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Abstract 

Thermal convection in multi-component fluid has wide applications in industrial, 

ionospheric and geothermal systems. The effect of Coriolis force on Soret driven 

ferrothermohaline convection in densely packed anisotropic porous medium has been 

studied. A linear stability analysis is carried out using normal mode technique. It is found 

that stationary mode is favorable for Darcy model and oscillatory instability is studied. 

The porous medium is assumed to be variable and the effect of permeable parameter and 

vertical anisotropy are to destabilize the system. The non-buoyancy magnetization and 

Soret effects are found to stabilize the system in consideration with anisotropy of the 

system. The results are depicted graphically. 
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1. Introduction 

The last millennium has seen many fascinating materials that possess promising 

physical properties and which are technologically useful. The ferrofluid is one such 

material. The magnetic materials play an important role in the overall development of 

many scientific applications. The ferrofluid has to be synthesized and it has widespread 

applications in various fields ranging from physics, chemistry, electrical engineering, 

biomedicine and instrumentation to computer technology. Its commercial usage includes 

novel- zero leakage, rotary-shaft seals used in computer disc drives [1], liquid cooled 

loudspeakers [2] and energy conversion devices [3]. 

The study of thermoconvective instability of ferrofluids has been the subject of 

investigation for the past four decades due to its remarkable applications. The 

magnetization of ferrofluids depends on the magnetic field, the temperature and density of 

the fluid. The variation of any one of these causes a change in the body force. This 

induces convection in ferromagnetic fluids in the presence of a magnetic field gradient. 

This mechanism, known as ferroconvection, is similar to the Rayleigh-Benard convection 

in ordinary fluids [4]. 

The thermohaline (double diffusive) convection in ferrofluid in a rotating porous 

medium has a very wide application in geothermal mineral fluid motion causing a deposit 

of ferric oxide in shale rock layers. In India these deposits are found very close to Eastern 

part of the Western Ghats and forestry region of Bihar. The same deposits are found very 

close to the rocky region in various part of the world. The analysis of double diffusive 

convection becomes complicated in case the diffusivity of one property is much greater 

than the other. Further, when two transport processes take place simultaneously, they 
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interfere with each other and produce cross-diffusion effect. The flux of mass caused by 

temperature gradient is known as Soret coefficients. 

In astrophysical system, the ion layers are affected by the magnetic field surrounding 

the earth, which in turn rotates with constant angular velocity. This causes the ionspheric 

drift and storm. The suspension of the dust particle may be visualized as a porous 

medium. Finlayson [5] was the first to study the linear stability of ferroconvection in a 

horizontal layer of ferrofluid heated from below in the presence of uniform vertical 

magnetic field. Schwab et al., [6] have conducted experiments and their results are found 

to be in good agreement with Finlayson [5]. Lalas and Carmi [7] have analyzed the same 

problem using the energy method. A similar analysis but with the fluid confined between 

ferromagnetic plates has been carried out by Gotoh and Yamada [8] using the linear 

stability analysis. Stiles and Kagan [9] have extended the problem to allow for the 

dependence of effective shear viscosity on temperature and colloid concentration. 

Odenbach [10] has focused on recent developments in the field of rheological 

investigations of ferrofluids and their importance for the general treatment of ferrofluids. 

The nonlinear stability analysis for a magnetized ferrofluid layer heated from below has 

been performed by Sunil and Amit Mahajan [11] for stress-free boundaries. Nanjundappa 

and Shivakumara [12] have considered variety of velocity and temperature boundary 

conditions on the onset of ferroconvection in an initially quiescent ferrofluid layer. 

Thermal convection of ferrofluids in the presence of a uniform vertical magnetic field 

with the boundary temperatures modulated sinusoidally about some reference values is 

investigated by Singh and Bajaj [13]. Vaidyanathan et al., [14] have the convective 

instability of ferromagnetic fluid through porous medium of large permeability and 

mentioned that stationary convection can occur and oscillatory convection cannot occur 

by use of Brinkman number. This work has been extended to anisotropic porous medium 

by Sekar et al., [15] and Vaidyanathan et al., [16] modified the above work with use of 

Darcy model. 

The effect of magnetic field along the vertical axis on thermoconvective instability in a 

ferromagnetic fluid saturating a rotating porous medium with Darcy model has been 

studied by Sekar et al., [17].  The same with Brinkman model was also studied by Sekar 

et al., [18]. Initially the effects of rotation and anisotropy of a porous medium on 

ferroconvection was analyzed by Vaidyanathan et al., [19]. This was extended to a study 

on the effect of rotation on ferrothermohaline convection saturating a porous medium was 

carried out by Sekar et al., [20]. The effect of rotation on ferrothermohaline convection 

has been analyzed and linear theory is used by Sekar et al., [21]. It was observed that 

stationary mode is favored when compared to oscillatory mode for optimum heat transfer. 

Kaloni and Lou [22] have studied convective instability in a horizontal layer of a 

magnetic fluid by considering the relaxation time and the rotational viscosity effects. 

Ryskin et al., [23] analyzed the Soret -driven convection in ferrofluids using a non-linear 

analysis. Vaidyanathan et al., [24] analyzed Soret-driven ferro thermohaline convection. 

Effect of Coriolis force on a Soret driven ferrothermohaline convective system was 

studied by Sekar et al., [25]. Following this, the same analysis in a medium of sparse 

particle suspension was analyzed by Vaidyanathan et al., [26]. The effect of Coriolis force 

on thermal convection in a couple stress fluid saturated rotating rigid porous layer was 

studied by Shivakumara et al., [27]. 

More recently, the presence and absence of an anisotropy porous medium on Soret 

driven ferrothermohaline convection have been investigated by Sekar et al. [28-30] using 

Brinkman and Darcy models. Also, with and without of MFD viscosity on Soret driven 

ferrothermohaline convection in an anisotropic porous medium have been studied by 

Sekar and Raju [31-32] and the temperature dependent viscosity and coriolis force are 

studied in Soret driven ferrothermohaline convection in a porous medium and anisotropy 

effect have been studied by Sekar et al. [33] and Sekar and Raju [34]. 
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Keeping in mind the importance of densely distributed porous medium on the onset of 

ferroconvection. In the present investigation, the convection of Soret-driven ferro 

thermohaline instability of multi-component fluid heated from below and salted from 

above is investigated in an anisotropic porous medium with coriolis force. Linear stability 

analysis is used. The conditions for the onset of stationary and oscillatory instabilities 

have been obtained. 

 

2. Formulation of Problem 

A horizontal layer of an incompressible Boussinesq ferromagnetic fluid of thickness 

‘d’ saturating a densely packed anisotropic porous medium with coriolis force in the 

presence of transverse applied magnetic field heated from below and salted from above is 

considered. The temperature and salinity at the bottom and top surfaces z = ±d/2 are T0 ± 

∆T/2 and S0 ± ∆S/2, respectively. Both the boundaries are taken to be free and perfect 

conductors of heat and solute. Consider the Soret effect on the temperature gradient. 

Further the whole system is assumed to rotate with uniform constant angular velocity   

and anisotropy along the vertical direction taken as z axis (Figure 1). The mathematical 

equations governing the above investigation are as follows. 

 

 

Figure 1. Geometrical Configuration 

The continuity equation for an incompressible fluid is 

. 0 q                                                                                                               (1) 

 The corresponding momentum equation is 
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 The temperature equation for an incompressible ferrofluid is 
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 The mass flux equation is given by 

2 2

s T

D S
K S S T

D t
                         (4) 

 

where
o

 , q = (u, v, w), g = (0,0,-g), k, t,  p,  ,
 
H, B, CV,H, T, M, K1, S, KS,  0 , 0 ,   , 

ST  and   are the fluid density, velocity, acceleration due to gravity, permeability of the 

porous medium, time, pressure, coefficient of viscosity, magnetic field, magnetic 
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induction, heat capacity at constant volume and magnetic field, temperature, 

magnetization, thermal conductivity, salinity, concentration diffusivity, angular velocity, 

Soret coefficient and viscous dissipation factor containing second-order terms in velocity, 

respectively. 

Using Maxwell’s equation for non-conducting fluids, one can assume that the 

magnetization is aligned with the magnetic field and depends on the magnitude of the 

magnetic field, temperature and salinity, so that  

 , ,M H T S
H


Η

Μ                        (5) 

The magnetic equation of state is linearized about the magnetic field H0, the average 

temperature T0 and the average salinity S0 and so 

     0 0 0 2 0
M M H H K T T K S S                                   (6) 

 

where  
0 0

,
/

 
   is the susceptibility,  

0 0
,

/
 

     is the pyromagnetic 

coefficient and  
0 0

2 ,
/

S
S


    is the salinity magnetic coefficient. 

 

 The density equation of state for a Boussinesq two-component fluid is  

   0 0 0
1

t s
T T S S        

 
                                  (7) 

where 
t

 is the thermal expansion coefficient and 
s

  is the solute analog of 
t

 . 

Basic state is assumed to be quiescent state and basic state quantities are obtained by 

substituting the velocity of quiescent state in the governing Equations (1)-(4). The 

techniques of linearization and normal mode method are used in finding the solutions of 

the Equations (1)-(7). This can be written as  
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wave number k0 is given by  2 2 2
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 The vertical component of momentum equation can be calculated as 
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where   is the z- component of vorticity given by 
v u

x y


 
 

 
  

The modified Fourier heat conduction equation is  
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The salinity equation is 
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Using the analysis similar to Finlayson [5], one gets 
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The non-dimensional numbers can be written using 
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Then the Equations (9) – (13) become 
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where the non-dimensional parameters used are 
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where S
R is the salinity Rayleigh number, R  is the thermal Rayleigh number, r

P
 
is the 

Prandtl number and other parameters represent  non-dimensional parameters used 

appropriately. 

 

3. Analysis of Solution at Free Boundaries 

The boundary conditions on velocity, temperature and salinity are  
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For the existence of non-trivial Eigen functions, the determinant of the co-efficient of 

A, B, C and F in Equations (22) – (25) must vanish. Following the techniques and analysis 

of Sekar et al. [25], Equations (22) – (25) lead to  
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For obtaining stationary instability, the time-independent term Y=0. Equation (26) 

helps one to obtain Eigen value R
sc

 for which a solution exists; 
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The conditions for the onset of oscillatory stabilities are obtained as follows. Taking 

1
i  and 2

1
0 ,   following the analysis and techniques of Sekar et al. [25], the critical 

Rayleigh number for oscillatory mode has been calculated using  
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4. Results and Discussions 

The Soret-driven thermoconvective instability of ferromagnetic fluid heated from 

below and salted from above rotating a densely packed anisotropic porous medium has 

been analyzed using Darcy model. The effect of anisotropy is studied by the anisotropic 

parameter , which is the ratio of vertical to the horizontal plane permeability, which takes 

the values from 10 to 70.  The Prandtl number 
r

P  is assumed to be 0.01. The Taylor 

number Ta is assumed to vary from 10 to 10
5
. The Soret parameter 

T
S  is assumed to take 

values from -0.002 to 0.002, the salinity Rayleigh number
s

R  is varied from -500 to 500 

and the non-buoyancy magnetization parameter M3 is allowed to take values from 5 to 25. 

The values of ratio of the mass transport to heat transport   is assumed to be 0.03, 0.05, 

0.07, 0.09 and 0.11 (Sekar et al., [28]). The buoyancy magnetization parameter M1 is 

assumed to be 1000 (Finlayson [7]). For these fluids, M2 will have a negligible value and 

hence is taken as zero. M6 is taken to be 0.1 and M4 is the effect on magnetization due to 

salinity. This is allowed to vary from 0.1 to 0.5 taking values less than the non-buoyancy 

magnetization parameter M3. M5 represents the ratio of the salinity effect on magnetic 

field and pyromagnetic coefficient. This is varied between 0.1 and 0.5. The permeability 

of porous medium k is assumed to take the values from 0.001, 0.003, 0.005, 0.007 and 

0.009 (Darcy number). 
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Figure 2. Variation of Rsc versus   for Different RS with ST = -0.002, M3 = 5, k 

= 0.001, Ta = 10 and 0 .0 3 .   

Figure 2 shows variation of R
sc

 with  (anisotropic ratio) for different RS            (-500, -

100, 0, 100, 500) and keeping the values of ST = -0.002, M3 = 5, k = 0.001, Ta = 10 

and 0 .0 3  are fixed. It has been observed that as RS increases there is no notable 

variation in the curves. That is, there is no any variation in convection for different effect 

of salt. Therefore, the effect of salinity Rayleigh number is negligible. Anyhow, stability 

pattern is observed. 



International Journal of Advanced Science and Technology 

Vol.87 (2016) 

 

 

24   Copyright ⓒ 2016 SERSC 

10 20 30 40 50 60 70

0

10000

20000

30000

40000

50000

60000

70000

  S
T
 = -0.002

  S
T
 = -0.001

  S
T
 = 0

  S
T
 = 0.001

  S
T
 = 0.002

R
s
c



 

 

Figure 3. Variation of Rsc versus   for Different ST with RS = -500, M3 = 5, k = 

0.001, Ta  = 10 and 0 .0 3 .   

Figure 3 represents variation of R
sc

 versus    drawn for the different ST as shown in 

the figure. It has been observed that as ST increases, R
sc 

increases, the convective system 

leads to stabilization. But, in the physical situation, critical Rayleigh number R
sc 

gets the 

same value for various Soret parameter 
T

S  
from -0.002 to 0.002 which is also studied in 

Figure 2. 
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Figure 4. Variation of Rsc versus  for Different  with RS = -500, M3 = 5, k = 

0.001, Ta = 10 and ST = -0.002 

In Figure 4 the stability curves for different values of   (the ratio of the mass transport 

to heat transport) is analyzed. When 10  the critical Rayleigh number R
sc 

gets the 

unique value. But in the increasing of   from 20 to 70 there is a variation in the 

convective system,  is decreased from 0.03 to 0.11. This is because the increase in mass 

transport to heat transport leads the system to be top heavy. The same trend of 

stabilization is seen in Figure 5. Also, in which variation of R
sc

 versus  for different M3 

and k = 0.001. The application of magnetic field makes the magnetic fluid acquire larger 

magnetization M3. This on interacting with the applied magnetic field once again releases 

large energy. 

Figure 6 shows the plot of critical thermal Rayleigh number R
sc

 versus anisotropic 

ratio  for various values of Taylor number Ta. When  increases from 10 to 70, there is 

an increase in R
sc

. It is clear that the system gets stabilized through oscillatory mode. 
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Figure 5. Variation of Rsc versus   for Different M3 with ST = -0.002, RS = -

500, Ta = 10 and 0 .0 3 .   

Figure 7 obtains the stabilization of the system is not much pronounced because of 

coriolis force for various .   In other words, as Taylor number Ta increases, the critical 

thermal Rayleigh number R
sc

 is rather increased which is studied in Figure 8 also for 

destabilization because of various non-buoyancy magnetization parameter M3. But 

increase in anisotropic ratio   increases the critical thermal Rayleigh number R
sc

 

increases. Therefore anisotropy effect leads to stability of the system. 
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Figure 6. Variation of Rsc versus  for different Ta with RS = -500, M3 = 5, k = 

0.001 0 .0 3   and ST = -0.002 

Figure 8 analyze the plot of critical thermal Rayleigh number R
sc

 versus Taylor number Ta 

for various values of non-buoyancy magnetization parameter M3. As Taylor number Ta 

increases, the critical thermal Rayleigh number R
sc

 is almost constant and the system gets 

equilibrium state due to the rotation. But, when the values of non-buoyancy magnetization 

parameter M3 are increased, the critical thermal Rayleigh number R
sc

 gets decreased. 

Therefore for larger rotation, magnetization leads to destabilization of the system.
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Figure 7. Variation of Rsc versus Ta for Different   with ST = -0.002, RS = -500, 

k = 0.001, M3 = 5 and 0 .0 3 .   

Figure 9 gives the variation of the critical thermal Rayleigh number R
sc

 versus the ratio 

of the mass transport to heat transport   (varied from 0.03 to 0.11). It has been observed 

that as the Taylor number Ta is increased from 10 to 10
5
, there is no notable variation in 

rotation. The effect of Taylor number Ta is negligible as noticed from the curves. It is 

clear that as the ratio of the mass transport to heat transport 
 
increases from 0.03 to 

0.11, the critical thermal Rayleigh number R
sc

 values tend to decrease leading to 

destabilization. This is because the increase in mass transport leads the system to be top 

heavy. 
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Figure 8. Variation of Rsc versus Ta for Different M3 with ST = -0.002, RS = -
500, k = 0.001, 1 0  and 0 .0 3 .   

Figure 10 investigates the variation of the critical thermal Rayleigh number R
sc

 versus 

non-buoyancy magnetization parameter M3 for Ta = 10. When the values of ratio of the 

mass transport to heat transport   is varied from 0.03 to 0.11, it is seen that, when M3 

increases from 5 to 25, R
sc

 decreases indicating the onset of instability. This is because 

high magnetization tends to release large energy to the system causing instability to set in 

earlier. Also as the ratio of the mass transport to heat transport 
 
 increases from 0.03 to 
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0.11, there is a fall in the values of R
sc

. Thus larger values of  leads to destabilization of 

the system. The magnetization of the fluid is found to destabilize the system through 

oscillatory mode, which was discussed by Sekar et al. [25] in the absence of anisotropy 

effect. 
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Figure 9. Variation of Rsc versus  for Different Ta with ST = -0.002, RS = -500, 

M3 = 5, 1 0   and k = 0.001 

Figure 11 represents the variation of the critical thermal Rayleigh number R
sc

 versus 

the permeability of porous medium k. It has been observed that as salinity Rayleigh 

number RS increases from -500 to 500, there is no notable variation. The effect of salinity 

Rayleigh number is negligible. For different RS, no appreciable change in the curves are 

noticed. It is clear that as the permeability k increases from 0.001 to 0.009, the critical 

thermal Rayleigh number R
sc

 values tend to decrease leading to destabilization. This is 

due to the fact that increase in pore size makes the flow of the fluid easier causing 

instability to set in earlier. 
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Figure 10. Variation of Rsc versus M3 for different  with ST = -0.002, RS = -

500, Ta = 10, 1 0   and k = 0.001 
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Figure 11. Variation of Rsc versus k for Different RS with ST = -0.002, M3 = 5, 
Ta = 10, 0 .0 3  and 1 0 .   

Figure 12 gives the variation of the critical thermal Rayleigh number R
sc

 versus the 

permeability of porous medium k. It is seen that as Soret coefficient ST increases from -

0.002 to 0.002, there is no notable variation which analyzed in Figure 11. But for different 

ST, no appreciable changes in the curves are noticed. This is due to the effect of Soret 

parameter ST, which provides additional temperature gradient by cross diffusion of 

salinity on temperature. It is clear that as the permeability of a porous medium k increases 

from 0.001 to 0.009, it leads to decrease in the values of the critical thermal Rayleigh 

number R
sc

 indicating destabilization. This is due to the fact that increase in pore size 

makes the flow of the fluid easier causing instability to set in earlier. 
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Figure 12. Variation of Rsc versus k for Different ST, RS = -500, M3 = 5, Ta = 10, 
0 .0 3   and 1 0 .   

5. Conclusions 

The linear stability of thermohaline convection in a ferrofluid layer heated from below 

and salted from above saturating an anisotropic porous medium subjected to a transverse 

uniform magnetic field has been considered with effect of rotation using Darcy model. In 

this investigation, the effect of various parameters like permeability of the porous 
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medium, anisotropic parameter, non – buoyancy magnetization, buoyancy magnetization, 

Prandtl number, ratio of mass transport to heat transport, Rayleigh number and salinity 

Rayleigh number on the onset of convection have been calculated. The thermal critical 

magnetic Rayleigh numbers for the onset of instability are also determined numerically 

for sufficient large values of buoyancy magnetization parameter M1 and results depicted 

graphically. Furthermore, the principle of exchange of instability is applied to find out the 

mode of attaining instability. 

In conclusion, we see that convection can encourage in a ferromagnetic fluid by means 

of spatial variation in magnetization, which is induced when the magnetization of the 

ferrofluid depends on temperature and salinity. For the stationary convection, the 

anisotropy effect  has a stabilizing behavior for various values of RS, ST, ,  M3 and Ta 

which are studied in Figures 2 – 6. But, for the value of 0.03,   the convective system 

has a destabilizing effect which is analyzed in Figures 9 – 12 and Figures 7 and 8 showed 

a stabilizing effect which is not much pronounced. Also, when increasing value of 

anisotropic porous medium, there is an increasing convection process in the system. 

Therefore, the anisotropy effect dominates the system due to high energy. 
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