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Abstract 

In this paper, an adaptive network backstepping control for a class of uncertain nonlinear 

systems is presented and applied to an inverted pendulum. The proposed technique will 

provide useful solutions when dealing with: unknown nonlinearities; unknown system 

parameters; external or internal disturbances and stabilization in a desired position. A 

specific type of artificial neural networks called Multilayer Perceptron is used and simulation 

results clearly demonstrate the power of this approach. 
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1. Introduction 

An inverted pendulum is a physical device consisting of a cylindrical rod (usually 

aluminium) free to oscillate about a fixed pivot. The pivot is mounted on a cart, which 

in its turn can move along a horizontal direction. The cart is driven by a motor, which 

can exert on it a variable force. The rod tends to fall naturally down from the vertical 

position, which is an unstable equilibrium position [1]. 

Through simulations and experiments, the inverted pendulum is a practical example to 

validate a control technique (e.g., PID; state space and fuzzy controllers, etc.). 

In recent years, much progress has been made in the field of control of nonlinear 

systems. Backstepping technique is one of these new breakthroughs in this field. It was 

developed by Kanellakopoulos et al., in the 90s and was inspired by the work of Morse 

and Feurer on one hand and Tsinias, Kokotović, Sussmann on the other. The main 

advantage of this method is to ensure system stability with adaptive control. It is also 

used to determine the control law and parameters updating laws ([2-4]). 

The neural network techniques have been found to be particularly useful for the 

control of nonlinear systems with uncertain parameters. The theoretical background of 

this work and its history can be found in ([5-12]). In particular [10], Polycarpou 

developed a neural adaptive control for uncertain nonlinear systems in strict-feedback 

form using backstepping technique. This approach has expanded the condition of 

adaptation. The design procedure was applied using linearly parameterized neural 

networks such as RBF networks with fixed centers and widths. Polycarpou and Mears 

have also developed adaptive control laws using neural approximations with 

nonlinearities set [11]. More recently, Kwan and Lewis developed an adaptive control 

(multi-input-multi-output) to a more general class [13]. Their paper presented a general 

and uniform approach to the backstepping control nonlinear strict -feedback form using 
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neural networks systems. Dan Wang and Jie Huang developed a neural backstepping 

control algorithm in a professional manner using the MLP networks to approximate the 

unknown nonlinear functions [14]. For Elleuch and Damakthe, the objective was to 

expand the space problem by introducing perturbations for a general model and 

generate a robust algorithm [15]. 

In this paper, an adaptive neural backstepping control is synthesized and applied to an 

inverted pendulum. The proposed technique is built from two basic control structures namely 

non adaptive and adaptive backstepping control, considered as a starting point and theoretical 

background. 

 

2. Inverted Pendulum Model 

The system under consideration is depicted on figure1. Its model can be expressed by 

using the following state variables x , x , θ , θ  ; where x is the position of the cart, θ  is the 

angle of the rod, F  is the force acting on the cart, m and M are respectively the masses 

of the rod and the cart. 

 

 

Figure 1.  Inverted Pendulum Scheme 

For sake of state representation simplicity and backstepping algorithm application, 

the angular acceleration of the rod is considered as the system input rather than the 

force F. The inverted pendulum model without disturbances can be found in ([8 , 16], 

17]). 

In the presence of disturbances, the model under study takes into consideration the 

following state variables: 
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where: 

 
2 2

3 4 4 3 3

2 3 4
2 2

3 3

  ;   

.

m l s in x x m x s in x co sx
g tg x

M m .s in x m sin x M

    

 

 (2) 

g  is the gravitational acceleration and  is the length of the rod; 

i
η  : are all disturbances (external and internal) ; ω  : is the unknown parameter vector. 

 

3. Non Adaptive Backstepping Control 

In the following, the different steps are developed for deducing the control law. In this 

case, the system parameters are assumed known. 

 

 Step 1 

The aim is to control the desired angular position. Thus, we opted for the first 

variable error: 

3 3 r
z x y   (3) 

and to determine the system stability, the first Lyapunov function is defined by: 

2

3 3

1

2
z   (4) 

Its derivative leads to: 

3 3 3 3 4 3
( )

r
z z z x y      (5) 

This will give the following stabilizing function: 

4 3 3 3d r
x y c z h       (6) 

where 
3

  is bounded by a positive value 
3

h , 
3 3
 h . 

Then, equation (5) becomes: 

 
2

3 3 3 3 4 3 3 3
.c z z z z h       (7) 

 

 Step 2 

The second variable error is chosen as follows: 

4 4 r
z x y    (8) 

and the second Lyapunov function can be represented by the following expression: 

2

4 3 4

1

2

z    (9) 

Using equations (1), (6),(7) and (9), the derivative of the previous function leads to: 

 
2 2

4 3 3 4 4 4 3 4 4 4 4 3 4 3 3 3 3 3

1
. ( )

r r
c z c z z z c z u c x c y y z h    

 
              

 

 (10) 

Finally, the non adaptive control law is obtained as follows: 
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 3 4 4 4 4 3 4 3 3
( )

r r
u z c z h c x h c y y           (11) 

 

4. Adaptive backstepping control 

For adaptive control case, the supposed unknown length  will be estimated. 

Practically, the same steps will be followed, and the Lyapunov function takes the 

expression below: 

2

5 4

1

2
  


   (12) 

with: 1 /   and ˆ     

So, the control law deduced in this case will have the following form: 

 3 4 4 4 4 3 4 3 3

ˆ ( )
r r

u z c z h c x h c y y          (13) 

and the adaptation dynamics is as follows: 

4

ˆ z u  (14) 

where   is the adaptation gain. 

 

5. Adaptive neural network control using backstepping with uncertainties 

In the subsequent developments, the study is extended to a more complex structure 

that enhances system performance through appropriate approximation of the nonlinear 

functions of the considered model. It is worth mentioning that these approximations 

allow suitable model identification. 
 

5.1. MLP neural network 

MLP neural networks are relatively new classes of ANNs (Artificial Neural Network). 

Based on the universal approximation property of MLP network, nonlinear uncertain 

functions are estimated. 

In this paper, we consider an input layer, a hidden layer (with four neurons) and an 

output layer. The general structure of the multi input/single output (MISO) of MLP 

network is shown in figure 2, where x is the input vector, ˆ
k

 (k=2, 4) is the 

approximation of the unknown nonlinear function, 
k i

  is the sigmoid activation function 

of the i
th

 neuron (i=1,…,4), Vki is the input weight vector related to the neuron i, xp are 

the states (p=3,4), and Wk is the output weight vector: 

 ? ? 1 2 3 4
, ,   ;[   , , ],

T

ki k i k i k i k k k k k
V V V b W w w w w  . 
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Figure 2.  MLP Network Structure 

From the network structure shown in Figure 2, the corresponding expression to the 

connection Input/Output can be described by: 

 
4

1 3

ˆ

N

k k i k i k p i p k i

i p

w V x b 

 

 
  

 
   (15) 

where: N is the number of neurons in the hidden layer, 
k i

b  is the bias of the neuron i. 

The sigmoid activation function used in this case is given by the expression:  

 
 

1
,  λ 0

1 ex p λ

y

y

  

 

 (16) 

and its derivative is: 

     1y y y     
 

 (17) 

 

5.2. Adaptive Control with Backstepping-MLP 

The block diagram of the adaptive control is given in figure 3. The MLP network will 

approximate the nonlinear functions 
2

 ,
4

  and estimate weights of the network. 

The nonlinear function, which is approximated by the neural network, is defined by 

the following expression [14]: 

     
T T

x W V x x     (18) 

where:  x  is the approximation error, 
3 4

[   1]x x x  is the state vector augmented with 

a dummy node representing the bias input 1. 
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Figure 3.  Neural Adaptive Control Diagram 

To surpass the problems caused by the main drawbacks of standard backstepping 

control design, we propose to change equation (1) as follows: 
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For each function k
 , the MLP network is chosen according to the desired 

approximation. This extension leads to the representation of the following system: 
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 Step 1 

The procedure is the same as in expressions (3) to (7). 
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 Step 2 

The last step will allow to deduce the control law. First , we define the relationship 

between a real value its estimation and the estimation error: 

ˆ

ˆ

W W W

V V V

 

 

 (21) 

The second Lyapunov function is given by: 

2 2 1 1

5 3 4 4 4 4 4

1 1 1 1

2 2 2 2

T T
z W A W V B V  



 
      (22) 

with A and B are two symmetrical constant matrices 0 ;  0
T T

A A B B    . 

 

From equations (7), (8), (19) and (22) the derivative of the Lyapunov function leads 

to: 

   

 

2 2 ( 2 )

5 3 3 4 4 4 3 4 4 4 4 4 4

1 1

3 3 3 4 4 4 4

ˆ

1
ˆ 늿       

T T

r

T T

c z c z z z c z W V x x u y

u z h W A W V B V

     

   


 

          
 

     

 (23) 

Using the Taylor development, we can write: 

       
2

4 4 4 4 4

늿T T T T T
V x V x V x V x V x       (24) 

where  
2

4

T
V x  is the second order error and can be bounded. So, we can write the 

expression: 
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Equation (24) can be written as follows: 
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 (26) 

For the sigmoid activation function, continuous and differentiable on an interval, we 

can use the following limitation [14]: 

       
2

4 4 4 4 4 4 4 4 4 4 4
1

늿 늿T T T T T T T T T T

F F

W V x V x W V x W V x V xW V x W        (27) 

Using (23), (26) and (27), we can deduce the following control law: 
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with : k is a positive value, 
4 4
 h  and  4 4 M

x  . 

 

Also, we can deduce the adaptation parameters and estimated weights:  
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where:   and   are positives values. 

 

6. Simulation Results 

This section shows simulation of the three studied control structures. The parameters 

of the considered pendulum are: M=0.9 kg, m=0.1 kg, =0.23m, g=9.81 m/s
2
. 

 

6.1. Non adaptive backstepping control results 

The aim is to adjust the angle of the rod. The system being disturbed by sinusoid 

signals 
3

  and 
4

  respectively limited by h3 =0.2 and h4 =0.7. In this approach, the 

reference angle of the rod is equal to /6. Adaptation gains are c3=c4=10. 

Figures 4, 5 and 6 show respectively the inverted pendulum results of the output 

tracking, the control input and the tracking error. 

Figure 4 shows that the output is perfectly tracked with a minor error (Figure 5) in 

the transient state. The corresponding input exhibits also a smooth behaviour (Figure 6). 
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6.2. Adaptive Backstepping Control Results 

In this case, the length of the rod is assumed unknown. The initial fixed value is 

=0.5m and the controller parameters are c3=c4=10,  =0.1. The obtained results are 

depicted in Figures 7, 8 and 9. 

The position reference of is perfectly tracked (Figure 7) and remains 

unaffected by the two sinusoidal disturbances. The corresponding tracking error in 

figure 8 is performed without an excessive peak and tends to zero in less than  0.6s. 

Figure 9 shows the force amplitude. This latter value is perfectly consistent with the 

considered system characteristics. 

In Figure 10, the estimated length of the rod is compared with the exact one. A small 

transient state occurs before 0.2s which is acceptable because of the inappropriate 

initialization value of the length  (0.5m vs. 0.23m). 
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6.3. Neural Adaptive Backstepping Control Results 

In this last simulation, the Lyapunov gains are fixed to c1=c2=10 and  =10. The 

network used contains three neurons in hidden layer and all the bias are also estimated 

with weights by neural backstepping techniques. 

In this section, the performance of neural adaptive control law has verified by 

assuming that nonlinear functions are also unknown and this gives us the results 

represented by the following figures. 

Figure 11 shows that the desired position is tracked in a very acceptable time. The 

time response is nearly 1s; this is due to the estimation procedure of the unknown 

nonlinear functions of the model. The obtained input (Figure 12) is in within reasonable 

range. Figure 13 depicts the tracking error. 

As for the rod length , Figure 14 shows the estimation of this parameter. It is 

obvious that this estimation is realized in a satisfactory manner.  

Figures 15 and 16 show the estimated weights W41, V131 and b1. 
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Figure 11. Desired and Obtained             Figure 12. Neural Adaptive Control  
Output Tracking                                           Law 
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7. Conclusion 

In this paper, a neural adaptive backstepping controller applied to an inverted 

pendulum is synthesized. In the case of incomplete knowledge of the system, the 

adaptive backstepping based neural network is useful to improve system performance 

and to decrease the possible system instability. The use of neural network offers a great 

robustness against parameters uncertainties, time varying disturbances and unknown 

nonlinear functions. 
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