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Abstract 

Many sorting algorithms have been proposed and implemented in previous years. These 

algorithms are usually judged by their performance in term of algorithm growth rate 

according to the input size. Efficient sorting algorithm implementation is important for 

optimizing the use of other algorithms such as searching algorithms, load balancing 

algorithms, etc. In this paper, parallel Quicksort, parallel Merge sort, and parallel Merge-

Quicksort algorithms are evaluated and compared in terms of the running time, speedup, 

and parallel efficiency. These sorting algorithms are implemented using Message Passing 

Interface (MPI) library, and results have been conducted using IMAN1 supercomputer. 

Results show that the run time of parallel Quicksort algorithm outperforms both Merge sort 

and Merge-Quicksort algorithms. Moreover, on large number of processors, parallel 

Quicksort achieves the best parallel efficiency of up to 88%, while Merge sort and Merge-

Quicksort algorithms achieve up to 49% and 52% parallel efficiency, respectively. 
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1. Introduction 

The aim of sorting algorithm is to order N items in an efficient way considering 

run time, memory space, and data structure complexity. Different types of sorting 

algorithms have been implemented such as selection sort, insertion sort, bubble sort, 

Quicksort, merge sort, and heap sort (see Table 1) [1]. In 1960s computer 

manufacturers estimate that 25% of their computers running time was spent on 

sorting. As a results, it is important to enhance sorting algorithms and implement them 

efficiently to enhance the performance of applications with huge amount of data such 

as search engines [2]. 

In order to enhance the performance of sorting algorithms, parallel versions have 

been implemented which reduce the overall execution time and increase the fault-

tolerance of sorting based applications [3 - 5]. The performance of these parallel 

algorithms depends on its implementation and the underlying architecture of the 

parallel machine [16-21]. 

The goal of this paper is to evaluate the performance of three different parallel 

sorting implementations, which are parallel Quicksort, parallel Merge sort, and hybrid 

Merge-Quicksort algorithms. The three algorithms are implemented using MPI which 

is a standard library for message passing that can be used to develop portable parallel 

programs using C, C++ or FORTRAN [6]. 

The evaluation is done in terms of the required running time, speedup, and parallel 

efficiency according to different data size and number of processors. The results were 
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conducted using IMAN1 supercomputer which is Jordan's first and fastest 

supercomputer. It is available for use by academia and industry in Jordan and the 

region and provides multiple resources and clusters to run and test High Performance 

Computing (HPC) codes [7]. 

The rest of the paper is organized as follows; Section 2 summarizes some related works. 

Section 3 introduces sequential and parallel Quicksort. In Section 4, sequential and parallel 

Merge sort algorithms are discussed. Next, parallel Merge-Quicksort is discussed in Section 

5. The evaluation results of the three algorithms are discussed in Section 6. Finally, Section 

7 concludes the paper. 

Table 1. The Time Complexity of Different Sorting Algorithms [1] 

Sorting Algorithm Best Case Average Case Worst Case 

Insertion O(n) O(n^2) O(n^2) 

Selection O(n^2) O(n^2) O(n^2) 

Bubble O(n^2) O(n^2) O(n^2) 

Heap O(n*log(n)) O(n*log(n)) O(n*log(n)) 

Merge O(n*log(n)) O(n*log(n)) O(n*log(n)) 

Quick O(n*log(n)) O(n*log(n)) O(n^2) 

 

2. Related Works 

Parallel sorting algorithms have been a rich area of research due to the increasing 

need to efficient, fast, and reliable sorting algorithms which can be implemented in 

parallel platforms. In [8] and [9] the authors propose a load-balanced merge sort 

algorithm that utilizes all processors throughout the computation. It evenly distributes 

data to all processors in each stage. Thus, every processor is forced to work in all 

phases. In [10-12] different parallel Quicksort algorithms are proposed. In [10] a 

comparison between sequential and parallel versions of Quicksort algorithms is 

discussed. The authors in [11] propose a fast parallel Quicksort algorithm that can 

sort N data items in log n time using N processors. In [12] another fast parallel 

Quicksort algorithm is implemented and evaluated using the SUN enterprise 1000.  

A study of common patterns in parallel sorting algorithms in terms of load balancing, 

keys distribution, communication, and computations is conducted in [13]. Another study 

based on qualitative and quantitative analysis of the performance of parallel sorting 

algorithms on modern multi-core hardware can be found in [14]. 

 

3. An Overview of Sequential and Parallel Quicksort 

In 1960 Quicksort was developed by Tony Hoare [1]. It is a sorting in place 

algorithm that recursively calls itself to sort the items in an array. The algorithm calls 

itself tow times with input length depends on the partition procedure. Obviously, the 

main operations are done in the partition procedure; firstly, it chooses a pivot value 

to sort the items into two sub lists; upper and lower. All items in the former list are  

greater than or equal to the pivot value. The later list contains the items that are less 

than the pivot. Then, the Quicksort algorithm is called recursively on each sub list. 

The same process is repeated to each sub list until partitioning cannot be performed. 

Finally, each sub list will contain a sorted part of the original list.  

The chosen of the pivot element can be done in various ways; 1- It could be the 

leftmost or rightmost item in the list. 2- It can be chosen randomly. 3- The median 

value between the leftmost, the rightmost, and the middle items.  

In this section, an overview of Quicksort algorithms is discussed. Section 3.1 discusses 

the sequential algorithm and parallel Quicksort is discussed in 3.2. 
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3.1. Sequential Quicksort 

As discussed previously, the main operation of Quicksort takes place in partition 

procedure. The Pseudo code for sequential Quicksort is shown in Figure 1. 

 

 

Figure 1. Sequential Quicksort Pseudo Code 

3.1.1. Sequential Quicksort Description 

Sequential Quicksort algorithm is a recursive procedure works as follows:  

1. Select one of the items as a pivot. 

2. Divide the list into two sub lists: a lower list containing numbers smaller than 

the pivot, and an upper list containing numbers larger than or equal to the 

pivot. 

3. The lower list and the upper list recursively repeat the procedure to sort 

themselves. 

4. The final sorted result is the concatenation of the sorted lower list, the pivot, 

and the sorted upper list. 

To understand the sequential Quicksort we will il lustrate the example shown in 

Figure 2. The list consists of five numbers and the goal is to sort them in ascending 

order. The inputs are {3, 2, 1, 5, 4}, and we choose the pivot to be the leftmost item 

{3}. Firstly, the partition procedure will arrange the list into two sub lists at the third 

index (since the pivot is the middle value); lower sub list {2, 1} and upper sub list {5, 

4}. Then the Quicksort algorithm will be performed to each sub list. In the lower sub 

list the pivot is {2} and the partition index is 2. For the upper sub list the pivot is {5} 

and the partition index is 5. No more partitioning can be performed for both lower 

and upper sub lists and thus the resulted list is already sorted. Note that due to the 

sequential nature the lower sub list will be sorted before the upper one. 
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Figure 2. Sequential Quicksort Example 

3.1.2. Sequential Quicksort Analysis 

Sequential Quicksort has better run time complexity compared with other sorting 

algorithms such as selection, insertion, and bubble sorting algorithms. Merge and 

heap sorting algorithms have the same growth rate as in Quicksort except for the worst 

case run time. However worst case is rarely to occur [15]. In this section we will 

analyze the time complexity of the sequential Quicksort according to the best, average 

and worst cases. 

The worst case of the Quicksort algorithm is presented in Figure 3. This case occurs 

when the list is already sorted and the pivot is the left or right most item. As shown 

in the figure, in each call for partitioning procedure nothing will be moved. The time 

complexity is O(n2). 

 

 

Figure 3. Quicksort Worst Case 

Figure 4 and Figure 5 illustrate the complexity of Quicksort in the best case and 

average case, respectively. In the best case the partitioning is always balanced (the 

partition procedure returns the middle index). Thus, in each recursive call for 

Quicksort algorithm the lower and the upper sub lists will contain the same number 

of items which is the half of the items in the previous call. This means that the 
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recursive calls will go for log n times each take O(n) for partitioning the sub list. As 

a result the time complexity in the best case is O(n log n). In the average case an 

alternate between good and bad partitioning occurs results in the complexity of O(n 

log n). 

 

 

Figure 4. Sequential Quicksort Best Case. 

 

Figure 5. Sequential Quicksort Average Case 

3.2. Parallel Quicksort 

Parallel Quicksort algorithm can be implemented in different ways. In this section we 

will summarize the one we used for our implementation. The main idea is to do the 

partitioning on the original list using a single processor, and then assign the upper sub list 

to another processor for further partitioning. The steps of this method are listed in Table 2. 

In the next subsections, the analysis of parallel Quicksort is discussed. For simplicity, 
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assume that the input size n = 2k – 1, the number of processors P = 2m where m < k, and 

electrical links are used to connect the processors (Figure 6). 

Table 2. Steps of Parallel Quicksort 

Step Action taken by each processor 

1 Do partition on the assigned list, go to step 2.  
2 Check if any processor i is available. If yes go to step 3, otherwise go to step 4.  
3 Assign the upper sub list to processor i if its size is greater than 1, and mark 

processori as a child. Then, go back to step 1. 
4 Perform sequential Quicksort on the assigned list, and go to step 5.  
5 Send results to parent processor. Then, go to step 6.  
6 Exit 

 

3.2.1. Partitioning Procedure Analysis 

In the first partitioning of the original list the partition procedure will take n – 1 time to 

perform n – 1 comparisons (n – the pivot item). Assuming that partitioning is always 

balanced, the lower and upper sub lists have the same number of items = (n - 1) / 2 and this 

will be the input size for the next partitioning. Taking (n - 1) / 2 items, the time for partition 

procedure is ((n - 1) / 2) - 1 = (n - 3)/2 on each process with total n-3 comparisons ( ((n-3) 

/ 2) × number of processors that do the partitioning). In the next round 4 sub lists will be 

running on 4 processors each with input size = (n - 3) / 4, partitioning time = (n - 7) / 4, and 

n - 7 comparisons. Generally round i has input size = (roundi-1 size - 1) / 2, partition time = 

(n – 2i - 1) / 2i-1, and number of comparisons = n – 2i - 1 where i > 1. This can be performed 

for log p. Then, the all processors will perform the sequential Quicksort since new 

processors are not available. According to this analysis the Partitioning time in parallel 

Quicksort for total log p rounds = [∑
(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1 ], and the number of comparisons = 

[∑ (n – 2i −  1)
(log 𝑝)+1
𝑖=1 ]. 

 

 

Figure 6. Parallel Quicksort Analysis. (a) Tree View and (b) Hypercupe View 
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3.2.2. Parallel Analysis 

Parallel Quicksort is analyzed according to the number of communication steps, 

complexity, speed, and execution time. 

Communication steps: this includes the number of steps required for data splitting and 

results gathering. As we can see in Figure 6, we need 2 steps to scatter the data among 4 

processors and 3 steps to scatter it among 8 processors. As a result, the number of 

communication steps that are required to scatter the data depends on the number of 

processors P, which is log 𝑃. on the other hand, we need same number of communication 

steps to gather the results from all processors. So the total number of communication steps 

is 2 × log 𝑃.  

Complexity: this is the time required to perform Quicksort locally on each processor and 

the time of partition procedure. In the best case, each processor will sort n/p of elements 

using sequential Quicksort at the same time. So the time required for all processors to sort 

the data is  = O(
n

P
× log

𝑛

𝑃
). In addition, the partition procedure take [∑

(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1 ] 

time, so the total complexity is O(
n

P
× log

𝑛

𝑃
) + [∑

(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1 ]. 

Speed: this is the communication steps times the speed of the electrical links. Assuming 

that the speed of electrical links = 250Mb/s, the speed is 2 × log 𝑃  × 250 Mb/s. 

Execution time: this is the complexity of sorting + communication time. As discussed 

previously, the complexity of parallel sorting is O(
n

P
× log

𝑛

𝑃
) + [∑

(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1 ].The 

communication time depends on the data that is transmitted over the link in each step. We 

mentioned previously that we need log 𝑃 communication steps to scatter the data. In the 

best case the data is divided into equal parts. So, the data size in the first step = 
𝑛

2
, in the 

second step =  
𝑛

4
, in the ith step =  

𝑛

2𝑖. As a result, the total is ∑
𝑛

2𝑖

log 𝑃
𝑖=1  . In addition, we need 

to add the data size in the communication steps for data gathering. Thus, the total 

communication time is 2 × ∑
𝑛

2𝑖

log 𝑃
𝑖=1  and the total execution time is (2 ×

∑
𝑛

2𝑖

log 𝑃
𝑖=1 ) +O(

n

P
× log

𝑛

𝑃
)+[∑

(n – 2i− 1)

2𝑖−1

(log 𝑝)+1
𝑖=1 ]. 

 

4. An Overview of Sequential and Parallel Merge Sort 

Merge sort is another divide and conquer based sorting algorithm. In this section 

both sequential and parallel Merge sort algorithms are discussed. 

 

4.1. Sequential Merge Sort 

Merge sort depends on dividing a list of data into smaller sub lists then merging those 

sorted lists into one sorted list. This process is implemented recursively by dividing the list 

each time into two smaller sub lists each with n/2 data size. Then, re-dividing each of those 

sub lists again until each sub list has one element. After that, the algorithm will merge all 

sub lists into one sorted list (see Figure 7). The dividing process forms a binary tree in 

which the merge process is done in a bottom-up manner. An example of Merge sort is 

illustrated in Figure 8. 

 

4.2. Parallel Merge Sort 

In parallel Merge sort, input elements are divided into two equal parts and each 

part is processed by a separate processor. Like parallel Quicksort, each division is 

mapped to a new processor until every processor has its own data to be sorted. This 
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division forms a tree which can be implemented as a hypercube. After division, all 

processors will perform sequential Merge sort to sort their own n/p data locally, where 

p is the number of processors and n is the number of items. To gather the results, each 

processor will merge its own results with its parent results in a bottom up manner. 

Table 3 lists the main steps of parallel Merge sort algorithm. 

In the next sub sections, the analysis of parallel Merge sort is discussed in details. 

For simplicity, we will assume that the input size n = 2k, the number of processors P 

= 2m where m < k, and electrical links are used to connect the processors. 

Table 3. Steps of Parallel Merge Sort 

Step Action taken by each processor 

1 Divide the data into two equals parts; left and right. Then, go to step 2. 

2 Check if any processori is available. If yes go to step 3, otherwise go to step 4. 

3 
Assign the right part to processori, and mark processori as a child. Then, go back 

to step 1. 

4 Perform sequential Merge sort on the assigned data part, and go to step 5. 

5 
Send results to the parent processor to be merged with its results. Then, go to step 

6. 

6 Exit 

 

 

Figure 7. The Pseudo Code of Sequential Merge Sort 
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Figure 8. An Example of Sequential Merge Sort 

4.2.1. Merge Procedure Analysis 

Since data is divided among processors to form a binary tree, merging operation will 

take log n steps to merge the whole results in bottom up manner. If data size n =2k, then log 

n = k. In each step, the data size is doubled since it is been merged with the parent results 

which can be expressed as ∑ 2𝑖𝑘
𝑖=1  =∑ 2𝑖𝑘

𝑖=0 – 1. Solving this equation the time complexity 

for merge procedure is O(n). 

 

4.2.2. Parallel Analysis 

As for parallel Quicksort, parallel Merge sort is analyzed according to the number of 

communication steps, complexity, speed, and execution time. 

Communication steps: this includes the number of steps required for data division and 

results merging. The number of communication steps that are required to divide the data 

among processors depends on the number of processors P, which islog 𝑃. on the other hand, 

we need same number of communication steps to merge the results from all processors. So 

the total number of communication steps is 2 × log 𝑃. 

Complexity: this is the time required to perform Merge sort locally on each processor 

and time for merge procedure. In the best case, each processor will sort n/p of elements 

using sequential Merge sort at the same time. So the time required for all processors to sort 

the data is  =
n

P
× log

𝑛

𝑃
. As discussed previously, the merge procedure take O(n) time. As a 

result, the total is O(
n

P
× log

𝑛

𝑃
) + O(n). 

Speed: this is the communication steps times the speed of the electrical links. Assuming 

that the speed of electrical links = 250Mb/s, the speed is 2 × log 𝑃  × 250 Mb/s. 

Execution time: this is the complexity of sorting + communication time. As discussed 

previously, the complexity of parallel sorting is O(
n

P
× log

𝑛

𝑃
) + O(n). The communication 

time depends on the data that is transmitted over the link in each step. We mentioned 

previously that we need log 𝑃 communication steps to divide the data. The data is divided 

into two equal parts. So, the data size in the first step = 
𝑛

2
, in the second step =  

𝑛

4
, in the ith 

step =  
𝑛

2𝑖. As a result, the total is ∑
𝑛

2𝑖

log 𝑃
𝑖=1  . In addition, we need to add the data size in the 
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communication steps for data merging. Thus, the total communication time is 2 × ∑
𝑛

2𝑖

log 𝑃
𝑖=1  

and the total execution time is (2 × ∑
𝑛

2𝑖

log 𝑃
𝑖=1 )  + (

n

P
× log

𝑛

𝑃
) +  𝑂(𝑛). 

 

5. An Overview of Parallel Merge-Quicksort 

This algorithm is a combination of both Merge sort and Quicksort. It uses parallel Merge 

sort to divide the data among processors and sequential Quicksort to sort the data locally at 

each processor. The parallel analysis for this algorithm is the same as parallel Merge sort, 

since in the best case sequential Quicksort has the same complexity as the one for sequential 

Merge sort which is O(
n

P
× log

𝑛

𝑃
). 

 

6. Performance Evaluation and Results 

In this section, the results are discussed and evaluated in terms of running time, speedup 

and parallel efficiency performance metrics.  IMAN1 Zaina cluster is used to conduct our 

experiments and open MPI library is used in our implementation of the following parallel 

sorting algorithms; Merge sort, Quicksort, and Merge-Quicksort. The algorithms are 

evaluated according to different input sizes and different number of processors. An average 

of multiple runs is considered to record the results. The hardware and software 

specifications along with the used implementation parameters are listed in Table 4. 

Table 4. The Hardware and Software Specifications 

Hardware 

specification 

Dual Quad Core Intel Xeon 

CPU with SMP, 16 GB RAM 

Software 

Specification 

Scientific Linux 6.4 with open 

MPI 1.5.4, C and C++ 

compiler. 

Data Size 

(Number of Input 

Items) 

222, 223, 224, 225, 226 (Element) 

16, 32, 64, 128, 256 (MB) 

Number of 

Processors 
1, 2, 4, 8, 16, 32 

 

6.1. Run Time Evaluation 

Figure 9 show the run time for each algorithm according to different data sizes. All 

results are performed on 8 processors. As illustrated in the figure, as the data size increases, 

the run time increases due to the increased number of comparisons and the increased time 

required for data splitting and gathering. Parallel Quicksort has the best run time for both 

small and large data size followed by Merge-Quicksort algorithm. Finally, Merge sort 

algorithms has the worst run time results. 
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Figure 9. Comparison of the Three Algorithms According to Different  
Data Size 

Figure 10 and Figure 11 illustrate the run time according to different number of 

processors including the sequential time (p = 1). We chose two different data size to 

conduct our experiments 222 and 226 correspond to small and large data size, respectively. 

The general behavior is the same for the three algorithms and can be summarized in the 

following points: 

1- As the number of processors increases, the run time is reduced due to better 

parallelism, better load distribution among more processors. This is the case when 

moving from 2 to 8 or to 16 processors. 

2- As the number of processor increases the run time is increases. This is because as 

the number of processors increases on specific data size, the communication 

overhead increases too, consequently, the benefits of parallelism are decreased. 

This is the case when moving from 16 to 32 processors. Due to this behavior that 

appears in the three algorithms, we did not use more than 32 processors. 

 

 

Figure 10. Comparison of the Three Algorithms According to the Number of 
Processors with 222 Data Size 
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Figure 11. Comparison of the Three Algorithms According to the Number of 
Processors with 226 Data Size 

6.2. Speedup Evaluation 

The speedup is the ratio between the sequential time and the parallel time. Figure 12 and 

Figure 13 illustrate the speedup of the three algorithms on 2, 4, 8, 16, and 32 processors 

with 222 and 226 data size, respectively. The results show that parallel Quicksort achieves 

the best speedups values, up to 10, especially on large number of processors. 

 

6.3. Parallel Efficiency Evaluation 

Parallel efficiency is the ratio between speedup and the number of processors. Figure 14 

and Figure 15 show the parallel efficiency for each algorithm according to different number 

of processors. The results are corresponding to 222 and 226 data size, respectively. On small 

number of processors (2 and 4) Parallel Merge sort achieves up to 96% efficiency followed 

by Merge-Quick sort with up to 93%, while Quicksort achieves up to 72%. On the other 

hand, parallel Quicksort achieves the best efficiency on large number of processors (8, 16, 

and 32), comparing with the other algorithms, with up to 88%, while Merge and Merge-

Quicksort achieve up to 49% and 52% efficiency, respectively. This is because Quicksort 

has better speedup values when applied on 8 or more processors. 

 

 

Figure 12. The Speedup of the Three Algorithms on Different Number of 
Processors with 222 Data Size 
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Figure 13. The Speedup of the Three Algorithms on Different Number of 
Processors with 226 Data Size 

 

Figure 14. The Efficiency of the Three Algorithms on Different Number of 
Processors with 222 Data Size 

 

Figure 15. The Efficiency of the Three Algorithms on Different Number of 
Processors with 226 Data Size 
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7. Conclusion 

In this paper, we present performance evaluation of parallel Quicksort, parallel 

Merge sort, and parallel Merge-Quicksort algorithms in terms of running time, 

speedup, and efficiency. The three algorithms are implemented using open MPI 

library and the experiments are conducted using IMAN1 supercomputer. The 

evaluation of the three algorithms is based on varying number of processors and input 

size. 

Results show that parallel Quicksort has better running time for both small and large data 

size, followed by Merge-Quicksort and then Merge sort algorithms. According to parallel 

efficiency, Quicksort algorithm is more efficient to be applied on large number of 

processors (8 and more). It achieves up to 88% parallel efficiency, while Merge and Merge-

Quicksort achieve up to 49% and 52% parallel efficiency, respectively. 
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