
International Journal of Advanced Science and Technology

Vol.83 (2015), pp.1-12

http://dx.doi.org/10.14257/ijast.2015.83.01

ISSN: 2005-4238 IJAST

Copyright ⓒ 2015 SERSC

Design of an Efficient Migrating Crawler based on Sitemaps

Deepika
1
 and Dr Ashutosh Dixit

2

1,2
Computer Engineering Department, YMCAUST, Faridabad, India

1
deepikapunj@gmail.com,

2
dixit_ashutosh@rediffmail.com

Abstract

As the size of web keep on growing, the job of a web crawler has become more

cumbersome in covering maximum web. There are enormous numbers of web pages

available over the web but out of them a smaller number is available to user. A sitemap is

an XML file in which a list of URLs of that particular site is mentioned. The sitemap

protocol may play a very important role in covering maximum web. In this paper, the

information provided by sitemap protocol is used for the purpose of crawling the quality

web pages. With the help of sitemap, web crawlers will maintain their repository up-to-

date. It also tries to make user to access maximum pages over the web by covering as

maximum as possible while crawling. It also helps crawler to visit the pages based on

their change frequency and downloads updated pages only, thereby reduces unnecessary

network traffic.

Keywords: web crawler, sitemap, freshness, coverage, Migrating agent

1. Introduction

Search Engines are the most common and widely used medium of finding information

on the web. User enters a keyword for searching the information and on the basis of that

keyword search engines searches their databases and give the results related to users’

query. These databases are created from a repository maintained by web crawler. Web

crawler crawl the web, downloads the documents and stored them in search engines

repository. They continuously crawls the web to get more relevant and new information.

So, web crawler is an important module of any search engines. There are many issues [6]

related to design an efficient web crawler. User interest [14] can also be considered while

designing a crawler but in this paper, more emphasis is on maximum coverage and

freshness of database while keeping the network traffic low. As the size of web grows

exponentially, it is very difficult to crawl to the whole web and maintained the freshness

of search engines repository. Even with presence of massive resources, crawlers are not

able to do their task efficiently.

Sitemaps may help web crawler to discover all the links present on a particular web

page. It is an XML file that lists all the links of a web page and also the other information

about that web page e.g., when the page was last modified, how frequently the web page

will change and how much the importance of any link in comparison to another links

present on that web page. Sitemaps also help in extracting structure of a web page and

then this extracted structure can be used for many purposes [16, 17].

Although without sitemap crawler may discover most of the links but with sitemap it

will do the task more efficiently. Following are the reasons for this:

1 Large size of Web Site: - it may be possible that due to the large size of website, some

links may be missed by a crawler while downloading.

2. New Web Site: - it may be the case that web crawler always follows the same pattern of

crawling and due to this it misses the new entry.

mailto:deepikapunj@gmail.com

International Journal of Advanced Science and Technology

Vol.83 (2015)

2 Copyright ⓒ 2015 SERSC

3. Less External Links: - some websites has less links to other websites and crawler

crawls to the web by following one page to other. So having less number of links causes

crawler to rarely visit that particular site.

From above mentioned reasons, it may be justified that with the help of sitemap

crawler may work more efficiently while downloading the web pages.

Here an example of Gmail is taken where sitemap of Gmail technical support is

designed with the help of website www.web-site-map.com. Sitemap protocol for Gmail

technical support is given below:

<?xml version="1.0" encoding="UTF-8"?>

<urlset xsi:schemaLocation="http://www.sitemaps.org/schemas/sitemap/0.9

http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

<url>

<loc>http://www.gmailtechnicalsupport.com/</loc>

<changefreq>daily</changefreq>

<priority>1.00</priority>

</url>

<url>

<loc>http://www.gmailtechnicalsupport.com/services</loc>

<changefreq>daily</changefreq>

<priority>0.85</priority>

</url>

<url>

<loc>http://www.gmailtechnicalsupport.com/privacy-policy</loc>

<changefreq>daily</changefreq>

<priority>0.85</priority>

</url>

<url>

<loc>http://www.gmailtechnicalsupport.com/contacts</loc>

<changefreq>daily</changefreq>

<priority>0.85</priority>

</url>

<!-- Generated by www.web-site-map.com -->

</urlset>

The sitemap may consist of some essential fields and some optional fields as discussed

below: -

Loc- it is the place where URL is specified of particular web page

Lastmod: it is an optional field, which specifies when the page was last updated

Changefreq: it is an optional field, which specifies the frequency of web page changed

like always, hourly, daily, weekly, monthly, never.

Priority: it is also an optional field, which specifies the priority in comparison with other

URLs present in the page.

Other then above mentioned parameters various others parameters can be added to

sitemap e.g., information about images, sitemap for mobile, etc. For large websites whose

sitemaps are very large in size are difficult to download. So instead of downloading large

size sitemap, SitemapIndex files are used. This allows to big sitemaps breaking into

smaller sitemaps and keeps their entries in SitemapIndex file. The size of these

SitemapIndex file is small and they are easy to download and manage.

http://www.web-site-map.com/
../Downloads/sitemap%20(3).xml
../Downloads/sitemap%20(3).xml
../Downloads/sitemap%20(3).xml
../Downloads/sitemap%20(3).xml
../Downloads/sitemap%20(3).xml
http://www.gmailtechnicalsupport.com/%3c/loc
../Downloads/sitemap%20(3).xml
http://www.gmailtechnicalsupport.com/services%3c/loc
../Downloads/sitemap%20(3).xml
http://www.gmailtechnicalsupport.com/privacy-policy%3c/loc
../Downloads/sitemap%20(3).xml
http://www.gmailtechnicalsupport.com/contacts%3c/loc

International Journal of Advanced Science and Technology

Vol.83 (2015)

Copyright ⓒ 2015 SERSC 3

2. Related Work

Brandman [2] introduces the concept of servers providing some metadata to the

crawlers such as last modification and file size. Their main purpose was to make web

servers friendly with the crawlers and make the databases rich and fresh.

Damien Lefortier Yandex et al., [15] worked on a different section of web pages called

as ephemeral new pages. These are those pages on which users’ interest grows within

hours as they appear but remain only for few days. He found the sources of such pages

and then re-visit them in order to get newly created such pages at faster rate.

Giovanni [3] and Richard [4] use the sitemap protocol for semantic web browsers.

They worked on RDF datasets. They extended the sitemaps protocol for large semantic

datasets. They proposed other Meta information with site maps so that the crawling

performance may be improved. Instead of crawling large website, it will download only

dump of it that is stored in sitemap. This dump will also help in crawling missed or

scattered links of that website by downloading only sitemap. They were trying to provide

novel functionalities to both servers and clients. By deploying semantic sitemap, they

showed effective consumption of resources for saving large quantity of semantically

structured data.

Uri [5] et al., uses sitemaps protocol in crawling algorithm. They suggested with the

help of sitemap, duplicates pages can be removed. It also helps in finding missing links.

By getting all information about all the links present in particular webpage, it helps in

crawling maximum coverage. With the help of sitemaps they showed difference in classic

crawling and sitemap crawling.

Gurpreet Singh [8] et al., discussed various SEO techniques, process and categories. They

discussed Microsoft SEO case study. Microsoft SEO tool kit has three components.

Sitemap is one of the SEO tool and others are robot inclusion and site analysis. They also

discussed the location of sitemap i.e. where it has to be placed. According to them, it

should be placed in robot.txt file.

S S Vishwakarma et al., [13] proposed a modify approach for crawling. It uses last

visit time of crawler and apply filter at server side. This filter will check this last visit time

and return list of only Urls that are updated after crawler last visit. This is a query based

approach. HTTP uses it GET method to know the list of updated Urls list. Through this

approach now crawler is revisiting only updated pages.

Najork et al., [11] approach suggests that breadth-first search is a good crawling

strategy, as it tends to discover high-quality pages early on in the crawl. On early it means

that as crawling increases progressively the quality of web pages deteriorates. It uses

connectivity based metric Page Rank to measure quality of a page. It also increases the

overall download rate and reduces the server from overloading.

3. Design of an Efficient Migrating Crawler based on Sitemaps

In this paper, with the help of sitemaps crawler tries to crawl web more efficiently such

that updated information always get stored into database, while keeping the network load

low. The sitemaps are used to provide checks at various levels before downloading the

page. These checks are done by web crawler. With the help of the some of the fields

which is used are given below:

Changefrequency: It contains the frequency values at which a web page is changing e.g.

hourly, weekly, monthly or yearly. This field may help crawler to categorise the

webpages on the basis of their change frequency.

Lastmod: It contains the time of a web page when it was last updated. This field may help

crawler to download only updated or modified pages to their databases.

International Journal of Advanced Science and Technology

Vol.83 (2015)

4 Copyright ⓒ 2015 SERSC

Now with the help of these fields, a migrating crawler is designed. It will distribute its

migrating agents over the web and tries to get maximum coverage. It will apply checks at

various levels before revisiting and downloading the page.

3.1 Architecture of Proposed Work

A migrating Crawler is a crawler which has its agents called as Migrating Agents. On

behalf of crawler, these agents do crawling over the web. Crawler sends its agent to

different server and on the server side, agents do the processing e.g., downloading,

compressing etc at server side only and return the results back to the crawler side.

The proposed work has following subsystems:

Figure 1. Workflow of Proposed Architecture

1. Mapping Manager

It maps URLs into their IP addresses and also stores sitemap of corresponding

URL with the help of Sitemap Generator in resolved URL-IP-Sitemap Queue.

2. URL Classifier

It will classify the URLs on basis of their changed frequency like hourly, daily,

weekly, monthly etc. And then inform the crawl manager about their

classification.

3. Crawl Manager

It will send the migrants to their assigned URL server as provided by URL

Classifier. After calculating their revisit, documents are downloaded.

4. Document & URL Buffer

This is a buffer for storing documents send by different migrating agents from

different servers. From this buffer URLs are extracted and send back to Mapping

Manager for further processing.

Here in proposed architecture, with the help of sitemap, crawling is trying to improve

by migrating agents. Migrating agents will work in different way and crawls the web

efficiently. Various modules are involved in working of Migrating Agents. The working

of each module is described in next section.

The general working of Proposed Migrating Crawler is as follows:- URL_IP_sitemap

values which are generated by Mapping Manager are used by URL Classifier which will

classify URLs on the basis of their change frequency. It will change daily, hourly, weekly,

monthly or never. Now agents are assigned to each such classified list and visit the URLs

according their change frequency. On reaching the websites, whether to download the

pages or not will depend on whether it has updated or obsolete copy. If agent is visiting

Document & URL
URL Classification

URL

s

MAPPING

MANAGER

URL

CLASSIFIER

DOCUMENT

& URL

BUFFER

CRAWL

MANAGER

Resolved

URL_IP_SITEMAP

International Journal of Advanced Science and Technology

Vol.83 (2015)

Copyright ⓒ 2015 SERSC 5

first time, then agent doesn’t have any last crawled time of the webpage and it simply

downloads the page. But if agent is revisiting it then it will check the last crawled time of

webpage with the last mod values of webpage which it has from sitemap. If last crawled

value is newer then last mod values of websites then it will not download the page as

agent already has its updated page with it. But if value of last crawled is older then it

shows there has some modifications has been done and agent has old copy with it. So it

will download the page and replace its copy with the new updated one.

The general architecture of proposed work is as follows:

Figure 2. Proposed Architecture of Migrating Crawler

The general working algorithm works as:

MAd

SERVER 2 SERVER 1

MAh

Something to classify

MAh

MAPPING MANAGER

Lists ready

Hourly Daily

URL CLASSIFIER

Weekly

Something to map

RESOLVED

URL-IP-

SITEMAP

MAw

MAh

CRAWL

MANAGER

WWW

DOC & URL BUFFER

SERVER N

DOC BUFFER Start Crawling

REVISIT FREQ

CHECKER

LDB

REVISIT FREQ

CHECKER

LDB

REVISIT FREQ

CHECKER

LDB

MAh

International Journal of Advanced Science and Technology

Vol.83 (2015)

6 Copyright ⓒ 2015 SERSC

Figure 3. Algorithm for General Work Flow

3.1.1 Mapping Manager: Mapping manager [10] will provide resolved URL_IP pair. It

will get IP for corresponding URL from DNS resolver and stored the pair in a Queue. In

addition to this pair with the help of sitemap generator [1], sitemap of every URL is also

provided and stored with the same resolved URL_IP pair. After filling data in queue it

will send the signal to URL classifier to start their work.

Figure 4. Algorithm for Mapping Manager

The Mapping Manager has used following data structures:

3.1.1.1 URL-IP Queue: It consists of a queue of unique seed URL-IP pairs. The IP part

may or may not be blank. It acts as an input to the mapping manager.

3.1.1.2 Resolved URL-IP-Sitemap Buffer: It stores resolved URLs and also their

corresponding sitemap. Sitemaps are generated with the help of Sitemap Generator. It acts

as input to the URL Classifier.

3.1.2 URL Classifier: After getting signal from Mapping Manager, it will pick the URL

and classify them on the basis of their change frequency which it will get from sitemap.

Mapping Manager ()

Step1: Wait (Something to map)

 2: While (URL-IP Queue is not empty)

 3: Take a URL-IP pair from the Queue;

 4: If the IP is blank

4.1 Call DNS resolver to resolve URL for IP;

4.2 Store the Resolved URL in the Resolved URL Queue;

 5: Call SiteMap Generator to create sitemap of every resolved

URL;

 6: Store the sitemap with each URL_IP pair;

 7: Signal (something to classify);

Step1:URL_List_Sitemap= Mapping Manager ()

Do Forever

 2:Pick URLs from URL_List_Sitemap;

 3:Li=URL_classifier(s(i), URL_List);

//Li is the list of URL of i category

Where i= daily, weekly, monthly

 4:Signal(agents_ready);

 5:Doc_buffer= Crawl_manager(Li);

 6:(URL,Doc)= Extract(doc_buffer);

 7:Take URLs and give it to URL_classifier;

International Journal of Advanced Science and Technology

Vol.83 (2015)

Copyright ⓒ 2015 SERSC 7

Figure 5. Algorithm for URL Classifier

According to its change frequency whether it is daily, weekly, monthly etc., changes,

lists are maintained and corresponding URLs are added to them.

After maintaining the lists, it will send signal to crawl manager to inform that lists are

ready for migrating agents to crawling.

3.1.3 Crawl Manager: It is the responsibility of crawl manager to create multiple

migrating agents. It will name them according to the list of URLs provided by URL

classifier. After getting signal from crawl manager, it will assign the migrating agents to

each list supplied by URL classifier. Then it will send signal to migrating agents to start

crawling to the WWW.

Figure 6. Algorithm for Crawl Manager

3.1.4 Mobile Agent: Mobile agents are waiting for signal from their crawl manager to

start their work. They get their list of URLs and now they start downloading the data

corresponding to each URL. On reaching the server, if it will download the data second

time then before downloading it will check from its database whether it has this data

updated copy or not. If it has old one only then it will download that data otherwise it will

not.

Figure 7. Algorithm for Mobile Agent

URL_classifier(S(i))

Do forever

Step1: Wait (Something to classify);

 2: Check S(i) for frequency change;

 3: If (changefreq==daily)

3.1: Add to Ld;

 4: If (changefreq==weekly)

4.1: Add to Lw;

 5: If (changefreq==monthly)

5.1: Add to Lm;

 6: Signal (list_ready);

Crawl_manager(Li)

Do forever

Step1: create multiple migrating agents;

 2: Wait (list_ready);

 3: Assign URLs List to corresponding agent;

 4: Submit to Mobile_agent(WWW);

 5: Signal (start_cralwing);

 6: Signal (something to map);

Mobile_agent(WWW)

Step1: Wait (start_crawling);

Do forever

 2: agents visit to remote server of assigned URLs;

 3: Before downloading check its last mod value;

 4: If lastmod_time(URL) is newer than last_crawled_time(URL)

4.1 Download page;

 Else

 5: Ignore(URL);

 6: Store the downloaded page and URLs into doc_buffer;

 7: Signal (something to map);

International Journal of Advanced Science and Technology

Vol.83 (2015)

8 Copyright ⓒ 2015 SERSC

The Mobile agents during their working use the following data structures:

3.1.4.1 Local Buffer: It is a buffer used by the migrants for storing the downloaded

documents locally. Before downloading the documents, revisit frequency checker whether

download is required or not. It basically check whether the document to be download is

modified or updated with the existing copy of that document.

3.1.4.2 Document and URL Buffer: This buffer is used to store the recently downloaded

documents sent by migrants. From this buffer only URLs are sent back to the URL

Classifier for classification.

4. Performance Analysis

The migrating Crawler, designed in this work, has been implemented on Java platform.

The performance was compared with a conventional method of crawling without sitemap.

Various tests have been performed on different websites to observe the difference in

crawling with and without sitemap. Here, it is assumed that pages are of fixed size.

The Test1 was conducted by using YMCA website. Website was crawled by both

conventional and proposed new method of crawling. The results obtained are discussed in

next section. For simplicity few links are shown here to verify the results.

Results obtained for www.ymcaust.ac.in/computers are shown in Tables 1a), 1b) &

1c)

Table 1a). First Crawling Results (Both Crawler)

ANCHOR

TEXT

URL CONTENT

RECEIVED(bytes)

Chairman

message

http://www.ymcaust.ac.in/computers/index.php/chairman-s-

message

13450

Faculty http://www.ymcaust.ac.in/computers/index.php/faculty 10823

Labs http://www.ymcaust.ac.in/computers/index.php/labs 14549

Courses http://www.ymcaust.ac.in/computers/index.php/courses 15883

B.Tech

Syllabus

http://www.ymcaust.ac.in/computers/index.php/b-tech-syllabus 96216

M.Tech

Syllabus

http://www.ymcaust.ac.in/computers/index.php/m-tech-syllabus 11762

Updated Time

Table

http://www.ymcaust.ac.in/computers/index.php/updated-time-

table

11450

Notices http://www.ymcaust.ac.in/computers/index.php/notices 11928

On revisit proposed crawler to same link following changes has been observed:

Table 1b). Revisit Crawling Results (Proposed Crawler)

ANCHOR

TEXT

URL CONTENT

RECEIVED(bytes)

Updated

Time Table

http://www.ymcaust.ac.in/computers/index.php/updated-time-

table

11450

Notices http://www.ymcaust.ac.in/computers/index.php/notices 11728

http://www.ymcaust.ac.in/computers/index.php/chairman-s-message
http://www.ymcaust.ac.in/computers/index.php/chairman-s-message
http://www.ymcaust.ac.in/computers/index.php/faculty
http://www.ymcaust.ac.in/computers/index.php/labs
http://www.ymcaust.ac.in/computers/index.php/courses
http://www.ymcaust.ac.in/computers/index.php/b-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/m-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/notices
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/updated-time-table

International Journal of Advanced Science and Technology

Vol.83 (2015)

Copyright ⓒ 2015 SERSC 9

Whereas Conventional crawling to same link has following results:

Table 1c). Revisit Crawling Results (Conventional Crawler)

ANCHOR TEXT URL CONTENT RECEIVED

Chairman

message

http://www.ymcaust.ac.in/computers/index.php/chairman-s-

message

13450

Faculty http://www.ymcaust.ac.in/computers/index.php/faculty 10823

Labs http://www.ymcaust.ac.in/computers/index.php/labs 14549

Courses http://www.ymcaust.ac.in/computers/index.php/courses 15883

B.Tech Syllabus http://www.ymcaust.ac.in/computers/index.php/b-tech-syllabus 96216

M.Tech Syllabus http://www.ymcaust.ac.in/computers/index.php/m-tech-syllabus 11762

Updated Time

Table

http://www.ymcaust.ac.in/computers/index.php/updated-time-table 11450

Notices http://www.ymcaust.ac.in/computers/index.php/notices 11928

From the above shown results of both the types of crawling i.e., by proposed crawling

and by conventional crawling, it has been observed that on revisit former crawling only

visit changed or modified links whereas later crawling visit all links and thus wasted

network resources.

Summarized results of full website by Proposed Crawler are shown below:

Table 1d). Crawling Results (Proposed Crawler)

Parameters Conventional Crawling New Crawling with Sitemap

Number of Links 141 148

Total Data Downloaded(Bytes) 1401300 1501233

Crawl Time(sec) 273.44 185.45

Total Pages Downloaded 141 148

Total Pages Downloaded on revisit 145 40

Total Data Downloaded on revisit 1402387 397531

New & Updated Data Downloaded on

revisit

1087 Nil

The Test2 was conducted on www.ngfcet.in/computer_science_engineering

Table 2. Crawling Results (Proposed Crawler)

Parameters Conventional Crawling New Crawling with Sitemap

Number of Links 474 503

Total Data Downloaded(Bytes) 10240104 10910000

Crawl Time(sec) 937.729 250

Total Pages Downloaded 474 503

Total Pages Downloaded on revisit 476 154

Total Data Downloaded on revisit 10283311 3036580

New & Updated Data Downloaded

on revisit

43207 Nil

http://www.ymcaust.ac.in/computers/index.php/chairman-s-message
http://www.ymcaust.ac.in/computers/index.php/chairman-s-message
http://www.ymcaust.ac.in/computers/index.php/faculty
http://www.ymcaust.ac.in/computers/index.php/labs
http://www.ymcaust.ac.in/computers/index.php/courses
http://www.ymcaust.ac.in/computers/index.php/b-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/m-tech-syllabus
http://www.ymcaust.ac.in/computers/index.php/updated-time-table
http://www.ymcaust.ac.in/computers/index.php/notices

International Journal of Advanced Science and Technology

Vol.83 (2015)

10 Copyright ⓒ 2015 SERSC

The Test3 was conducted on www.titsbhiwani.ac.in/departments/department-of-

computer-engineering

Table 3. Crawling Results (Proposed Crawler)

Parameters Conventional Crawling New Crawling with Sitemap

Number of Links 174 223

Total Data Downloaded(Bytes) 10347381 2730000

Crawl Time(sec) 613.522 210

Total Pages Downloaded 174 223

Total Pages Downloaded on revisit 180 25

Total Data Downloaded on revisit 10704187 306053

New & Updated Data Downloaded

on revisit

356806 Nil

The conventional method of crawling crawls to limited number of links and it also

downloads all documents whether they have changed or not and thus, wasted network

resources. On the contrary, this proposed new crawling method crawls to the web with the

help of sitemap. Now it will cover utmost URLs and downloads only that documents that

have changed and thus utilize the network resources in efficient manner.

5. Efficiency of Sitemap

There are many benefits of sitemap for both web users and web crawlers’. Following

are the advantages while using sitemap in crawling process:

5.1. Web Coverage

By comparing the coverage area by Conventional Crawling and Proposed Crawling, it

is observed that later one will have better area of covering the web as it will visit more

number of links.

TEST 1:

Increase in %Coverage (D) = 148-141/141 ≈5%

TEST 2:

Increase in %Coverage (D) = 503-474/474 ≈6%

TEST 3:

Increase in %Coverage (D) = 223-174/174 ≈28%

So, this coverage will increases as the size of website increases. In this test size of

websites are small.

5.2 Preserves Bandwidth

It also preserves bandwidth by reducing the network traffic by downloading only

modified pages on revisit of crawler. This can be seen from above experiments where

total number of links on first and second visit is same for conventional crawling whereas

less for new crawling method. In this simulation, it has been assumed that pages are of

fixed size and therefore, links corresponding to each page has taken into the consideration

for looking at the consumption of bandwidth by conventional crawler.

TEST 1:

Total number of links on revisit by Conventional Crawler= 148

Total number of links on revisit by Proposed Crawler= 40

 %age consumption of bandwidth by conventional crawler= 148-40/148=72%

TEST 2:

International Journal of Advanced Science and Technology

Vol.83 (2015)

Copyright ⓒ 2015 SERSC 11

 %age consumption of bandwidth by conventional crawler = 503-154/503=69.38%

TEST 3:

 %age consumption of bandwidth by conventional crawler = 223-25/223=88.7%

Thus, by getting information about last modified date of web page from sitemap, new

crawling method now downloads only that pages that are modified or updated. This will

help in saving bandwidth and also reduces network traffic.

5.3 Co-operation between Migrating Agents

Now with the help of sitemap data, migrating agents can be scheduled. By scheduling,

agents will crawl the web in more efficient manner. Database will now have rich in

information as compared to databases that are crawled by normal agents.

So, by including sitemap in crawling will give better results as compared to one

without sitemap. Crawling will be done in efficient and better way. Below shown the

comparison of crawler performance with and without sitemap.

Figure 8. Performance Evaluation

With the help of sitemap, performance of crawling can be enhancing. It will get fresh

and up-to-date database.

6. Conclusion

In this paper, several fields of sitemaps are used to improve the crawling process.

These fields have some values which are used at different steps of crawling. Various

checks are applied at different points in order to improve the performance of crawler. By

simulating this proposed approach, it is observed that now crawling with the help of

sitemap gave us better results in terms of coverage, up-to-date data and uses less network

resources. It covered all the links and also in less time as compared to crawling without

sitemap. Results also shown that on revisit only changed or modified links were crawled

instead of all links. This will maintain the freshness of repository in efficient manner.

References

[1] http://www.sitemaps.org/protocol.php

[2] O. Brandman, J. Cho, H. Garcia-Molina, N. Shivakumar, “Crawler-friendly web servers”, Workshop on

Performance and Architecture of Web Servers (PAWS), (2000) June.

[3] G. Tummarello, “A sitemap extension to enable efficient interaction with large Quantity of linked data”,

Presented at W3C Workshop on RDF Access to Relational Databases, (2007).

[4] R. Cyganiak, H. Stenzhorn, R. Delbru and S. Decker, “Semantic sitemaps: Efficient and flexible access

to datasets on the semantic web”, The Semantic Web: Research and Applications, (2008).

[5] U. Schonfeld and N. Shivakumar, “Sitemaps: above and beyond the crawl of duty”,-Proceedings of the

18th international conference, (2009).

[6] D. Ashutosh Deepika, “Web Crawler Design Issues: A Review”, published in International Journals of

Multidisciplinary research Academy (IJMRA), (2012) August.

[7] “Microsoft SEO Toolkit,” http://www.iis.net/learn/extensions/iis-search-engine-optimization-

toolkit/managing-robotstxt-and-sitemap-files.

[8] G. Singh Bedi and Ms. A. Singh, “Analysis of Search Engine Optimization (SEO) Techniques”,

published in International Journal of Advanced Research in Computer Science and Software

Engineering, vol. 4, (2014) March.

Without
Sitemap

https://scholar.google.co.in/scholar?oi=bibs&cluster=11653621750259991148&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=11653621750259991148&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=1961782483204646545&btnI=1&hl=en

International Journal of Advanced Science and Technology

Vol.83 (2015)

12 Copyright ⓒ 2015 SERSC

[9] Creating google sitemaps files.http://www.google.com/support/webmasters/bin/ topic.py?topic=8467.

[10] A. K. Sharma, J. P. Gupta and D. P. Agarwal, “PARCAHYD: A Parallel Crawler based on Augmented

Hyper text Documents”, communicated to IASTED International Journal of computer applications,

(2005) May.

[11] M. Najork and J. L. Wiener, “Breadth-First Search Crawling Yields High-Quality Pages”, WWW’01,

presented in 10th International World Wide Conference, (2001), pp. 114-118.

[12] S. Mishra, A. Jain and Sachan, “A Query based Approach to Reduce the Web Crawler Traffic using

HTTP Get Request and Dynamic Web Page”, published in International Journal of Computer

Applications (0975-8887), vol. 14, no. 3, (2011), pp. 8-14.

[13] S. S. Vishwakarma, A. Jain and A. K. Sachan, “A Novel Web Crawler Algorithm on Query based

Approach with Increases Efficiency”, published in International Journal of Computer Applications

(0975 – 8887), vol. 46, no. 1, (2012) May.

[14] Deepika and A. Dixit, “Capturing User Browsing Behaviour Indicators”, published in, Electrical &

Computer Engineering: An International Journal (ECIJ), DOI : 10.14810/ecij.2015.4203, vol. 4, no. 2,

(2015) June, pp. 23-30.

[15] D. Lefortier Yandex, L. Ostroumova Yandex and E. Samosvat Yandex, “Timely crawling of high-

quality ephemeral new content”, arXiv:1307.6080v2 [cs.IR], (2013) July 24.

[16] Deepika and A. Dixit, “Document structure based Filtering in Migrating Crawler- A Review”, presented

in International Conference Paradigms shift in Management and Technology at Faridabad, (2015) March

9-10.

[17] Deepika and A. Dixit “A Novel Approach for Document Structure based Filtering in Migrating

Crawler”, published in International Journal of YMCA UST Faridabad, (2014).

Authors

Deepika Punj, is working as assistant professor in Department

of computer engineering at YMCA University of Science and

Technology, Faridabad, India. She is having total 10 years of

experience in teaching. Currently, she is doing research in the area

of Internet technologies. She has authored papers in national and

international journals

Ashutosh Dixit, received his PhD and M. Tech. in Computer

Engineering from MD University Rohtak, India in the years 2010

and 2004 respectively. He is presently serving as Associate

Professor in the department of computer engineering at YMCA

University of Science & Technology, Faridabad India. He has

published around 70 research papers in various International

journals and conferences. His research interests include Internet

Technologies, Data Structures and Mobile and Wireless networks.

