduces sequential and parallel Quicksort. In Section 4, sequential and parallel

Merge sort algorithms are discussed. Next, parallel Merge-Quicksort is discussed in Section

5. The evaluation results of the three algorithms are discussed in Section 6. Finally, Section

7 concludes the paper.

Table 1. The Time Complexity of Different Sorting Algorithms [1]

Sorting Algorithm Best Case Average Case Worst Case

Insertion O(n) O(n^2) O(n^2)

Selection O(n^2) O(n^2) O(n^2)

Bubble O(n^2) O(n^2) O(n^2)

Heap O(n*log(n)) O(n*log(n)) O(n*log(n))

Merge O(n*log(n)) O(n*log(n)) O(n*log(n))

Quick O(n*log(n)) O(n*log(n)) O(n^2)

2. Related Works

Parallel sorting algorithms have been a rich area of research due to the increasing

need to efficient, fast, and reliable sorting algorithms which can be implemented in

parallel platforms. In [8] and [9] the authors propose a load-balanced merge sort

algorithm that utilizes all processors throughout the computation. It evenly distributes

data to all processors in each stage. Thus, every processor is forced to work in all

phases. In [10-12] different parallel Quicksort algorithms are proposed. In [10] a

comparison between sequential and parallel versions of Quicksort algorithms is

discussed. The authors in [11] propose a fast parallel Quicksort algorithm that can

sort N data items in log n time using N processors. In [12] another fast parallel

Quicksort algorithm is implemented and evaluated using the SUN enterprise 1000.

A study of common patterns in parallel sorting algorithms in terms of load balancing,

keys distribution, communication, and computations is conducted in [13]. Another study

based on qualitative and quantitative analysis of the performance of parallel sorting

algorithms on modern multi-core hardware can be found in [14].

3. An Overview of Sequential and Parallel Quicksort

In 1960 Quicksort was developed by Tony Hoare [1]. It is a sorting in place

algorithm that recursively calls itself to sort the items in an array. The algorithm calls

itself tow times with input length depends on the partition procedure. Obviously, the

main operations are done in the partition procedure; firstly, it chooses a pivot value

to sort the items into two sub lists; upper and lower. All items in the former list are

greater than or equal to the pivot value. The later list contains the items that are less

than the pivot. Then, the Quicksort algorithm is called recursively on each sub list.

The same process is repeated to each sub list until partitioning cannot be performed.

Finally, each sub list will contain a sorted part of the original list.

The chosen of the pivot element can be done in various ways; 1- It could be the

leftmost or rightmost item in the list. 2- It can be chosen randomly. 3- The median

value between the leftmost, the rightmost, and the middle items.

In this section, an overview of Quicksort algorithms is discussed. Section 3.1 discusses

the sequential algorithm and parallel Quicksort is discussed in 3.2.

International Journal of Advanced Science and Technology

Vol.95 (2016)

Copyright ⓒ 2016 SERSC 59

3.1. Sequential Quicksort

As discussed previously, the main operation of Quicksort takes place in partition

procedure. The Pseudo code for sequential Quicksort is shown in Figure 1.

Figure 1. Sequential Quicksort Pseudo Code

3.1.1. Sequential Quicksort Description

Sequential Quicksort algorithm is a recursive procedure works as follows:

1. Select one of the items as a pivot.

2. Divide the list into two sub lists: a lower list containing numbers smaller than

the pivot, and an upper list containing numbers larger than or equal to the

pivot.

3. The lower list and the upper list recursively repeat the procedure to sort

themselves.

4. The final sorted result is the concatenation of the sorted lower list, the pivot,

and the sorted upper list.

To understand the sequential Quicksort we will il lustrate the example shown in

Figure 2. The list consists of five numbers and the goal is to sort them in ascending

order. The inputs are {3, 2, 1, 5, 4}, and we choose the pivot to be the leftmost item

{3}. Firstly, the partition procedure will arrange the list into two sub lists at the third

index (since the pivot is the middle value); lower sub list {2, 1} and upper sub list {5,

4}. Then the Quicksort algorithm will be performed to each sub list. In the lower sub

list the pivot is {2} and the partition index is 2. For the upper sub list the pivot is {5}

and the partition index is 5. No more partitioning can be performed for both lower

and upper sub lists and thus the resulted list is already sorted. Note that due to the

sequential nature the lower sub list will be sorted before the upper one.

International Journal of Advanced Science and Technology

Vol.95 (2016)

60 Copyright ⓒ 2016 SERSC

Figure 2. Sequential Quicksort Example

3.1.2. Sequential Quicksort Analysis

Sequential Quicksort has better run time complexity compared with other sorting

algorithms such as selection, insertion, and bubble sorting algorithms. Merge and

heap sorting algorithms have the same growth rate as in Quicksort except for the worst

case run time. However worst case is rarely to occur [15]. In this section we will

analyze the time complexity of the sequential Quicksort according to the best, average

and worst cases.

The worst case of the Quicksort algorithm is presented in Figure 3. This case occurs

when the list is already sorted and the pivot is the left or right most item. As shown

in the figure, in each call for partitioning procedure nothing will be moved. The time

complexity is O(n2).

Figure 3. Quicksort Worst Case

Figure 4 and Figure 5 illustrate the complexity of Quicksort in the best case and

average case, respectively. In the best case the partitioning is always balanced (the

partition procedure returns the middle index). Thus, in each recursive call for

Quicksort algorithm the lower and the upper sub lists will contain the same number

of items which is the half of the items in the previous call. This means that the

International Journal of Advanced Science and Technology

Vol.95 (2016)

Copyright ⓒ 2016 SERSC 61

recursive calls will go for log n times each take O(n) for partitioning the sub list. As

a result the time complexity in the best case is O(n log n). In the average case an

alternate between good and bad partitioning occurs results in the complexity of O(n

log n).

Figure 4. Sequential Quicksort Best Case.

Figure 5. Sequential Quicksort Average Case

3.2. Parallel Quicksort

Parallel Quicksort algorithm can be implemented in different ways. In this section we

will summarize the one we used for our implementation. The main idea is to do the

partitioning on the original list using a single processor, and then assign the upper sub list

to another processor for further partitioning. The steps of this method are listed in Table 2.

In the next subsections, the analysis of parallel Quicksort is discussed. For simplicity,

N

N

/2

N/

4

N/

4 N

/

8

N

/

8

N

/

8

N

/

8

N/

4

N/

4

N

/2

N

/

8

N

/

8

N

/

8

N

/

8 1 1 1 1 1 1 1 1

lg

N

N

(N-

1)/2

N -

1

1

(N-

1)/2

International Journal of Advanced Science and Technology

Vol.95 (2016)

62 Copyright ⓒ 2016 SERSC

assume that the input size n = 2k – 1, the number of processors P = 2m where m < k, and

electrical links are used to connect the processors (Figure 6).

Table 2. Steps of Parallel Quicksort

Step Action taken by each processor

1 Do partition on the assigned list, go to step 2.
2 Check if any processor i is available. If yes go to step 3, otherwise go to step 4.
3 Assign the upper sub list to processor i if its size is greater than 1, and mark

processori as a child. Then, go back to step 1.
4 Perform sequential Quicksort on the assigned list, and go to step 5.
5 Send results to parent processor. Then, go to step 6.
6 Exit

3.2.1. Partitioning Procedure Analysis

In the first partitioning of the original list the partition procedure will take n – 1 time to

perform n – 1 comparisons (n – the pivot item). Assuming that partitioning is always

balanced, the lower and upper sub lists have the same number of items = (n - 1) / 2 and this

will be the input size for the next partitioning. Taking (n - 1) / 2 items, the time for partition

procedure is ((n - 1) / 2) - 1 = (n - 3)/2 on each process with total n-3 comparisons (((n-3)

/ 2) × number of processors that do the partitioning). In the next round 4 sub lists will be

running on 4 processors each with input size = (n - 3) / 4, partitioning time = (n - 7) / 4, and

n - 7 comparisons. Generally round i has input size = (roundi-1 size - 1) / 2, partition time =

(n – 2i - 1) / 2i-1, and number of comparisons = n – 2i - 1 where i > 1. This can be performed

for log p. Then, the all processors will perform the sequential Quicksort since new

processors are not available. According to this analysis the Partitioning time in parallel

Quicksort for total log p rounds = [∑
(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1], and the number of comparisons =

[∑ (n – 2i − 1)
(log 𝑝)+1
𝑖=1].

Figure 6. Parallel Quicksort Analysis. (a) Tree View and (b) Hypercupe View

International Journal of Advanced Science and Technology

Vol.95 (2016)

Copyright ⓒ 2016 SERSC 63

3.2.2. Parallel Analysis

Parallel Quicksort is analyzed according to the number of communication steps,

complexity, speed, and execution time.

Communication steps: this includes the number of steps required for data splitting and

results gathering. As we can see in Figure 6, we need 2 steps to scatter the data among 4

processors and 3 steps to scatter it among 8 processors. As a result, the number of

communication steps that are required to scatter the data depends on the number of

processors P, which is log 𝑃. on the other hand, we need same number of communication

steps to gather the results from all processors. So the total number of communication steps

is 2 × log 𝑃.

Complexity: this is the time required to perform Quicksort locally on each processor and

the time of partition procedure. In the best case, each processor will sort n/p of elements

using sequential Quicksort at the same time. So the time required for all processors to sort

the data is = O(
n

P
× log

𝑛

𝑃
). In addition, the partition procedure take [∑

(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1]

time, so the total complexity is O(
n

P
× log

𝑛

𝑃
) + [∑

(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1].

Speed: this is the communication steps times the speed of the electrical links. Assuming

that the speed of electrical links = 250Mb/s, the speed is 2 × log 𝑃 × 250 Mb/s.

Execution time: this is the complexity of sorting + communication time. As discussed

previously, the complexity of parallel sorting is O(
n

P
× log

𝑛

𝑃
) + [∑

(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1].The

communication time depends on the data that is transmitted over the link in each step. We

mentioned previously that we need log 𝑃 communication steps to scatter the data. In the

best case the data is divided into equal parts. So, the data size in the first step =
𝑛

2
, in the

second step =
𝑛

4
, in the ith step =

𝑛

2𝑖. As a result, the total is ∑
𝑛

2𝑖

log 𝑃
𝑖=1 . In addition, we need

to add the data size in the communication steps for data gathering. Thus, the total

communication time is 2 × ∑
𝑛

2𝑖

log 𝑃
𝑖=1 and the total execution time is (2 ×

∑
𝑛

2𝑖

log 𝑃
𝑖=1) +O(

n

P
× log

𝑛

𝑃
)+[∑

(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1].

4. An Overview of Sequential and Parallel Merge Sort

Merge sort is another divide and conquer based sorting algorithm. In this section

both sequential and parallel Merge sort algorithms are discussed.

4.1. Sequential Merge Sort

Merge sort depends on dividing a list of data into smaller sub lists then merging those

sorted lists into one sorted list. This process is implemented recursively by dividing the list

each time into two smaller sub lists each with n/2 data size. Then, re-dividing each of those

sub lists again until each sub list has one element. After that, the algorithm will merge all

sub lists into one sorted list (see Figure 7). The dividing process forms a binary tree in

which the merge process is done in a bottom-up manner. An example of Merge sort is

illustrated in Figure 8.

4.2. Parallel Merge Sort

In parallel Merge sort, input elements are divided into two equal parts and each

part is processed by a separate processor. Like parallel Quicksort, each division is

mapped to a new processor until every processor has its own data to be sorted. This

International Journal of Advanced Science and Technology

Vol.95 (2016)

64 Copyright ⓒ 2016 SERSC

division forms a tree which can be implemented as a hypercube. After division, all

processors will perform sequential Merge sort to sort their own n/p data locally, where

p is the number of processors and n is the number of items. To gather the results, each

processor will merge its own results with its parent results in a bottom up manner.

Table 3 lists the main steps of parallel Merge sort algorithm.

In the next sub sections, the analysis of parallel Merge sort is discussed in details.

For simplicity, we will assume that the input size n = 2k, the number of processors P

= 2m where m < k, and electrical links are used to connect the processors.

Table 3. Steps of Parallel Merge Sort

Step Action taken by each processor

1 Divide the data into two equals parts; left and right. Then, go to step 2.

2 Check if any processori is available. If yes go to step 3, otherwise go to step 4.

3
Assign the right part to processori, and mark processori as a child. Then, go back

to step 1.

4 Perform sequential Merge sort on the assigned data part, and go to step 5.

5
Send results to the parent processor to be merged with its results. Then, go to step

6.

6 Exit

Figure 7. The Pseudo Code of Sequential Merge Sort

International Journal of Advanced Science and Technology

Vol.95 (2016)

Copyright ⓒ 2016 SERSC 65

Figure 8. An Example of Sequential Merge Sort

4.2.1. Merge Procedure Analysis

Since data is divided among processors to form a binary tree, merging operation will

take log n steps to merge the whole results in bottom up manner. If data size n =2k, then log

n = k. In each step, the data size is doubled since it is been merged with the parent results

which can be expressed as ∑ 2𝑖𝑘
𝑖=1 =∑ 2𝑖𝑘

𝑖=0 – 1. Solving this equation the time complexity

for merge procedure is O(n).

4.2.2. Parallel Analysis

As for parallel Quicksort, parallel Merge sort is analyzed according to the number of

communication steps, complexity, speed, and execution time.

Communication steps: this includes the number of steps required for data division and

results merging. The number of communication steps that are required to divide the data

among processors depends on the number of processors P, which islog 𝑃. on the other hand,

we need same number of communication steps to merge the results from all processors. So

the total number of communication steps is 2 × log 𝑃.

Complexity: this is the time required to perform Merge sort locally on each processor

and time for merge procedure. In the best case, each processor will sort n/p of elements

using sequential Merge sort at the same time. So the time required for all processors to sort

the data is =
n

P
× log

𝑛

𝑃
. As discussed previously, the merge procedure take O(n) time. As a

result, the total is O(
n

P
× log

𝑛

𝑃
) + O(n).

Speed: this is the communication steps times the speed of the electrical links. Assuming

that the speed of electrical links = 250Mb/s, the speed is 2 × log 𝑃 × 250 Mb/s.

Execution time: this is the complexity of sorting + communication time. As discussed

previously, the complexity of parallel sorting is O(
n

P
× log

𝑛

𝑃
) + O(n). The communication

time depends on the data that is transmitted over the link in each step. We mentioned

previously that we need log 𝑃 communication steps to divide the data. The data is divided

into two equal parts. So, the data size in the first step =
𝑛

2
, in the second step =

𝑛

4
, in the ith

step =
𝑛

2𝑖. As a result, the total is ∑
𝑛

2𝑖

log 𝑃
𝑖=1 . In addition, we need to add the data size in the

International Journal of Advanced Science and Technology

Vol.95 (2016)

66 Copyright ⓒ 2016 SERSC

communication steps for data merging. Thus, the total communication time is 2 × ∑
𝑛

2𝑖

log 𝑃
𝑖=1

and the total execution time is (2 × ∑
𝑛

2𝑖

log 𝑃
𝑖=1) + (

n

P
× log

𝑛

𝑃
) + 𝑂(𝑛).

5. An Overview of Parallel Merge-Quicksort

This algorithm is a combination of both Merge sort and Quicksort. It uses parallel Merge

sort to divide the data among processors and sequential Quicksort to sort the data locally at

each processor. The parallel analysis for this algorithm is the same as parallel Merge sort,

since in the best case sequential Quicksort has the same complexity as the one for sequential

Merge sort which is O(
n

P
× log

𝑛

𝑃
).

6. Performance Evaluation and Results

In this section, the results are discussed and evaluated in terms of running time, speedup

and parallel efficiency performance metrics. IMAN1 Zaina cluster is used to conduct our

experiments and open MPI library is used in our implementation of the following parallel

sorting algorithms; Merge sort, Quicksort, and Merge-Quicksort. The algorithms are

evaluated according to different input sizes and different number of processors. An average

of multiple runs is considered to record the results. The hardware and software

specifications along with the used implementation parameters are listed in Table 4.

Table 4. The Hardware and Software Specifications

Hardware

specification

Dual Quad Core Intel Xeon

CPU with SMP, 16 GB RAM

Software

Specification

Scientific Linux 6.4 with open

MPI 1.5.4, C and C++

compiler.

Data Size

(Number of Input

Items)

222, 223, 224, 225, 226 (Element)

16, 32, 64, 128, 256 (MB)

Number of

Processors
1, 2, 4, 8, 16, 32

6.1. Run Time Evaluation

Figure 9 show the run time for each algorithm according to different data sizes. All

results are performed on 8 processors. As illustrated in the figure, as the data size increases,

the run time increases due to the increased number of comparisons and the increased time

required for data splitting and gathering. Parallel Quicksort has the best run time for both

small and large data size followed by Merge-Quicksort algorithm. Finally, Merge sort

algorithms has the worst run time results.

International Journal of Advanced Science and Technology

Vol.95 (2016)

Copyright ⓒ 2016 SERSC 67

Figure 9. Comparison of the Three Algorithms According to Different
Data Size

Figure 10 and Figure 11 illustrate the run time according to different number of

processors including the sequential time (p = 1). We chose two different data size to

conduct our experiments 222 and 226 correspond to small and large data size, respectively.

The general behavior is the same for the three algorithms and can be summarized in the

following points:

1- As the number of processors increases, the run time is reduced due to better

parallelism, better load distribution among more processors. This is the case when

moving from 2 to 8 or to 16 processors.

2- As the number of processor increases the run time is increases. This is because as

the number of processors increases on specific data size, the communication

overhead increases too, consequently, the benefits of parallelism are decreased.

This is the case when moving from 16 to 32 processors. Due to this behavior that

appears in the three algorithms, we did not use more than 32 processors.

Figure 10. Comparison of the Three Algorithms According to the Number of
Processors with 222 Data Size

International Journal of Advanced Science and Technology

Vol.95 (2016)

68 Copyright ⓒ 2016 SERSC

Figure 11. Comparison of the Three Algorithms According to the Number of
Processors with 226 Data Size

6.2. Speedup Evaluation

The speedup is the ratio between the sequential time and the parallel time. Figure 12 and

Figure 13 illustrate the speedup of the three algorithms on 2, 4, 8, 16, and 32 processors

with 222 and 226 data size, respectively. The results show that parallel Quicksort achieves

the best speedups values, up to 10, especially on large number of processors.

6.3. Parallel Efficiency Evaluation

Parallel efficiency is the ratio between speedup and the number of processors. Figure 14

and Figure 15 show the parallel efficiency for each algorithm according to different number

of processors. The results are corresponding to 222 and 226 data size, respectively. On small

number of processors (2 and 4) Parallel Merge sort achieves up to 96% efficiency followed

by Merge-Quick sort with up to 93%, while Quicksort achieves up to 72%. On the other

hand, parallel Quicksort achieves the best efficiency on large number of processors (8, 16,

and 32), comparing with the other algorithms, with up to 88%, while Merge and Merge-

Quicksort achieve up to 49% and 52% efficiency, respectively. This is because Quicksort

has better speedup values when applied on 8 or more processors.

Figure 12. The Speedup of the Three Algorithms on Different Number of
Processors with 222 Data Size

International Journal of Advanced Science and Technology

Vol.95 (2016)

Copyright ⓒ 2016 SERSC 69

Figure 13. The Speedup of the Three Algorithms on Different Number of
Processors with 226 Data Size

Figure 14. The Efficiency of the Three Algorithms on Different Number of
Processors with 222 Data Size

Figure 15. The Efficiency of the Three Algorithms on Different Number of
Processors with 226 Data Size

International Journal of Advanced Science and Technology

Vol.95 (2016)

70 Copyright ⓒ 2016 SERSC

7. Conclusion

In this paper, we present performance evaluation of parallel Quicksort, parallel

Merge sort, and parallel Merge-Quicksort algorithms in terms of running time,

speedup, and efficiency. The three algorithms are implemented using open MPI

library and the experiments are conducted using IMAN1 supercomputer. The

evaluation of the three algorithms is based on varying number of processors and input

size.

Results show that parallel Quicksort has better running time for both small and large data

size, followed by Merge-Quicksort and then Merge sort algorithms. According to parallel

efficiency, Quicksort algorithm is more efficient to be applied on large number of

processors (8 and more). It achieves up to 88% parallel efficiency, while Merge and Merge-

Quicksort achieve up to 49% and 52% parallel efficiency, respectively.

Acknowledgments

We would like to acknowledge eng. Zaid Abudayyeh for his support to accomplish this

work.

References

[1] http://en.wikipedia.org/wiki/Sorting_algorithm, Accessed on (2013) September 16.

[2] B. A. Mahafzah, “Performance assessment of multithreaded Quicksort algorithm on simultaneous

multithreaded architecture”, Journal of Supercomput, vol. 66, (2013), pp. 339-363.

[3] Concurrent Programming, Addison wisely http://www.nondot.org/sabre/Mirrored/ AdvProgLangDesign/-

finkel07.pdf.

[4] Q. Mohammad, “Adaptive fault tolerant routing algorithm for Tree-Hypercube multicomputer”, Journal of

computer Science, vol. 2, no. 2, (2006), pp. 124-126.

[5] M. Qatawneh, A. Sleit and W. Almobaideen, “Parallel implementation of polygon clipping using

transputer”, American Journal of Applied Sciences, vol. 6, no. 2, (2009), pp. 214-218.

[6] A. Ananthgrama, G. Kerypis and Vipinkumar, “Introduction to Parallel Computing”, Second Edition,

Addison Wesley, (2003).

[7] http://www.iman1.jo/iman1/, Accessed on (2014) July 10.

[8] M. Jeon and D. Kim, “Load-Balanced Parallel Merge Sort on Distributed Memory Parallel Computers”,

Proceedings of the IEEE International Parallel and Distributed Processing Symposium, IPDPS.02, (2002).

[9] M. Jeon and D. Kim, “Parallel Merge Sort with Load Balancing”, International Journal of Parallel

Programming, vol. 31, no. 1, (2003), pp. 21-33.

[10] I. Singh Rajput, B. Kumar and T. Singh, “Performance Comparison of Sequential Quick Sort and Parallel

Quick Sort Algorithms”, International Journal of Computer Applications, vol. 57, no. 9, (2012), pp. 14-22.

[11] C. U. Martel and D. Gusfield, “A fast parallel Quicksort algorithm”, Information Processing Letters, vol.

30, no. 2, (1989), pp. 97-102.

[12] P. Tsigas and Y. Zhang, “A Simple, Fast Parallel Implementation of Quicksort and its Performance

Evaluation on SUN Enterprise 10000”, 16th Euromicro Conference on Parallel, Distributed and Network-

Based Processing, PDP, (2003).

[13] V. Kale and E. Solomonik, “Parallel Sorting Pattern”, The 2nd Annual Conference on Parallel

Programming Patterns (ParaPLoP), ACM 978-1-4503-0127-5, (2010) March 30-31st.

[14] D. Pasetto and A. Akhriev, “A Comparative Study of Parallel Sort Algorithm”, IBM Dublin Research Lab,

Mulhuddart, Dublin 15, Ireland.

[15] Luis Quiles, "Quick Sort", Florida Institute of Technology,

http://cs.fit.edu/~pkc/classes/writing/hw15/luis.pdf.
[16] W. Almobaideen, M. Qatawneh, A. Sleit, I. Salah and S. Al-Sharaeh, “Efficient Mapping Scheme of Ring

Topology onto Tree-Hypercubes”, Journal Applied Sci, vol. 7, no. 18, (2007), pp. 2666-2670.

[17] Q. Mohammed, “Embedding Linear Array Network Into The Tree-Hypercube Network”, European

Journal of Scientific Research, vol. 10, no. 2, (2005).

[18] A. Sleit, W. AlMobaideen, M. Qatawneh and H. Saadeh, “Efficient Processing for Binary Submatrix

Matching”, American Journal of Applied Sciences, vol. 6, no. 1, (2008), pp. 78-88.

[19] Q. Mohammad and H. Khattab, “New Routing Algorithm for Hex-Cell Network”, International Journal of

Future Generation Communication and Networking, vol. 8, no. 2, (2015), pp. 295-306.

[20] Q. Mohammad, “Embedding Binary Tree and Bus into Hex-Cell Interconnection Network”, Journal of

American Science, vol. 7, no. 12, (2011), pp. 367-370.

http://eacademic.ju.edu.jo/mohd.qat/Lists/Published%20Research/Attachments/2/efficient-mapping-scheme.pdf
http://eacademic.ju.edu.jo/mohd.qat/Lists/Published%20Research/Attachments/2/efficient-mapping-scheme.pdf
https://www.researchgate.net/profile/Mohammad_Qatawneh/publication/275963698_New_Routing_Algorithm_for_Hex-Cell_Network/links/5550808a08ae93634ec8e000.pdf
http://scholar.google.com/scholar?cluster=13907867344599129056&hl=en&oi=scholarr

International Journal of Advanced Science and Technology

Vol.95 (2016)

Copyright ⓒ 2016 SERSC 71

Authors

Maha Saadeh, is a Ph.D. student in computer science at the

University of Jordan. She worked as research and teaching assistant at

the computer science department, The University of Jordan from

September 2009 to September 2010. Then she received her M.Sc.

degree in computer science from the same university in 2011. She has

a number of publications in a number of local and international

journals and conferences. Her research interests are: wireless networks,

network security, and the Internet of Things (IoT).

Huda Saadeh, is a Ph.D. student in computer science at the

University of Jordan. She received her M.Sc. degree in computer

science from the University of Jordan in 2006. She is working as

lecturer at Petra university, computer information systems

department. She has a number of publications in international journals.

Her research interests are: network security, the Internet of Things

(IoT), and image processing.

Mohammad Qatawneh, is a Professor at computer science

department, the University of Jordan. He received his Ph.D. in

computer engineering from Kiev University in 1996. Dr.

Qatawneh published several papers in the areas of parallel

algorithms, networks and embedding systems. His research

interests include parallel computing, embedding system, and

network security.

International Journal of Advanced Science and Technology

Vol.95 (2016)

72 Copyright ⓒ 2016 SERSC

