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Abstract 

The discrete elements code CeaMka3D uses cells of Voronoï as particles. Having 

clarified the expression of forces and torques in the elastic formulation, the concepts of 

volume of rotation and of volumetric vector of bending are introduced to simulate the 

bending. Some simulations of plates illustrate the capacity of this formulation. 
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1. Introduction 

Particle methods are meshless simulation techniques in which a continuum medium is 

approximated through the dynamics of a set of interacting solids. These include the 

Discrete Element methods (DEM) first developed by Hoover, Arhurst and Olness [1] in 

models for crystalline materials. They were applied to geotechnical problems by Cundall 

and Strack [2], and they are still in widespread use for granular materials and rock 

simulation [3]. 

A Discrete Element code CeaMka3D has been developed [4-5]. This method has been 

used successfully to simulate, for example, the propagation of seismic waves in a linear 

elastic medium [6]. This code has also been coupled with a finite element code [7] and a 

new symplectic leapfrog scheme has been developed in order to integrate 3D rigid-body 

rotation with external torque [8]. 

In the first part, the forces and torques between two particles are described in order to 

recover Hooke’s law. In the second part, bending moments between two particles are 

presented. In the last part, the results of this method on a conventional test are presented. 

 

2. Normal Force between Particles 

The initial choice was to take a Voronoï mesh which allows, from a field of points, to 

bound polyhedrons. This type of meshing does not leave geometrical space like that can 

be the case with spherical particles. By geometrical construction, the plan of contact 

between two particles is perpendicular to the line connecting the centres of particles. 
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Figure 1. Initial Contact between Two Particles 

Let n  be the normal direction between particles A and B 
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The initial distance between particles A and B is defined by 
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The relative movement of both particles A and B according to the normal is defined by 
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It is necessary to choose the method of calculation of the elastic volume deformation of 

a particle A surrounded by other particles B during their movements. 

A particle A has only a part of its surface in touch with the other particles B. A volume 

of contact can be defined by the following relation 
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where SAB is the contact area between particles A and B. 

The variation of this volume of contact is given by the following equation 
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To transform this variation of elastic volume of contact to the elastic volume 

deformation, it is necessary to integrate free surfaces of the particle which can also have 

an elastic deformation. 

The complementary volume, called free volume, is then defined by  
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The variation of elastic volume of the particle A is given by the relation 
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To define the variation of free volume, it is necessary to return to the Hooke’s law. On 

the free surface and according to the normal for this free surface, the normal constraint is 

nil, so  
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where  is Poisson’s ratio. 

On the other hand, the normal elastic deformation of the free surface is connected with 

the variation of the free volume  
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and 
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So, the elastic volume deformation of a particle A is given by 
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In the expression of the normal force between particles A and B, the following volume 

deformation is defined by 
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The normal force between both particles A and B is then given by 
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with E Young’s modulus and  Poisson’s ratio. 

The free surface is also important for the bending and a volume of rotation is defined 

by 
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The expressions of the shear forces and torques associated are studied in the next 

section. 

 

3. Shear Forces and Torques Associated 

The variation of the shear displacement is defined by the following vector 
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where   indicates the scalar product and 
A

rot  is the matrix of rotation of the particle 

A. 

The shear force between particles is given by  

.
t

ABeq

AB

AB

s

t

AB
Δu

D

S
KF         (20) 

The torques are given by 
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where   is the cross product. 

 

The terms of bending and torsion are examined in the next section. 

 

4. Bending and Torsion 

For a link between two particles A and B, a frame is associated with the initial contact 

surface SAB between A and B. This frame consists of three vectors  tsn ,, . The inertia 
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tensor of the contact surface is calculated with regard to both principal directions s  and t  

from the centre of gravity G of this surface 
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Two reduced distances according to each of these directions are defined by 
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The normal direction n  will be associated with a torsional torque J. 

Each particle A is going to have its own matrix of rotation 
A

rot  and some vectors are 

defined by 
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For the bending and torsion, the following potential is taken 
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with the following variables  
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So, the bending and torsion for the particle A are  
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For the normal force, a volume deformation has been defined to simulate correctly the 

elasticity. In the same way, a vector of volume bending variation can be defined. In the 

case of a cube submitted to constraints, every face is going to deform. If faces remain flat, 

the rotation of a face around its centre of gravity does not change the global volume of the 

cube but there are local volume variations inside the cube. Also, these local volume 

variations connected to the rotation do not change global forces but on the other hand 

change the bending when the Poisson’s ratio is different from zero. 

For the link between particles A and B, two vectors defining bending can then be 

defined 
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A volume variation related to bending of link AB is defined for particle A by the vector 
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Similarly, for particle B 
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Summing these vector increments for all the links of a particle A, an overall bending 

volume variation vector is defined 
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The volumetric potential of bending is defined by 
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This volumetric potential of bending assures the volume coupling of bending 

directions. 

For a link between a particle A and a particle B, the torque on A given by this potential 

is obtained by deriving this potential according to the rotation of the particle A 
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For a plate, the volume of rotation is given by 
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The bending torque takes then the characteristic value of the bending of a plate of 

thickness  h 
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For a beam, the volume of rotation is given by 
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The bending torque takes then the characteristic value of the bending of a beam of 

thickness h 
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So, on one hand the volume of rotation assures the consideration of the various 

geometries (beam, plate …). On the other hand, the volume vector of bending allows the 

directional assembly of the bending. 

So, these elastic potentials have been defined in order to simulate bending and torsion.  

 

5. Numerical Verification 

This formulation is verified on a classical benchmark for plates in elasticity. 

A circular plate of radius R = 10 m, thickness h and supporting a uniform pressure P is 

considered. The plate is embedded at the circumference of the circle. 
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The deflection is given by the following analytical relation [9] 
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At the centre r = 0, the expected deflection is given by 
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A square plate, 22 m side length, is meshed with just one particle in the thickness but 

with irregular particles of about 0.5 m length (mesh with a total of 1936 particles, Figure 

2). The particles outside the circle of radius R = 10 m are embedded. This plate is tested 

for several thicknesses h = (0.25 m; 0.1 m; 0.025 m) and for several values of Poisson’s 

ratio  = (0; 0.25; 0.49) and a Young modulus E = 10
7
 Pa. For these nine cases, the value 

of P is calculated by the analytical relation (44) in order to have always the same central 

deflection of 10
-4

 m. Simulations are compared with the analytical solution with a relative 

error less than 0.5 % (Table 1). The amplified deformed shape, with a Poisson’s ratio 

 = 0.49 and h = 0.25 m, is shown in Figure 2. 

For thin plate ( 5.2
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with a = 2.845 and b = 2.5 

Table 1. Central Deflections of the Plate with CeaMka3D 

Central deflections 

(m) 

Thickness 

h = 0.25 

Thickness 

h = 0.1 

Thickness 

h = 0.025 

Poisson's ratio 

 = 0 

0.9976 10
-4

 0.9976 10
-4

 0.9986 10
-4

 

Poisson's ratio 

 = 0.25 

0.9987 10
-4

 0.9995 10
-4

 1.0002 10
-4

 

Poisson's ratio 

 = 0.49 

1.0009 10
-4

 1.0030 10
-4

 1.0040 10
-4
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Figure 2. Embedded Circular Plate (R = 10 m) with Irregular Mesh – 

Poisson’s Ratio  = 0.49 and h = 0.25 m – Deformed Shape Amplified 50 000 
Times 

6. Conclusion 

The formulation of the discrete elements code CeaMka3D has been presented in the 

elastic domain. Two important concepts are presented. The first concept is the volume of 

rotation which allows taking into account various geometries (solid, beam or plate) 

according to the volume of contact between particles. The second concept is the 

volumetric vector of bending which allows taking into account the coupling between the 

bending directions when the Poisson’s ratio is different from zero. This formulation is 

verified on a classical benchmark for plates. 

 

References 

[1] W. G. Hoover, W. T. Arhurst and R. J. Olness, “Two-dimensional studies of crystal stability and fluid 

viscosity”, Journal of Chem Phys, vol. 60, (1974), pp. 4043-4047. 

[2] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular assemblies”, Geotech., vol. 

29, no. 1, (1979), pp. 47-65. 

[3] D. O. Potyondy and P. A. Cundall, “A bonded-particle model for rock”, International Journal of Rock 

Mech Min Sci., vol. 41, (2004), pp. 1329-1364. 

[4] C. Mariotti and L. Monasse, “From general mechanics to discontinuity, unified approach to elasticity”, 

Presses des Ponts, ISBN: 978-2-85978-460-7, (2012). 

[5] C. Mariotti, “Lamb's problem with the lattice model Mka3D”, Geophys Journal of Int., vol. 171, (2007), 

pp. 857-864. 

[6] L. Monasse and C. Mariotti, “An energy-preserving Discrete Element Method for elastodynamics”, 

ESAIM: M2AN, vol. 46, no. 6, (2012), pp. 1527-1553. 

[7] C. Mariotti, F. Le Piver and L. Aubry, “A least-squares coupling method between a finite element code 

and a discrete element code”, Int J Num Meth Eng., vol. 101, no. 10, (2015), pp. 731-743. 

[8] C. Mariotti, “A new Leapfrog scheme for rotational motion in 3D”, Int J Num Meth Eng doi: 

10.1002/nme.5165, (2015). 

[9] S. P. Timoshenko and S. Woinowsky-Krieger, “Theory of Plates and Shells”, McGraw-Hill, New York, 

(1959). 

 



International Journal of Advanced Science and Technology 

Vol.94 (2016) 

 

 

22   Copyright ⓒ 2016 SERSC 

 


