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Abstract 

In this paper, we present an original spectral technique for estimating the Direction of 

Arrival (DoA) of narrowband sources impinging on an array of sensors. In this approach, 

we use the exponential of inter spectral matrix of received data with Gaussian function to 

annihilate the eigenvalues corresponding to the signal subspace in order to obtain an 

approximation of the projector into the noise subspace, this mechanism requires the 

knowledge of the minimum eigenvalue which we compute using the power method. 

We elaborate this new concept with some tools of quantum formalism and we confirm 

the accuracy of its theoretical basis by Monte Carlo simulation results comparatively to 

the standard high resolution techniques. 

 

Keywords: Exponential Operator, spectral matrix, DoA, subspace, Gaussian, angular 

spectrum, localization 

 

1. Introduction 

In spectral analysis, localization of radiating sources is an active field of research [1], 

its applications span several domains including, but not limited to, Geolocation systems 

[2], submarine acoustics [3], seismology [4] and astronomy [5]. The well known 

techniques of estimating the Directions Of arrivals (DOA) rely on the spectral 

decomposition [6], QR and LU factorizations [7] and Singular Value Decomposition 

(SVD) [8] of the received data or the corresponding spectral matrix. 

The initial research started with the beamforming [9], this concept is based on the 

principle of interferometry [10] which has a disadvantage of low resolution capability, in 

other words if we have few number of sensors, the beamforming cannot separate multiple 

sources if they lie in the main lobe of the array. Several improvements have been made to 

increase the resolution power such as Burg's Maximum Entropy method [11], Capon 

beamformer [12] and linear prediction [13]. in the 80th a revolutionary high resolution 

technique based on eigendecomposition was derived by Schmidt [6], since that time, 

many works extended the idea of spectral decomposition such as ESPRIT [8] and 

Minimum Norm [11] methods, however the computational complexity of these 

contributions were high. In searching for fast solutions, new concepts were proposed, 

namely the Propagator [14, 15] and the Ermolaev-Gershman [16] operators. 

Recently the ongoing researches are rooted in statistical physics, to enhance the 

resolution power of the existing DOA spectra, such as the compressive sensing concept 

[17], and the consistency of the spectra [18] when the dimensions of the system tend to 

infinity. 

In the future, statistical signal processing will rely on the invention of new architecture 

of computers and trans-receiving systems precisely the quantum devices [19]. Indeed, the 

quantum theory is based on probability density functions for system measurement. In this 

paper, we introduce an original technique based on matrix exponential of the covariance 

matrix of the received data to compute the angular spectrum for locating the radiating 
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sources, the mechanism introduced is efficient in annihilating the signal subspace in the 

covariance matrix. In the next section, we present the mathematical model to describe the 

received signals by the antenna, in the third section we elaborate our formalism and 

finally we confirm the validity of the proposed method by simulation results. 

 

2. Signal Model 

We consider a wavefield, consisting of superposition of 𝑃 narrowband sources, 

that is received by an array of 𝑁 equally spaced and identical sensors, the received 

signals can be described in the frequency domain by the following equation: 

 

                                   𝑋(𝑓) = 𝐴(𝜃, 𝑓)𝑠(𝑓) + 𝑛(𝑓)                                            (1) 

𝑋(𝑓) ∈  ℂ𝑁 ×1 is the state vector at the frequency 𝑓, 𝑠(𝑓) = [𝑠1(𝑓),… , 𝑠𝑃(𝑓)]𝑇 is the 

waveform vector and 𝐴(𝜃, 𝑓) ∈  ℂ𝑁 ×𝑃 is Vandermonde steering matrix of the array 

𝐴(𝜃, 𝑓) = [𝑎1(𝜃, 𝑓),… , 𝑎𝑃(𝜃, 𝑓)], the 𝑖𝑡ℎ steering vector is given by : 

 

                             𝑎(𝜃𝑖) =
1

√𝑁
[1, 𝑒−𝑗𝜑𝑖 , … , 𝑒−𝑗(𝑁−1)𝜑𝑖]                                           (2) 

Where the phase 𝜑𝑖 = 2𝜋λ−1𝑑 sin 𝜃𝑖, the 𝑖𝑡ℎ Direction Of Arrival (DoA) is 𝜃𝑖, 𝑑 

is the inter-element distance and λ is the wavelength of incoming radiations. Any 

element of the steering matrix 𝑎𝑖𝑗 can be written as the following: 

                                 𝑎𝑖𝑗 = 𝑒−𝑘⃗ 𝑖.𝑟 𝑗                                                                          (3) 

𝑘⃗ 𝑖 is the wave vector of 𝑖𝑡ℎ source and 𝑟 𝑗 is the position of the 𝑗𝑡ℎ sensor 𝑟 𝑗 = (𝑗 −

1)𝑒 𝑥. 

𝑛(𝑓) = [𝑛1(𝑓),… , 𝑛𝑁(𝑓)]𝑇 is the additive zero mean complex random process with 

flat spectrum, which is added to model the perturbations originating from mul tiple 

sources ( thermal noise, scattering, reflections,...), the corresponding joint 

probability density function is given by : 

                         𝑝(𝑛(𝑡)) =
1

𝜋𝑁 |𝛤𝑛|
𝑒𝑥𝑝 {

−𝑛+(𝑡)𝛤𝑛
−1𝑛(𝑡)

2
}                                               (4) 

(. )+  denotes the conjugate transpose operator, the matrix Γ𝑛  is defined by the 

equation: 

 

                               Γ𝑛 = lim𝐾→ +∞
1

𝐾
∑ 𝑛(𝑡)𝑛+(𝑡)𝐾

𝑡=1 = 𝜎2𝐼𝑁                                                   

This equation indicates that the noise in uncorrelated between the sensors with  

the same power 𝜎 on each sensor, and statistically independent of the waveforms 

s(t). The inter spectral matrix Γ is computed from finite number of samples 𝐾, its 

theoretical expression is given by the following equation: 

 

                    Γ = lim
𝐾→ +∞

1

𝐾
∑ 𝑋(𝑡)𝑋+(𝑡)𝐾

𝑡=1 = 𝐴Γ𝑠𝑠𝐴
+ + Γ𝑛 = Γ𝑠 + Γ𝑛                        (5) 

Γ𝑠𝑠 ∈  ℂ𝑃 ×𝑃 is the correlation matrix of waveforms, if we assume that the sources are 

statistically independent, the correlation matrix is written as Γ𝑠𝑠 = 𝛿𝑖𝑗𝜎𝑖
2 with 𝜎𝑖 being the 

power of the 𝑖𝑡ℎ source. For the rest of the paper, we introduce the braket notation, for 

any vector  |𝑒〉 ∈ ℂ𝑁 ×1 , |𝑒〉+ = 〈𝑒|, the high resolution techniques are based the spectral 

theorem, the eigendecomposition is given by : 
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                    Γ = ∑ λi
N
i=1 |𝑢𝑖〉〈𝑢𝑖| = 𝑈𝛬𝑈+ = 𝑈𝑠𝛬𝑠𝑈𝑠

+ + 𝑈𝑛𝛬𝑛𝑈𝑛
+                                        (6) 

 

𝑈𝑠  ∈  ℂ𝑁 ×𝑃 is the signal subspace and 𝑈𝑛 = 𝑈𝑠
⫠ where the complete base is obtained by 

the relation 𝑈𝑠𝑈𝑠
+ + 𝑈𝑛𝑈𝑛

+ = 𝐼𝑁 , λi  is the 𝑖𝑡ℎ  eigenvalue that corresponds to the 

eigenvector |𝑢𝑖〉 with norm of unity ‖|𝑢𝑖〉‖2=1 : 

                                                   Γ|𝑢𝑖〉 = λi|𝑢𝑖〉                                                                              (7) 

𝑈 is unitary operator which can rewritten using the resolution of the identity :  

 

                                                    ∑ |𝑢𝑖〉〈𝑢𝑖|
N
i=1 = IN                                                         (8) 

An approximate value of noise power can be obtained by: 

𝜎̂2 =
1

𝑁 − 𝑃
∑ λi

𝑁

𝑖=𝑃+1

 

For given steering vector |𝑎(𝜃𝑖)〉 , the one dimensional localization function is 

calculated by the function 𝑓(𝜃𝑖)=〈𝑎(𝜃𝑖)| 𝑈𝑛𝑈𝑛
+|𝑎(𝜃𝑖)〉, this metric is null if 𝜃𝑖 is the true 

Direction of Arrival (DoA) [6], with 𝑃𝑛 = 𝑈𝑛𝑈𝑛
+ is the projector into the noise subspace, 

its discrete spectrum is given by: 

                                                   𝜎𝑃𝑛
= [01×𝑃|11×𝑁−𝑃]                                                                (9) 

One of the fast techniques to obtain an approximation of the projector 𝑃𝑛 is the 

Ermolaev and Gershman operator [16], given by the following equation: 
 

                                    𝑃𝑛 = lim𝑚→+∞ ((
Γ

𝜆𝑡ℎ
)
𝑚

+ 𝐼𝑁)
−1

                                                          (10) 

 

The parameter 𝜆𝑡ℎ is the threshold between the smallest signal eigenvalue 𝜆𝑃 and the 

largest noise eigenvalue 𝜆𝑃+1, generally the parameter 𝑚 is set to 10. In this next section 

we present a new mechanism to construct the operator 𝑃𝑛 using matrix exponential. 

 

3. Exponential Operator 

Given the self adjoint operator Γ, a matrix function 𝑓(Γ) is applied to its spectrum 

𝑓(Γ) = Uf(𝛬)𝑈+, generally the eigenvalues of Γ are given in the following order: 

 

              𝜎Γ = {𝜆1  ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑃 > 𝜆𝑃+1 ≅ ⋯ ≅ 𝜆𝑁 = 𝜎2}                                        (11) 

 

In order to normalize the noise eigenvalues 𝜆𝑞(𝑞 = 𝑃 + 1,… ,𝑁) while annihilating the 

signal eigenvalues 𝜆𝑟(𝑟 = 1,… , 𝑃), we apply the Gaussian function described by the 

following equation : 
 

                                            𝑓(𝜆) = 𝑒−𝛽(𝜆−𝜆𝑀𝑖𝑛)2                                                                       (12) 

 

This concept is illustrated in Figure 1, the half width at half maximum is √log(2) /𝛽. 
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Figure 1. Gaussian Function Applied to 𝝈𝚪 with Parameters (𝜷, 𝝀𝑴𝒊𝒏) 

The knowledge of the minimum eigenvalue is required, many techniques can be 

implemented to find an approximate value, in this paper we use the power method [20] to 

calculate the largest eigenvalue 𝜆𝑀𝑎𝑥  from which we find 𝜆𝑀𝑖𝑛  using the condition 

number: 
 

                                                        𝜏(Γ) =
𝜆𝑀𝑎𝑥

𝜆𝑀𝑖𝑛
                                                                          (13) 

The power method is initialized by choosing a random vector |𝛷〉 such that ‖|𝛷〉‖∞=1, 

for iteration 𝑚 ≥ 2 we perform the following calculations: 

 

                                                |𝛷𝑚+1〉 =Γ |𝛷𝑚〉                                                                  (14) 

 

                                             𝜇𝑚 = ⟨𝛷𝑚|𝛷𝑚+1⟩                                                               (15) 

 

                                             |𝛷𝑚〉 =
|𝛷𝑚+1〉

⟨𝛷𝑚|𝛷𝑚+1⟩ 
                                                               (16) 

 

After few iterations, 𝜇𝑚  tends to 𝜆𝑀𝑎𝑥 , the smallest eigenvalue is given by the 

following relationship: 

 

                                            𝜆𝑀𝑖𝑛 =
𝜆𝑀𝑎𝑥

𝜏(Γ)
=

𝜆𝑀𝑎𝑥

‖Γ‖2‖Γ
−1‖2

                                                    (17) 

 

The second parameter that we need to adjust is the width 𝛽 of the function in equation 

(12), the parameter 𝛽 depends on the spread of the signal eigenvalues, however we do not 

give any theoretical guidelines for modeling its value, but we propose the value 𝛽 = 10 

which corresponds to half width of √log(2) /𝛽 ≅ 0.26 which is narrow enough to not let 

any signal eigenvalue 𝜆𝑞  to be selected. The straightforward application of the above 

concept to the spectral matrix yields to: 
 

                                 𝑒−𝛽(Γ−𝜆𝑀𝑖𝑛𝐼𝑁)2 = 𝐼𝑁 + ∑
−𝛽𝑘(Γ−𝜆𝑀𝑖𝑛𝐼𝑁)2𝑘

𝑘!
+∞
𝑘=1                                         (18) 
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The serie in the above equation always converges, the spectral matrix is written as a 

sum of two self adjoint operatorsΓ = Γs + Γn , we can remark that the two operators 

commute: 
 

                                        [Γs, Γn] = ΓsΓn − ΓnΓs = 0N                                                               (19) 

 

Therefore the square of spectral matrix is written as Γ2 = Γ𝑠
2 + Γ𝑛

2 + 2ΓsΓn where the 

operators verify the Gloden Thompson inequality [21]: 

 

                                           𝑇𝑟{𝑒Γs+Γn} ≤ 𝑇𝑟{𝑒Γs𝑒Γn}                                                              (20) 

 

Using equations (18) and (19), we give the following proposition to compute an 

approximation of 𝑃𝑛. 

Proposition 3.1:  The operator 𝑒−𝛽(Γ−𝜆𝑀𝑖𝑛𝐼𝑁)2 is an approximation to the noise projector 

𝑃𝑛 = 𝑈𝑛𝑈𝑛
+  

 

                                 𝑒−𝛽(Γ−𝜆𝑀𝑖𝑛𝐼𝑁)2 = 𝑒−𝛽Γ2
𝑒2𝛽𝜆𝑀𝑖𝑛Γ𝑒−𝛽λ𝑀𝑖𝑛

2 𝐼𝑁                                      (21) 

                                                            

= 𝑒−𝛽Γ𝑠
2
𝑒−2𝛽ΓsΓn𝑒−𝛽Γ𝑛

2
𝑒2𝛽𝜆𝑀𝑖𝑛Γ𝑠𝑒2𝛽𝜆𝑀𝑖𝑛Γ𝑛𝑒−𝛽λ𝑀𝑖𝑛

2 𝐼𝑁  

                                                             ≅ 𝑈𝑛𝑈𝑛
+ 

 

Proof: Using the spectral decomposition we have: 
 

               𝑒−𝛽(Γ−𝜆𝑀𝑖𝑛𝐼𝑁)2 = 𝑈𝑒−𝛽(Λ−𝜆𝑀𝑖𝑛𝐼𝑁)2𝑈+ = ∑ 𝑒−𝛽(𝜆𝑖−𝜆𝑀𝑖𝑛)2𝑁
𝑖=1 |𝑢𝑖〉〈𝑢𝑖|             (22) 

                                           

= ∑ 𝑒−𝛽(𝜆𝑞−𝜆𝑀𝑖𝑛)2𝑃
𝑞=1 |𝑢𝑞〉〈𝑢𝑞| + ∑ 𝑒−𝛽(𝜆𝑟−𝜆𝑀𝑖𝑛)2𝑁

𝑟=𝑃+1 |𝑢𝑟〉〈𝑢𝑟|       

≅ ∑ |𝑢𝑟〉〈𝑢𝑟| =

𝑁

𝑟=𝑃+1

𝑈𝑛𝑈𝑛
+ = 𝑃𝑛 

 

From the computational viewpoint, the equation (21) can be calculated using different 

ways such the approximation theory or the linear differential equations, indeed it was 

explained in [22] that there exist nineteen techniques to compute the matrix exponential. 

Since the minimum eigenvalue represents the noise power, we can write the following 

equation: 
 

                                                  lim𝑆𝑁𝑅→+∞ 𝑃𝑛 = 𝑒−𝛽Γ2
                                                            (23) 

 

For given normalized state vector  |𝑎(𝜃𝑖)〉  in Hilbert space, the angular spectrum is 

obtained by calculating the inverse of the expectation value of the proposed operator 

〈𝑃𝑛〉𝜃𝑖

−1, using the inverse of Rayleigh quotient, the localization function is given by the 

equation : 
 

                        𝑓(𝜃𝑖) = 〈𝑃𝑛〉𝜃𝑖

−1 =
⟨𝑎(𝜃𝑖)|𝑎(𝜃𝑖)⟩

〈𝑎(𝜃𝑖)|𝑃𝑛|𝑎(𝜃𝑖)〉
=

1

〈𝑎(𝜃𝑖)|𝑒
−𝛽(Γ−𝜆𝑀𝑖𝑛𝐼𝑁)2|𝑎(𝜃𝑖)〉

                      (24) 

 

In the next section, we present some simulation results to confirm the validity of the 

proposed operator, that we compare with several high resolution spectral techniques. 
 

4. Simulation Results: 

We consider an array, consisting of 𝑁 = 11 omnidirectional and identical sensors, 

that is intercepting wavefield of 𝑃 = 4 punctual and narrowband sources impinging 
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from directions 𝜃 = [−40°, 5°, 30°, 35°], the signals are considered to be zero mean 

complex random processes 𝑠𝑖(𝑡)~𝒞𝒩(0,1 𝑤𝑎𝑡𝑡)  and statistically independent 𝛤𝑠𝑠 =
𝛿𝑖𝑗𝜎𝑖

2. The carrier frequency is 𝑓𝑐 = 1𝐺𝐻𝑧 which corresponds to interelement distance of 

𝑑 = 15𝑐𝑚  which corresponds to an array aperture of 𝐿𝜆 = 1.5𝑚 . The number of 

measurements is  𝐾 = 200 samples. In the first experiment we set 𝑆𝑁𝑅 = 5𝑑𝐵 (𝑆𝑁𝑅 =
20𝑙𝑜𝑔10(1/𝜎2)  ). Figure 2 represents an average of 𝐿 = 100  Monte Carlo runs of 

equation (24), the obtained spectrum has a high resolution property with no side lobes. 

In the second test, we study the variation of the eigenvalues of the operator in 

equation (18) as a function of degree of perturbation 𝜎𝑃𝑛
= 𝑓(𝑆𝑁𝑅) , the results are 

presented in Figure 3. We realize that when the perturbation is high (𝑆𝑁𝑅 < 0), 𝜎𝑃𝑛
 

contains at least the minimum eigenvalue which belongs to the noise subspace, when the 

𝑆𝑁𝑅  increases starting from 0𝑑𝐵 , we can observe that all the noise eigenvalues are 

normalized while the signal eigenvalues are always null. 
 

 

Figure 2. Average of 𝑳 = 𝟏𝟎𝟎 Realizations with 𝑵 = 𝟏𝟏, 𝑷 = 𝟒, 𝜽 =
[−𝟒𝟎°, 𝟓°, 𝟑𝟎°, 𝟑𝟓°], 𝑲 = 𝟐𝟎𝟎, 𝒅 = 𝝀/𝟐 and 𝑺𝑵𝑹 = 𝟓𝒅𝑩 
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Figure 3. 𝝈𝑷𝒏
= 𝒇(𝑺𝑵𝑹) with 𝑵 = 𝟏𝟏, 𝑷 = 𝟒, 𝜽 = [−𝟒𝟎°, 𝟓°, 𝟑𝟎°, 𝟑𝟓°], 𝑲 = 𝟐𝟎𝟎 

and 𝒅 = 𝝀/𝟐 

In the third test we compare the performance of the localization function with four 

different spectra which are Ermolaev and Gershman operator [16], Multiple Signal 

Classification techniques [6], Minimum Variance Distortionless Response operator [12] 

and standard beamforming [9] using the same conditions as in the first test, Figure 4 

represents the comparison in 𝑑𝐵 scale, the proposed operator, Ermolaev and Gershman 

operator with parameter 𝑚 = 10, and Schmidt subspace (MUSIC) are all equivalent in 

these conditions. 

 

 

Figure 4. Average of 𝑳 = 𝟏𝟎𝟎 Realizations of Proposed Operator with Four 
Different Spectra with 𝑵 = 𝟏𝟏, 𝑷 = 𝟒, 𝜽 = [−𝟒𝟎°, 𝟓°, 𝟑𝟎°, 𝟑𝟓°], 𝑲 = 𝟐𝟎𝟎, 

𝒅 = 𝝀/𝟐 and 𝑺𝑵𝑹 = 𝟓𝒅𝑩 

2
4

6
8

10 -10

0

10

20
0

0.5

1

1.5

2

 SNR [dB]
 

 
P

n

-100 -50 0 50 100
-40

-30

-20

-10

0

10

20

30

40

50

 [°]

 L
o

c
a
li

z
a
ti

o
n

 f
u

n
c
ti

o
n

 f
( 

) 
[d

B
]

 

 
Exponential Operator

Ermolaev , Gershman

Music

Capon

Beamf orming



International Journal of Advanced Science and Technology  

Vol.74 (2015) 

 

 

8   Copyright ⓒ 2015 SERSC 

To generalize this result, we compare the Root Mean Square Error (RMSE) of the four 

high resolution spectra with varying 𝑆𝑁𝑅 , the results are presented in Figure 5. The 

obtained functions prove that the proposed operator has the same performance, in these 

conditions, of the same high resolution spectra starting from 𝑆𝑁𝑅 = 0𝑑𝐵. 

 

5. Conclusion 

We have introduced, in this paper, an original spectral technique for computing the 

angular spectrum of the narrowband sources whose radiations are received by an array of 

sensors. New formalism is presented, based on quantum theory, to calculate an 

approximation of the projector into the noise subspace using Gaussian function of the 

spectral matrix, this new mechanism requires only the knowledge of the minimum 

eigenvalue. The simulation results proved that the proposed operator has the same 

performance with the existing high resolution spectra. 

 

 

Figure 5. Average of 𝑳 = 𝟏𝟎𝟎 Realizations of RMSEs for each Value of SNR 
with 𝑵 = 𝟏𝟏, 𝑷 = 𝟒, 𝜽 = [−𝟒𝟎°, 𝟓°, 𝟑𝟎°, 𝟑𝟓°], 𝑲 = 𝟐𝟎𝟎 and 𝒅 = 𝝀/𝟐. 
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