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Abstract 

Buckling behavior of cylindrical helical springs subjected to axial load has already been 

illustrated in the past theories. Unlike cylindrical spring, the behavior of conical compression 

spring has both linear and nonlinear phase. Very little literature on buckling of conical 

springs can be found in the past. In this paper, an analytical buckling equation with its 

experimental verification has been proposed by authors and used it along with the existing 

theories to locate the phase of compression of conical spring at which buckling occurs. 

Subsequently, a comparison between cylindrical and conical springs has been made at the 

point of buckling of cylindrical spring in respect of their load and deflection. This would help 

to decide the suitability of conical springs against buckling failure of cylindrical springs 

under the given operating conditions. 
 

Keywords:  buckling behavior, nonlinear behavior, conical spring, critical load and 

deflection, cylindrical spring 
 

1. Introduction 

The coil compression springs will have a tendency to buckle when the deflection (for a 

given free length) becomes too large and thereby spring can no longer provide the intended 

force. Buckling can be prevented by limiting the deflection or the free length of the spring. If 

these options are unavailable, then best alternative is replacing with conical springs(having 

variable radii of curvature) to avoid buckling as they have less likeliness to this instability.  In 

most of the research completed to date on buckling of coiled springs, very few literature on 

conical springs can be found. In this paper, authors have proposed an analytical expression 

with its experimental verification along with existing bench mark theories to compare 

cylindrical and conical springs at the point of buckling of cylindrical spring in respect of their 

load and deflection. The prediction of buckling of conical compression springs having 

constant pitch using author’s newly developed equation and that of E.B.Wolansky [8] shows 

the upper and lower bound values of buckling of conical springs between which all 

experimental data lies. This would help to decide the suitability of conical springs against 

buckling failure of cylindrical springs under the given operating conditions. It also, helps to 

predict the possibility of buckling of conical helical springs beforehand at the design stage. 
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The deflection analysis has been carried out with the springs made of ASTM A313 Type 304 

(Stainless steel) material and these theoretical values are experimentally verified. 

 

2. Literature Review 

A. M. Wahl [2] has summarized basic and essential definitions, characteristics, behavior 

models, and calculation methods, load-deflection equation relating to the main types of 

springs. According to Wahl’s assumptions, the derivation is accurate for cases where 

deflections per coil in axial direction of the springs are not too large and pitch angles are less 

than 10
0
. J. A. Haringx [3, 4], demonstrated that an excellent agreement exists between the 

experiments and the results of a new theoretical calculation with respect to the elastic stability 

of helical compression springs of  circular wire section. This calculation showed that the 

critical relative compression at which buckling occurs depends only on the ratio of initial 

length, Lo to the coil diameter Do and on the method of attaching the spring ends. Finally, a 

continuous relation has been derived for a nonlinear conical spring by Rodrigues et al., [6]. 

They illustrated that the conical compression spring behavior has a linear phase but can also 

have a nonlinear phase. The rate of the linear phase can easily be calculated but no analytical 

model exists to describe the nonlinear phase precisely. This nonlinear phase can only be 

determined by a discretizing algorithm. They presented analytical continuous expressions of 

length as a function of load and vice versa for a constant pitch conical compression spring in 

the nonlinear phase. Validation of new conical spring models in comparison with 

experimental data is performed. The behavior law of a conical compression spring can now 

be analytically determined Becker et al., (4, 13), partial differential equations governing the 

buckling behavior of helical compression sprngs were developed and solved for both end 

fixed and circular cross-section using transfer matrix method and produced buckling design 

charts. And the equations governing resonant frequencies of a helical spring subjected to a 

static axial compressive load are solved numerically using transfer matrix method for 

clamped ends. H. Wang et al., [14], has developed load-deflection relationships by using 

strain-energy method and nonlinear effects due to compression of the large diameter coils 

have been discussed. M.H.Wu et al., [9], has proposed a model to calculate load-deflection 

relation of the conical spring and verified experimentally with static data. It shows that the 

maximum error between simulation and experimental results was 4.6 %. V. Yildirim [11, 12], 

has developed free vibration equations for cylindrical isotropic helical springs loaded axially 

and solved numerically based on the transfer matrix method to perform buckling analysis in a 

dynamic manner. The axial and shear deformation effects together with rotator inertia effects 

are all considered based on the first order shear deformation theory. However, Wolansky.E.B 

[8], has derived the buckling –deflection equation of conical spring for both simply-supported 

and fixed ends. The deflection due to shear load is omitted, and only energy from torsional 

and flexural stresses were considered.  

Therefore, based on this review of literature and research to date, the author has attempted 

to develop an analytical equation considering the effect of shear deformation also which was 

previously ignored and verify it experimentally so that a comparison may be made between 

cylindrical and conical springs at the point of buckling of cylindrical spring in respect of their 

load and deflection. This would help to decide the suitability of conical springs against 

buckling failure of cylindrical springs under the given operating conditions. It also, helps to 

predict the possibility of buckling of conical helical springs beforehand at the design stage.   
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3. Methodology 

The following cylindrical helical springs whose specifications are given in the following 

Table 1 has been used for buckling analysis. 

Table 1. Specifications of Cylindrical Springs Made ASTM A313 Type 304 
(Stainless Steel) 

Outer 

coil 

diameter 

(Do), mm 

Free 

Length 

of the 

Coil(

Lf), mm 

Mean 

coil 

diameter 

(Dm) 

mm 

Wire 

diameter 

(d) 

mm 

Pitc

h of the 

coil (p) 

mm 

Heli

x angle 

(αo) 

Spring 

Index 

(C=Dm/d), 

 

Total 

Number 

of turns 

( no ) 

20 

20 

20 

20 

20 

20 

20 

20 

20 

100 

105 

126 

147 

175 

190 

200 

230 

252 

18 

18 

18 

18 

18 

18 

18 

18 

18 

2 

2 

2 

2 

2 

2 

2 

2 

2 

5.04 

5.23 

5.04 

5.60 

6.73 

7.33 

7.68 

8.83 

9.64 

5.1 

5.30 

5.10 

5.70 

6.80 

7.40 

7.74 

8.80 

9.73 

9 

9 

9 

9 

9 

9 

9 

9 

9 

20 

20 

25 

25 

26 

26 

27 

27 

28 

Note: All springs have squared and ground ends. 

Material properties taken from hand book [1978 ]. 

For  ASTM A313 Type 304(SS) 

E = 1.93 x10^5 N/mm
2
  ; G = 70.3 x 10^3 N/mm

2
  ;  ρ  = 79200 N/m

3
 , Sult = 1717.5 N/ mm

2
. 

 

3.1 .Theoretical Analysis for Cylindrical Helical Compression Springs 

Much of the relations given by A. M. Wahl [2], J. A. Hanrigx [3] and L. E. Becker and W. 

L. Cleghorn [4] has been used. 

For the purpose of buckling analysis, the following equation for straight coil close helical 

compression springs and other fundamental related expressions [2, 3] are used. 

 

                                                                                        (1) 

 

where Do  =  mean coil diameter.   

Note:The above equation can also be used for both end fixed by taking, 

 

                                                                                                                                                      (2) 

 

And other related equations[3]:  

 

i) Axial Pitch,  

 

                                                                                                                         (3) 

 

 

ii) Ratio,  
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                                                                                                                              (4) 

 

 iii))  To determine the helix angel at buckling stage, 

                                                                                                                                  (5)             

 

iii) Ratio of turns. 

 

                                                                                        (6) 

iv) Critical load, 

 

                                                                                                (7)                          

 

3.2 .Numerical Illustration 

 

For Spring No.3 from Table 1. 
Lf = 126 mm,  Do= 20 mm, d=2mm, Dm = 18 mm, p=5.04 mm, αo = 5.1

0
,  C = Dm/d = 9 mm, 

no=25,  Lf / Dm= 7 mm, n = 23,  Sult = 1717.5  N/ mm
2
  for Gr-II , E= 1.93 x 10

5
  & G=70.3 x 

10
3
                  

i)        or  =25 x 18 x π x  αo  =   5.1
0
  

ii)  

iii) Relative Critical deflection, 

    

           

iv) To determine the helix angel at buckling stage, 

   

v) Ratio of number of turns,   

vi) Critical Load, ( Pcr ) =    

vii) Wahl’s  correction factor,        

viii)  Corrected torsional  shear stress, 

    

 

 

Induced shear stress is within the permissible limit. Hence the spring design is safe. 
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3.3. The Outcomes of Theoretical Analysis has been shown in Table 2 as Given Below. 

Table 2. Straight Helical Compression Springs Made of ASTM A313 TYPE 304 
(SS304) 

Spring 

No. 

 (Free 

length / 

mean coil 

diameter  )         

(Lf / Dm) 

Helix 

angle at 

buckling. 

 ( α ) 

Deg. 

Relative 

Critical 

deflection     

( ) 

Critical 

load (Pcr )   

 

( N )        

Buckling 

Deflection 

δcr 

 (mm ) 

Correcte

d torsional 

shear stress 

(τ’ ) N/mm2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

5.56 

5.83 

7.00 

8.17 

9.72 

10.56 

11.11 

12.78 

14.00 

2.22 

2.82 

3.68 

4.60 

5.91 

6.59 

6.98 

8.24 

9.14 

0.563 

0.468 

0.278 

0.192 

0.130 

0.109 

0.097 

0.072 

0.060 

68.51 

58.95 

34.00 

26.37 

21.18 

18.99 

17.63 

15.17 

12.85 

56.30 

49.14 

32.03 

28.22 

22.75 

20.71 

19.40 

16.56 

15.12 

456.12 

392.48 

226.36 

175.57 

141.01 

126.43 

117.38 

100.99 

85.550 

From the above analysis, it is implies that, for large value of helix angles, agreement with 

Haringx’s results becomes poor with the experimental values. Also, significant deviations 

from the elementary theory occur at small number of turns or large values of helix angles, 

where the effective rigidities (i.e., flexural, torsional and shearing rigidities) used by Haringx 

are inaccurate. 

 

     

a) Slenderness Ratio Versus Relative              b) Slenderness Ratio Versus Critical 
Critical Deflection                                            Axial Load 

Figure 1. Theoretical Buckling Characteristics Curve.( for both ends fixed) 

3.4 Theoretical Analysis for Conical Helical Compression Springs 

The load-length characteristics of these conical springs are usually linear and nonlinear. 

In the non-linear phase, the spring stiffness is not constant but depends on the compression. 

This behavior occurs when the number of active coils decreases or increases with varying 

compression. The non-linear behavior of a spring can be achieved by 

i) Varying the mean coil diameter in axial direction 

ii) Varying the pitch. 

iii) Varying the spring wire diameter along its length.   
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In this research findings, the non-linear behavior has been achieved by varying the mean 

coil diameter in axial direction and keeping the constant spacing between adjacent coils along 

the axis of the conic (i.e., constant pitch ) as shown in tale 3. The rate of the spring in the 

linear phase can easily be calculated but in non-linear phase, it not straight forward. 

The deflection and load analysis has been carried out using the author’s newly developed 

equation and E. Rodriguez et al [6], as follows.  

Table 3. Specifications of Conical Spring Made of ASTM A313304(Stainless 
Steel)( Non-Telescopic) 

Smalle

st 

Outer 

coil 

diamet

er (D1), 

mm 

Bigges

t outer 

coil 

diamet

er 

( D2), 

mm 

Free 

Lengt

h of 

the 

Coil 

(Lf), 

mm 

Mean 

coil 

diame

ter 

(Dm), 

mm 

Wir

e 

dia

met

er 

(d), 

mm 

Pitch 

of the 

coil 

(p), 

mm 

Helix 

angle 

(αo) 

Spring 

Index 

C 

=Dm/d 

 

Lf / 

Dm 

Ratio 

Total 

Numb

er of 

turns    

( no ) 

Activ

e 

turns 

(na) 

20 

20 

20 

20 

20 

20 

20 

20 

20 

30 

30 

32 

34 

37 

38 

39 

42 

44 

100 

105 

126 

147 

175 

190 

200 

230 

252 

25.0 

25.0 

26.0 

27.0 

28.5 

29.0 

29.5 

31.0 

32.0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

5.70 

6.24 

5.26 

7.50 

8.30 

9.18 

9.30 

10.0 

10.1 

5.0 

5.0 

5.0 

6.7 

7.0 

8.5 

8.5 

7.5 

7.1 

12.50 

12.5 

13.0 

13.5 

14.2 

14.5 

14.2 

15.5 

16.0 

4.0 

4.0 

4.8 

5.4 

6.1 

6.5 

6.7 

7.4 

7.8 

20 

20 

25 

25 

26 

26 

27 

27 

28 

16 

16 

21 

21 

22 

22 

23 

23 

24 

Note: All springs have squared and ground ends. 

Material properties taken from hand book [5 ]. 

For  ASTM A313 Type 304(SS) 

E = 1.93 x10^5 N/mm
2
  ; G = 70.3 x 10^3 N/mm

2
  ;  ρ  = 79200 N/m

3
. Sult = 1717.5 N/ mm

2
. 

 

3.4.1  For Buckling Analysis, much of the Work Done by E. Rodriguez et al [6] along 

with the Authors Newly Developed Analytical Relation for Buckling has been 

reproduced in this Research Paper:  

 

                           Initial active length of the spring,                                         (8)              

                         Overall solid length of the spring,                                           (9)             

i) For linear behavior phase 

The load-length characteristic is linear since the spring rate k  is constant: 

                                                                                                           (10)           

For :   compressed length of the springs in the linear zone,  

 

                                                                                       (11) 

 

And for                                                                                   (12) 

                   

ii) Nonlinear Behavior Phase 
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a) Compression Process Analysis. Along the nonlinear phase the active coils gradually 

stack one above the other.  

                                  Solid length,                          (13) 

 

b) At transition point T, the load is given by 

                                                                                                                     (14) 

Once   is known, length at transition is directly deduced from following equation: 

                                    i.e.,                                                       (15)                                                           

             Load at maximum compression point,                                               (16)                                       

The associated length  can be calculated. 

c) The number of current free coils) can be calculated as  

For :                                                                    (17) 

Total axial spring deflection  is the sum of both free coils and solid/ground coils deflections 

Finally 

                                       (18)     

                               

This equation has been derived by E. Rodriguez et al [6]. 

 

The length of a constant pitch conical spring can thus be calculated using the following 

formula: 

 

                    (19)      

                                 

And following expressions, S. P. Timoshenko et al  [1] ,also have been used. 

 

d) Torsional shear stress,                                             (20) 

 

where,   and  n- nth coil where the stress is being measured. It is maximum at the 

biggest coil in the spring. 

 

e)  Stiffness of the spring,               (21)     

 

3.4.2 The Newly Developed Equation by Authors: For the purpose of analysis of 

buckling of conical helical compression spring having constant pitch, the following equation 

has been developed considering the effect of shearing force(Figure 4) that was previously 

ignored by  
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E.B.Wolansky[8] and perhaps this is the first such modeling for a conical spring. 

 

 
               B                                                          P      

                                                                                                

                   λ   ϕ                                             B    

               ϕ                                                        y        

                             M                                    C 

              A             Q                                                   Lo          

                                                  ds                        s            

           Q+dQ      λ                                          A 

                                          dλ                                P 

(a) Shearing Deformation           (b) Buckling of Spring         c) Conical Helical Spring                                           

of Element of Spring Wire.              

Figure 2. Buckling of Conical Spring with Shear Deformation of its Differential 
Element 

                  for   E/G = 2.7                                                 (22) 

where,             and    .  For both end fixed,    

 

3.4.3 Accocding to Wolansky’s Equation [8]: 
 

Critical deflection,   

                                                                                (23)       

      

Taking,    μ =  0.3   and   C= 4 ( for both ends are fixed ) 
 

3.4.4 Numerical Illustrations: 

 

Example 1. For spring no.3 from table 3     

D1 =20  mm,  D2 = 32 mm , Dm =26 mm , d= 2 mm ,  Lf  = 126 mm,  p= 5.26 mm, αo =5.5, 

na=21,  no =25  

E = 1.93 x10^5 N/mm
2
  ; G = 70.3 x 10^3 N/mm

2
  ;  ρ  = 79200 N/m

3
. Sult = 1717.5 N/ mm

2
. 

 

i) According newly developed equation by the author,  

ii) Crtical deflection,                  ( for both ends fixed),  

     and                                      
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It is not admissible because ratio of two real quantity cannot be imaginary and hence no 

buckling of springs.    

iii) Accocding to Wolansky’s Equation [8], 

Critical deflection,   

     

It is not admissible because ratio of two real quantity cannot be imaginary and hence no 

buckling of springs. 

 

Example 2. For a spring having D1=20, D2=45, Lf=290, no = 29,  na= 25,  E = 1.93 x10^5 

N/mm
2
  ; G = 70.3 x 10^3 N/mm

2
  ;  ρ  = 79200 N/m

3
. Sult = 1717.5 N/ mm

2
.  

i)  According to newly developed equation by the author, for both ends fixed, 

 
                                                               =  0.405169 

 

Deflection at  buckling,  δcr = 0.405169 x 290 = 117.499mm  

 

iii) Accocding to Wolansky’s Equation [8], 

 

  

 

Deflection at  buckling = δcr = 0.2025 x 290 = 58.725 mm 

 

Solid length,     

 

Overall active length,  La = Lo – nid  = 290 – 2 x 2  = 286 mm  , ni – factor influencing the end 

conditions. 

La  - Ls  = 286 – 48.412  = 237.588 mm 

 

 
 

 

 
 

Corresponding compressed length of the spring at transition point T, 
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LT = Lo  -  Pk / Ks       ( because the stiffness is constant at that point  ). 

LT  =  290 – ( 14.66 / 0.1699  ) = 203.714  mm . 

Therefore,   δT  = Lf - LT  = 290  - 203.714  = 86.286  mm .   

And according Wolansky’s Equation,  

     Critical  deflection (δcr  =58.725  mm )  ˂   δT (= 86.286 mm ) 

Hence, buckling takes place in the  linear zone where its stiffness will remains constant 

during compression. 

The corresponding critical or buckling load. 

 
But according to authors equation,    

     Critical  deflection (δcr  =117.499  mm )  >   δT (= 86.286 mm)     as per authors equation.                   

Therefore, the buckling takes place in the non- linear zone where its stiffness will not remains 

constant during compression. 

To find the corresponding critical or buckling load, we may use Rodriguez approach[6] as 

elaborated below. 

The no. of active coils at the transition point ‘T’, 

 

 
 

 
                              

 
 

which is true, because at transition point ‘T’, only biggest coil became inactive.  

Also, we can check for no. of active coils at buckling stage as  

Active compressed length of the spring at buckling, Lcr = 286 – 117.499 = 168.5 mm  

  H=  La  -  Ls   = 286 – 48.412   =  237.588  mm 

Also, the active no. of coils still free to deflect at the buckling stage is given by, 

 

 
 

 
 

Also, we have continuous deflection in the non-linear zone as 

 . 

 

Therefore, at critical stage in non-linear zone, deflection may be written as  
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Now to get the corresponding critical load, we need to iterate for critical load (Pcr) using 

above two equations simultaneously until it reach to known values of nf=24 and δcr= 117.499 

mm, in the non-linear zone of compression of the conical springs.  

Using MATLAB, as shown below.  

 

>> n=29; 

>> na=25; 

>> G=70.3*10^3; 

>> La=Lf-2*d; 

>> Ls=sqrt((na*d)^2-((D2-D1)/2)^2); 

>> H= La-Ls; 

>> PC=G*d^4*(La- Ls)/ (8*D1^3*na); 

>> PT=G*d^4*(La- Ls)/ (8*D2^3*na); 

>> Ks=G*d^4/ [2*n*(D1+D2)*(D1^2 + D2^2)]; 

>> LT=Lf-PT/Ks; 

>> P=15; 

>> nf= (na/(D2-D1))* [[((La-Ls)*G*d^4)/(8*P*na)]^(1/3) - D1]; 

>> delta =[(2*P*na*D1^4)/((D2-D1 )*G*d^4 )*[[1+(D2/D1 -1)*(nf/na)]^4-1]+ H*(1-(nf/na) 

)]; 

>> delta 

 

First iteration 

>> P=18; 

>> nf= (na/(D2-D1))* [[((La-Ls)*G*d^4)/(8*P*na)]^(1/3) - D1]; 

>> delta =[(2*P*na*D1^4)/((D2-D1 )*G*d^4 )*[[1+(D2/D1 -1)*(nf/na)]^4-1]+ H*(1-(nf/na) 

)]; 

>> delta 

delta = 

  122.9813 

>> nf 

nf = 

   22.0274 

Second iteration 

>> P=16.5; 

>> nf= (na/(D2-D1))* [[((La-Ls)*G*d^4)/(8*P*na)]^(1/3) - D1]; 

>> delta =[(2*P*na*D1^4)/((D2-D1 )*G*d^4 )*[[1+(D2/D1 -1)*(nf/na)]^4-1]+ H*(1-(nf/na) 

)]; 

>> delta 

delta = 

  114.5926 

>> nf 

nf = 

   23.2642 

Third iteration 

>> P=16.93; 
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>> nf= (na/(D2-D1))* [[((La-Ls)*G*d^4)/(8*P*na)]^(1/3) - D1]; 

>> delta =[(2*P*na*D1^4)/((D2-D1 )*G*d^4 )*[[1+(D2/D1 -1)*(nf/na)]^4-1]+ H*(1-(nf/na) 

)]; 

>> delta 

delta = 

  117.1034 

>> nf 

nf = 

   22.8947 

 

Since, these above values of δcr and nf  are nearly same as what has been obtained with 

authors proposed equation. Hence, the corresponding buckling load from the above program 

is Pcr = 16.93 N = 1.726 kgf. and still there are 23 no. of turns active capable of axial 

deflection. The comparison of both method have been shown in Table 4 and theoretical 

analysis outcomes also shown in Table 5 and its graphical representation in Figure 3 below. 

Table 4. Critical Load and Deflection of Conical Springs in Example1 and 2 

Exam

ple 

Method ξ=δcr/ Lf δcr 

(mm) 

Pcr 

(N) 

Comment 

1 

 

 

1 

Proposed 

model 

 

Wolansky 

equation 

0.5- 1.5i 

 

 

0.5-0.5 i 

- 

 

 

- 

- 

 

 

- 

Not 

buckling 

 

Not 

bukling 

2 

 

 

2 

 

Proposed 

model 

 

Wolansky 

Equation 

0.405169 

 

 

0.2025 

117.499 

 

 

58.725 

16.93 

 

 

9.977 

Buckling 

 

 

Buckling 

Table 5. Theoretical Values of Load-Deflection of Non-telescopic Conical 
Springs Made of SS304 

Spring 

No. 1 

Spring 

No. 2 

Spri

ng No. 3 

Spring 

No. 4 

Spring 

No. 5 

Spring 

No. 6 

Sprin

g no.7 

Spring 

No. 8 

Spring 

No. 9 

p δ P δ P δ P δ P δ P δ P δ P δ P δ 

0 

2.2 

4.3 

6.5 

8.7 

13 

18 

22 

30 

35 

45 

50 

55 

60 

70 

0 

5 

10 

15 

20 

23 

28 

32 

38.5 

43.3 

51.6 

55 

58.25 

60.2 

63.94 

0 

2.2 

4.3 

6.5 

8.7 

12.9 

15.1 

22.6 

35 

45 

50 

55 

60 

65 

73 

0 

5 

10 

15 

20 

25 

28 

35.3 

47.4 

54.9 

58.9 

62.1 

66.3 

67.8 

70.8 

0 

1.5 

3 

6 

7.6 

10.6 

12.2 

16.4 

25 

35 

40 

50 

55 

60 

67.3 

0 

5 

10 

20 

25 

27 

29 

34 

43 

52 

56 

67 

71 

75 

80 

0 

1.3 

4 

6.7 

9.4 

12 

17.3 

30 

40 

55 

65 

70 

75 

80 

85 

0 

5 

15 

25 

30 

35 

40 

54.7 

64 

79.4 

88 

91.9 

95.4 

98.6 

101.6 

0 

1 

3.2 

5.3 

7.5 

9.7 

16.9 

19.1 

25 

40 

55 

70 

85 

95 

102 

0 

5 

15 

25 

35 

40 

50 

53.3 

62.3 

78.7 

94.6 

107.8 

118.3 

124.2 

127.7 

0 

1 

4 

7 

10.1 

13.1 

17.6 

30 

45 

60 

75 

80 

95 

100 

114 

0 

5 

20 

35 

45 

50 

58 

74.4 

90.6 

106 

119 

123 

132.9 

135.8 

142.8 

0 

0.9 

3.7 

6.43 

9.2 

11.9 

17.3 

30 

45 

60 

75 

90 

95 

100 

115 

0 

5 

20 

35 

50 

54 

65 

85 

102 

115 

126 

137 

140 

143 

151 

0 

0.8 

3.1 

6.2 

9.3 

12.8 

15.8 

30 

50 

70 

85 

100 

115 

125 

138.6 

0 

5 

20 

40 

60 

70 

77.2 

98.9 

123 

140 

152 

162 

171 

176 

181 

0 

0.7 

2.7 

5.37 

8 

12.6 

16.9 

35 

55 

75 

95 

110 

120 

135 

147 

0 

5 

20 

40 

60 

75 

85 

115 

140 

160 

175 

184 

189.5 

196.5 

201.3 
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Figure 3. Theoretical Load versus Deflection Curve for Individual Springs 

4 Conduct of Experiments 
 

4.1 Test Rig 

To analyze the behavior of helical compression spring, the test-rig shown in figure has 

been developed and fabricated in the institute laboratory. This spring testing machine is 

capable of taking load of 30 kg. 

 

Test Rig Specifications:      Max. height – 315 mm 

                                             Max. Diameter- 150 mm 

Steps for conducting experiment: 

1) Load the spring on the machine touching both the ends 

to the compressing plates and no load is applied on it. 

2) Set the weighing machine to zero load, if necessary so 

that  the reading on the sensor is zero. 

3) Now apply the load until the sensors senses 5 mm 

deflection, and note down the readings on weighing  

Figure 4 Spring Testing Set-Up                     machine.  

 

4) Now apply the load until the sensors senses 5 mm deflection, and note down the 

readings on weighing machine.  

5) Now apply the load until the sensors senses 5 mm deflection, and note down the 

readings on weighing machine. 

6) Continue this procedure with deflection that already calculated theoretically and note 

down the  corresponding weight on weighing machine. 

7) Note down the critical deflection and corresponding load, if occurs. 

8) Reverse the procedure unloading the spring through the same steps and record the 

corresponding load in the decrease order. 
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9) Repeat the same procedure with remaining springs. 

 

4.2 Experimental Data  

Testing of springs has been carried out as per the above explained procedure and the data 

are recorded as shown in Table 6 and 8 as given below. 

Table 6. Pratical Values of Load and Deflection of Cylindrical Springs Made of 
ASTM313 TYPE 304 (SS304) 

Spring no.1 

Lf / Dm= 5.6 

Spring no.2 

Lf / Dm= 

5.83 

Spring no.3 

Lf / Dm= 7.0 

Spring no.4 

Lf / Dm= 

8.17 

Spring no.5 

Lf / Dm= 

9.72 

Spring 

no.6 

Lf / Dm= 

10.6 

Spring no.7 

Lf / Dm= 

11.1 

Spring no.8 

Lf / Dm= 

12.8 

Spring no.9 

Lf / Dm= 14 

P δ P δ P δ P δ P δ P δ P δ P δ P δ 

0 

4.8 

11.8

7 

18.2

5 

25.3 

32.5

6 

38.6 

45 

53.0

7 

59.6

4 

63.2

1 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

45.

3 

0 

2.06 

5.88 

13.4 

18.7 

26.8 

33.1

5 

39.1

4 

44.5 

62.5 

0 

5 

10 

15 

20 

25 

30 

35 

40 

44.

3 

0 

5.2 

9.81 

13.2

4 

16.4 

24.5 

27.8

6 

40.3 

0 

5 

10 

15 

20 

25 

30 

32.6 

0 

5.2

9 

9.8

1 

14.

1 

18.

2 

32.

1 

0 

5 

10 

15 

20 

24.

48 

0 

5.68 

10.1 

15.1 

22.1 

29.3

4 

29.3

4 

0 

5 

10 

15 

20 

22.8 

22.8 

0 

5 

7.95 

12.8 

27.1

2 

0 

5 

10 

15 

18

.2

9 

0 

4.8 

10 

16 

23,4 

0 

5 

10 

15 

18.7 

0 

3.13 

7.9 

13.8 

19.2 

0 

5 

10 

15 

16.4 

0 

4.12 

5.68 

16.4 

0 

5 

10 

13.3 

Table 7. Comparison of Practical and Theoretical Values of Buckling Load and 
Deflections of the Cylindrical Springs Made of ASTM Type 304( SS304) 

 

 

 

 

 

 

 

 

 

 

 

   

From the above Table 7 it is clear that simulation values and practical values are nearly 

closer to each other at almost all the points of deflection and buckling behavior of cylindrical 

springs has been found to be in better agreement with the theory by Haringx for both ends 

fixed. 

 Practical values Theoretical values 

Spring 

No. 

Slende

rness 

Ratio    

(Lf/Dm 

) 

Buckling 

Load 

Pcr (  N  ) 

Buckling 

Deflectio

n 

δcr mm 

Relative 

Critical 

deflection     

( ) 

(Practical) 

Buckling 

Load 

Pcr (  N  ) 

Buckling 

Deflection 

δcr mm 

Relative 

Critical 

deflection     

( ) 

(Practical) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

5.56 

5.83 

7.00 

8.17 

9.72 

10.56 

11.11 

12.78 

14.00 

63.21 

62.5 

40.4 

32.1 

29.34 

27.12 

23.4 

19.2 

16.4 

45.34 

44.28 

32.59 

24.48 

22.8 

20.29 

18.7 

16.4 

13.3 

0.4534 

0.4217 

0.2586 

0.1665 

0.1100 

0.0961 

0.0872 

0.0651 

0.0530 

68.51 

58.95 

34.00 

26.37 

21.18 

18.99 

17.63 

15.17 

12.85 

56.30 

49.14 

32.03 

28.22 

22.75 

20.71 

19.40 

16.56 

15.12 

0.563 

0.468 

0.278 

0.192 

0.130 

0.109 

0.097 

0.072 

         0.060 
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Figure 5. Comparison of Relative Critical Deflection for the same Slenderness 
Ratio between Theoretical and Practical Values 

Table 8. Practical Values of Buckling Load and Deflections of the Non-
Telescopic Conical Springs Made of ASTM A313 type 304 ( SS304 ) 

Spring no.1 

Lf / Dm= 5.6 

Spring no.2 

Lf / Dm= 5.83 

Spring no.3 

Lf / Dm= 7.0 

Spring no.4 

Lf / Dm= 8.17 

Spring no.5 

Lf / Dm= 9.72 

Spring no.6 

Lf / Dm= 10.6 

Spring no.7 

Lf / Dm= 11.1 

Spring no.8 

Lf / Dm= 12.8 

Spring no.9 

Lf / Dm= 14 

P (N) δ 

(mm

) 

P (N) δ 

(mm

) 

P (N) δ 

(mm) 

P δ 

(mm) 

P δ 

(mm) 

P δ 

(m

m) 

P δ 

(mm) 

P δ 

(mm) 

P δ 

(mm) 

0 

2.2 

4.3 

6.5 

8.7 

12.9 

15.1 

20.9 

30 

35 

45 

50 

55 

60 

70 

0 

5 

10 

15 

20 

27 

30 

35.4 

39.1 

42.8 

48.2 

50.4 

53.3 

56.8 

63.2 

0 

2.2 

4.2 

6.4 

8.7 

12.9 

15.1 

21.6 

35 

45 

50 

55 

60 

65 

76 

0 

5 

10 

15 

20 

28 

30 

38.3 

48.4 

54.7 

57.7 

59.2 

62.2 

65.8 

68.7 

0 

1.5 

3.2 

6.3 

8.3 

11.6 

14.2 

19.4 

25 

35 

40 

50 

55 

60 

67.3 

0 

5 

10 

20 

25 

35 

40 

45.4 

49.1 

56.8 

61.45 

66.4 

70.7 

74.8 

79.8 

0 

1.3 

3.81 

6.2 

8.8 

12 

14.3 

25 

40 

55 

65 

70 

75 

80 

85 

0 

5 

15 

25 

35 

45 

48.3 

61.3 

76.3 

86.2 

90.4 

92.9 

95.9 

98.3 

101 

0 

1 

3.4 

6.2 

8.7 

11.6 

13.6 

19.1 

25 

40 

55 

70 

85 

95 

102 

0 

5 

15 

25 

35 

45 

51.78 

58.34 

66.8 

84.2 

98.2 

109.7 

119.7 

124 

128 

0 

1 

3.83 

6.8 

9.3 

12.1 

13.6 

30 

45 

60 

75 

80 

95 

100 

114 

0 

5 

20 

35 

50 

60 

65 

86. 

101 

114 

123 

128 

134 

137 

142 

0 

0.9 

3.6 

6.43 

8.6 

14 

15.6 

30 

45 

60 

75 

90 

95 

100 

115 

0 

5 

20 

35 

50 

65 

67.45 

88.78 

108.5 

119.6 

131.3 

139.6 

143.6 

145.7 

150.8 

0 

0.8 

3.1 

6.2 

10.3 

13.8 

18.9 

30 

50 

70 

85 

100 

115 

125 

138.6 

0 

5 

20 

40 

60 

70 

83 

98.3 

121.9 

138.4 

152.1 

161.5 

169.7 

175.1 

181.8 

0 

0.75 

2.7 

5.37 

8 

10.7 

13.1 

35 

55 

75 

95 

110 

120 

135 

147 

0 

5 

20 

40 

60 

80 

100 

133.1 

137.1 

158 

173.2 

183 

188.7 

196.1 

202.5. 

Note: The last readings in each are closer to the solid length and highlighted figure in each 

column corresponding to the point of buckling of cylindrical springs in comparison. 

 

The above practical data has been shown in graphical format in the following Figure 6 for 

better understanding and insight into the behavior of springs and their buckling phenomenon. 

They shows that, initially all deflects linearly and after transition point the load-deflection is 

non-linear where the stiffness of the springs will vary. Longer the free length of the springs, 

more will be the linear range of deflection against the axial load.  

The comparison of buckling load on the cylindrical springs against the corresponding axial 

load on the conical springs for the same deflection has been studied thoroughly and it has 

been discussed in the Section 5 as given below. 
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Figure 6. Buckling Load and Deflections of the Non-telescopic Conical Springs 

Table 8. Comparison of Practical Buckling Loads on Cylindrical Springs 
Against the Corresponding Load on Conical Springs for Nearly Same Axial 

Deflections 

Spring 

No. 

Cylindrical helical 

 compression springs 

Axial deflection 

of springs 

Non-telescopic conical 

 compressions  spirngs 

ASTM A313 type 304 

(SS304)    

ASTM A313 type 304 (SS304)    

Buckling load, Pcr (N) δcr Axial load, P (N) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

63.21 

62.50 

40.40 

32.10 

29.34 

27.12 

23.40 

19.20 

16.40 

45.34 

44.28 

32.59 

24.48 

22.80 

20.29 

18.70 

16.40 

13.30 

38.6 

29.6 

10.9 

6.48 

7.30 

4.10 

3.30 

2.44 

1.58 

 

5. Results and Discussion 

From the analysis of both theoretical and practical data, it is clear that values from 

theoretical and practical data related to cylindrical and conical are closer to each other with 

difference of 2% - 4% between them. Hence the newly developed equation by the authors for 

conical springs gets verified. With this verification, the values of critical loads and deflections 

of cylindrical springs are compared against the corresponding values on the conical springs 

having the same free length and same deflections. For the same deflection of both cylindrical 

and conical springs, the percentage difference between the axial loads at the respective 

corresponding point of deflections is varying from 30 % to 80 % (an average of 65.5 %) as 

the free length of the springs increases. Thus, with the replacement of conical springs, the 

buckling can very well be avoided meeting all the necessary spring operations in any given 

systems. 
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6. Conclusion 

After the detail analysis of behavior of both cylindrical and conical springs under the static 

load, it has been found that for their same deflections, the difference between the 

corresponding loads on them has been significant. The conical helical springs are more useful 

than cylindrical for greater axial deflections without buckling. However, space constraints 

would restrict using conical springs. This above analysis will help the designer to decide the 

suitability of conical springs for their replacement to avoid buckling of cylindrical springs. 

The newly developed equation for conical spring can be used to predict the buckling of 

conical spring beforehand. The conical springs are more useful where the variable stiffness is 

required especially in automobile systems. 

 

References 

[1] S. P. Timoshenko and D. H. Young, “Elements of strength of materials”, East west press, fifth edition, 

(2011). 

[2] A. M.Wahl, “Mechanical Springs”, 2nd edition, McGraw-Hill, New York, (1963).  

[3] J. A. Haringx, “Elastic stability of helical springs at a compression larger than original length”, Applied 

Science, Research, Eindhoven-Netherlands, vol. A 1, (1949), pp. 417-434. 

[4] J. A. Haringx, “On the buckling and the lateral rigidity of helical compression springs”, I, Proc.roy.Acad. 

Amsterdam, vol. 45, (1942), pp. 533. 

[5] E. Becker and W. L. Cleghorn, “On the buckling of helical compression springs”, Int. J. Mech. Sci., vol. 34, 

(1992), pp. 275-282. 

[6] C. Harold and M. Dekker, Spring Designer’s Handbook, Inc. New York, (1978). 

[7] E. Rodriguez, M. Paredes and M. Sartor, “Analytical behavior law for a constant pitch conical compression 

spring”, Mech.Design, Transactions of the ASME, vol. 128, (2006), pp. 1352-1356. 

[8] E. Rodriguez and M. Paredes, “Ends Effect on Conical Spring Behavior”, Springs, The International 

Magazine of Spring Manufacture, vol. 44, no. 4, (2005), pp. 32-36. 

[9] E. B. Wolansky, “Conical Spring Buckling Deflection”, Springs, vol. 35, (1996), pp. 63-68. 

[10] M. H. Wu and W. Y. Hsu, “Modelling the static and dynamic behavior of a conical spring by considering the 

coil  close and damping effects”, Sound and vibration, vol. 2149, no. 1, (1998), pp. 17-28.  

[11] M. Paredes and E. Rodriguez, “Optimal design of conical springs”, Engineering with computers, vol. 25, 

(2009), pp. 147-154. 

[12] V. Yildirim, “Expressions for predicting fundamental natural frequencies of non-cylindrical helical springs”, 

Sound and vibration, vol. 252, no. 3, (2002), pp. 479-491. 

[13] V. Yildirim, “Numerical buckling analysis of cylindrical helical coil springs in a dynamic manner”, Int. J. 

Engng. and Appl. Sci., vol. 1, no. 1, (2009), pp. 20-32. 

[14] L. E. Becker, G. G. Chassie and W. L. Cleghorn, “On the natural frequencies of helical compression springs”, 

International journal of Mechanical Sceinces, vol. 44, (2002), pp. 825-842. 

[15] H.-C. Wang and W. J. Worley, “Load-Deflection Behavior of conical spiral compression springs”, Journal of 

Engineering for industry, Transactions of the ASME, (1962), pp. 329-337. 

 



International Journal of Advanced Science and Technology  

Vol.73 (2014) 

 

 

50   Copyright ⓒ 2014 SERSC 

 

 


