
International Journal of Advanced Science and Technology

Vol.67 (2014), pp.33-42

http://dx.doi.org/10.14257/ijast.2014.67.04

ISSN: 2005-4238 IJAST

Copyright ⓒ 2014 SERSC

Implementation FPGA of Public Key Cryptosystems Based on Finite

State Machines Reconfiguration

Nguyen Huu Khanh Nhan

Ton Duc Thang University, Ho Chi Minh City, Viet Nam

nguyenhuukhanhnhan@tdt.edu.vn

Abstract

The method of the finite state machine (FSM) for public key cryptosystem is allows to

reduce key’s length of the cryptosystem without reducing сryptographic strength. A

reconfigurable finite state machine is entered into public key cryptosystem’s model. A

reduced key is used for adjustment of the reconfigured finite state machine. Each adjustment

of the reconfigurable model generates some finite state machines which sets process of the

encryption/decryption. Software implementation includes the finite state machines generator

and a translator for transfer the table description of the finite automaton to the hardware

description language VHDL. This project was implemented on XStend board containing

FPGA XC4010XL of Xilinx.

Key words: FPGA, public key cryptosystem, FAPKC, finite automata

1. Introduction

Public key cryptosystem based on finite automata has been proposed Chinese

cryptographer Renji Tao [1] and was named FAPKC (Fnite Automaton Public Key

Cryptosystem). Algorithm is based on the composition of two finite automatas with some

initial memories and reversible states. Task degradation of finite automata composition into

components is such a difficult task, as well as the product factoring of two large numbers [2].

Cryptosystem is FAPKC stream cipher does not require partitioning the plaintext and the

block has a high speed (higher than RSA). There are a few modifications: FAPKC0 [1],

FAPKC1 and FAPKC2 [3], FAPKC3 [4, 5] and FAPKC4 [6]. FAPKC can be used for both

encryption and digital signature.

The disadvantages include the cryptosystem FAPKC large key size. For example, key

length that provides resistance to the algorithm is achieved by using 512 bits - key RSA, 2792

bits for power FAPKC [2]. Furthermore, there is a problem generating random keys and

equally as key space algorithm FAPKC given the description of properties of its elements.

For practical use requires algorithm with generating the strongly coupled machines, allowing

software and/or hardware implementation.

Automatic generation algorithm depends on the initial key of acceptable length.

Initialization key is used to adjust tunable machine. Each setting tunable machine affects the

encrypting machine that implements a cryptographic transformation.

Modifiability is achieved by combining the advantages of the proposed models of finite

automata with means technology FPGA (Field Programmable Gate Array). Software

implementation includes a generator and automatic translator, which allows to translate the

description to hardware description language VHDL. The logical structure of a tunable

machine implements some fixed setting the output function. The transition function is built

through the transition function of basic state machines. In this regard, the design redundancy

International Journal of Advanced Science and Technology

Vol.67 (2014)

34 Copyright ⓒ 2014 SERSC

is obtained at the duplication level of elements that implement transition function. The project

was implemented on XStend board containing FPGA XC4010XL of Xilinx.

2. Basic Concepts on Automata and Invertible Automata

As usual, for a finite set X, we denote by X
n
 the set of words of length n, with

0n Î ¥ , and

X
0
={ε}, where ε denotes the empty word. We will also use

*

0

n

nX X³= È the set of all finite

words, and X
ω
 will denote the set of infinite words [7].

Definition 2.1. A finite automata is a quintuple (X, Y, S, δ, λ), where:

• X is a nonempty finite set called the input alphabet of the finite automaton;

• Y is a nonempty finite set called the output alphabet of the finite automaton;

• S is a nonempty finite set called the set of states of the finite automaton;

• δ is a function from S × X to S called the state transition function of the finite automaton;

• λ is a function from S × X to Y called the output function.

Let M = (X, Y, S, δ, λ) be a finite automaton. The state transition function δ and the output

function λ can be extended to words, i.e. elements of X
*
, recursively, as follows:

(,)s sd e =

0 1 0 1 2(, ...) ((,) ...)n ns x x x s x x x xd d d=

(,)sl e e=

0 1 0 1 2(, ...) ((,) ...)n ns x x x s x x x xl l d=

where s ∈ S, n Î ¥ and x0 x1 · · · xn ∈ X
n+1

. In an analogous way, λ may be extended to X
ω
.

From these definitions it follows that one has, for all s ∈ S, α ∈ X
*
, and for all β ∈ X

*∪ X
ω
,

(,) (,) ((,),)s s sl ab l a l d a b= . (1)

An important class of finite automata, providing an infinite number of examples, is given

by the following:

Definition 2.2. Let f : X
h+1

 × Y
k
 → Y , with h, k ∈ N, and X, Y two nonempty finite sets. The

finite automaton with (h, k)-order memory determined by f is the automaton Mf = (X, Y, X
h
 ×

Y
k
, δf , λf) defined by:

1 2 1 2 1 2 1 2(.... , ... ,) (.... , ...) :f h k h kx x x y y y x f x x x x y y y yl < > = = ,

1 2 1 2 2 2(.... , ... ,) , ...)f h k h kx x x y y y x x x x y y yd < > = < ,

for all y1 . . . yk ∈ Y
k
 and x0 x1 . . . xhx ∈ X

h+1
. When k = 0, Mf is called the finite automaton

with h- order input memory determined by f. When h = 0, Mf is called the finite automaton

with k-order output memory determined by f. And, we will say that a finite automaton M is a

finite automaton with (h, k) - order memory if M = Mf for some function f : X
h+1

 × Y
k
 → Y .

A central notion, essential for cryptographic purposes, is the notion of invertibility. We

start with a concept related to the determination of the inputs by the outputs.

International Journal of Advanced Science and Technology

Vol.67 (2014)

Copyright ⓒ 2014 SERSC 35

Definition 2.3. A finite automaton M = (X, Y, S, δ, λ) is said to be invertible with delay τ,

where τ ∈ N0, if ∀s, s′ ∈ S, ∀x, x′ ∈ X, ∀α, α′ ∈ X
τ
 ,

(,) (', ' ') 's x s x x xl a l a= Þ =

That is, for any s ∈ S and α ∈ X
τ
 , x can be uniquely determined by λ(s, xα).

Invertible automata should have inverses of some sort. The following definition introduces

the apropriate concept that we will see is closely related to the previous one.

Definition 2.4. Let M = (X, Y, S, δ, λ), M′ = (X, Y, S′ , δ′ , λ′) be two finite automata. A pair of

states (s′, s) ∈ S′ × S is said to be a match pair with delay τ if the following condition holds

, : '(', (,))X X s sw ta g l l a ga" Î $ Î = .

Remark: In the previous definition one may replace X
ω
 by X

*
, but then one must take into

account that on the right one only gets the first |α| − τ characters of α.

Proposition 2.5. If (s′, s) is a match pair with delay τ and β = λ(s, α) for some α ∈ X
*
, then

(δ′(s′, β), δ(s, α)) is also a match pair with delay τ.

Proof. Assume that (s′, s) is a match pair with delay τ, and let β = λ(s, α) for some α ∈ X
*
. Let

α′ ∈ X
ω
. By (1), one has:

'(', (, ')) '(', ((,), '))s s s sl l aa l bl d a a=

 '(',) '((',), ((,), '))s s sl b l d b l d a a= ,

Since (s′, s) is a match pair with delay τ, ∃α1 ∈ X
τ
 such that λ′(s′, λ(s, αα′)) = α1αα′.

Therefore, α1αα′= γα′, where γ ∈ X
τ+|α|

.

But, λ′(s′, β) ∈ X
|α|

. So, λ′(δ(s′, λ(s, α), λ(δ(s, α), α′)) = φα′, for some φ ∈ X
τ
. That is, (δ(s′,

β), δ(s, α)) is a match pair with delay τ.

Definition 2.6. M′ is called an inverse with delay τ of M, if ∀s ∈ S and ∀s′ ∈ S′, (s′, s) is a

match pair with delay τ. M′ is called an inverse with delay τ, if M′ is an inverse with delay τ of

some finite automaton. M′ is called an inverse, if M′ is an inverse with delay τ, for some τ.

Part of the important role of the automata determined by a function as defined above, in

definition 2.2, is revealed by the following result.

Theorem 2.7. If M is invertible with delay τ, then there exists a finite automaton with τ -order

input memory Mf that is an inverse with delay τ of M.

Proof. Suppose that M = (X, Y, S, δ, λ) is invertible automaton with delay τ. Then ∀s ∈ S, ∀x

∈ X, ∀α ∈ X
τ
, x can be uniquely determined by the value of λ(s, xα). Let f : Y

τ+1
 → X be the

function defined in the following way: if ∃s ∈ S, ∃x ∈ X, ∃α ∈ X
τ
 : y0 y1 . . . yτ = λ(s, xα), then

f is defined at y0 y1 . . . yτ by f(y0 y1 . . . yτ) = x; otherwise one defines f arbitrarily. Let Mf = (Y,

X, Y
τ
, δf , λf) be the finite automaton with τ - order input memory determined by f. To prove

the claimed result, one must show that, for all y1 . . . yτ ∈ Y
τ
, for all s ∈ S and for all α=x0 x1 x1

· · · ∈ X
ω
, there exists an γ ∈ X

τ
, such that

λf (y1 . . . yτ , λ(s, α)) = γα.

Putting:

0s s= , 1 (,)i i is s xd+ = ,

International Journal of Advanced Science and Technology

Vol.67 (2014)

36 Copyright ⓒ 2014 SERSC

(,)i i iz s xl= ,

1 2...i i i ix x xa + +=

0 1' (... ...)i i ix f y y z zt -=

1 2' ' ... 'x x x tg = ,

One has that λ(s, α) = z0 z1 z2 . . . , and (1) yields

1 1 0 2 0 1 1(... , (,)) (... ,) (... , (,))f f fy y s y y z y y z st t tl l a l l l a=

1 2 0 1 1' (... , (,))fx y y z stl l a=

1 2 3 0 1 2 2' ' (... , (,))fx x y y z z stl l a=

...=

1 2 0 1 1' ' ... ' (... , (,))fx x x z z z st t t tl l a-=

0 1 1 1 1 1 1(... ,) (... , (,))f fz z z z z z z st t t t tgl l l a- + +=

...=

0 1 1 1 2 1(... ,) (...)...f z z z z f z z z zt t t tg - +=

But zi zi+1 . . . zi+τ = λ(si, xi xi+1 . . . xi+τ), and therefore it follows from the definition of f that

f(zi zi+1 . . . zi+τ) = xi, which finishes the proof.

It immediately follows that

Corollary 2.8. M is invertible with delay τ if and only if there exist a finite automaton M′ such

that M′ is an inverse with delay τ of M.

A weaker form of invertibility is described in the following definition.

Definition 2.9. A finite automaton M = (X, Y, S, δ, λ) is said to be weakly invertible with delay

τ, with 0t Î ¥ , if

1

0 0, ... , ' ...s S x x x x X t

t t

+" Î " Î ,

0 0 0 0(, ...) (, ' ... ') 's x x s x x x xt tl l= Þ =

That is, for any s ∈ S, and any xi ∈ X, with i ∈ {0, 1, . . . , τ}, x0 can be uniquely determined by

s and λ(s, x0 x1 . . . xτ).

Definition 2.10. Let M =(X, Y, S, δ, λ) and M′ =(X, Y, S′ , δ′ , λ′) be two finite automata. M′

is called a weak inverse with delay τ of M, if ∀s ∈ S, ∃s′ ∈ S such that (s′, s) is a match pair

with delay τ. M′ is called a weak inverse with delay τ, if M′ is a weak inverse with delay τ of

some finite automaton. M′ is called a weak inverse, if M′ is a weak inverse with delay τ for

some τ.

Definition 2.11. Let M1 = (X, Y, S1, δ1, λ1) and M2 = (X, Y, S2, δ2, λ2) - the two end automaton.

Composition of automata M1 and M2 is a finite automaton M = M1 ◦ M2 = (X, Y, S1 × S2, δ, λ),

International Journal of Advanced Science and Technology

Vol.67 (2014)

Copyright ⓒ 2014 SERSC 37

where δ ((s1, s2), x) = (δ1 (s1, x), δ2 (s2, λ1 (s1, x))) and λ ((s1, s2), x) = λ2 (s2, λ1 (s1, x)) for any x

∈ X and (s1, s2) ∈ S1 × S2. Composition M1 ◦ M2 is a structure corresponding serial

connection machines M1 and M2, ie. the input automaton M2 comes output automaton M1. If

M1 is invertible with delay τ1, and M2 is reversible automatic delay τ2, then the automaton M1

◦ M2 will have a delay τ1 + τ2.

3. Description Cryptographic System FAPKC

Finite state machines, which will be considered in the future, have the form M = (X, Y, S,

δ, λ), where X = Y = Z2
l
 – l - dimensional linear space over the field

2 {0,1}=¢ . In practice,

the typical value of l = 8 (so that encryption is performed byte), and the functions δ and λ are

determined by the mapping f: Y
t
 x X

r+1
 → Y and can be defined by the following formula:

1 1() (, ,..., , ,...,),i i i r i i ty i f x x x y y- - - -= 0,1,2,...i = (2)

Automatic represented by formula (1) is called a finite automaton with the procedure

memory (r, t), where (x-1, ..., x-r, y-1, ..., y-t) - initial state. If t = 0, then this machine is called

a finite automaton with input memory of order r. Finite state machine defined by formula (2)

is called linear if f is linear. For linear automaton, formula (2) takes on the following form

0 1

() () ()
r t

j j

j j

y i A x i j B y i j
= =

= - + -å å , 0,1,2,...i = (3)

The coefficients A0, ..., Ar, B0, ..., Bt are l × l matrix over the field
2¢ , x(i) - column

vectors, Ajx(i - j) - the usual vector matrix multiplication column. As M1 machine uses a

linear reversible automaton with input memory having a delay τ = r, for which the formula

(3) takes on the following form

1

0

: () (),j

j

M z i A y i j
t

=

= -å 0,1,2,...i = (4)

This machine is uniquely determined by the coefficients A0, ..., Aτ, Representing an l × l

matrix over the field
2¢ . If M1 is reversible automaton with delay τ, it can be easily obtained

from its inverse delay τ as follows

1

1

0 1

: () () ()j j

j j

M y i P z i j Q y i j
t t

-

= =

= + + -å å (5)

For a nonlinear machine M0 formula (2) has the following form

1

0

0 1

: () () ' () (1), 0,1,2,...
r r

j j

j j

M y i B x i j B x i j x i j i
-

= =

= - + - - - =å å (6)

Here the coefficients B0, ... Br and B0’, ..., B’r-1 is a matrix of l × l over the field
2¢ ,

wherein the matrix to be invertible B0 (this ensures that the zero delay). Then, multiplying

both sides of equation (6) on the B0
-1

, we obtain the inverse automaton in the following form

International Journal of Advanced Science and Technology

Vol.67 (2014)

38 Copyright ⓒ 2014 SERSC

1
1 1 '

0 0

1 1

: () () () () (1)
r r

j j

j j

M x i B y i B x i j B x i j x i j
-

- -

= =

æ ö
÷ç ÷= + - + - - -ç ÷ç ÷çè ø

å å (7)

For every initial state s0 = (x(-1), x(-2), ..., x(-r)) automaton M0 consistent state automaton

M0
-1

 are also equal to (x(-1), x(-2), ..., x(-r)).

Automatic encryption M, representing the composition of automata M0 and M1, may be

obtained by substituting (4) into (6) and written in the following form.

1
'

0 0 1

: () () () (1)
r r

t j j

t j j

M z i A B x i j B x i j x i j
t -

= = =

æ ö
÷ç ÷= - + - - -ç ÷ç ÷çè ø

å å å (8)

Any state s = (x(-1), x(-2), ..., x(-r - τ)) automaton M = M0 ◦ M1 equivalent aggregate (s0,

s1) state s0 = (x(-1), ..., x(-r)) and s1 = (y(-1), ..., y(-τ)). Formula (8) can be simplified to (9)

1
'

0 1

: () () () (1), 0,1,2...
r r

j j

j j

M z i C x i j C x i j x i j i
t t+ + -

= =

= - + - - - =å å (9)

, 0,1,2,...,j h t

h t j

C A B j r t
+ =

= = +å

' ' , 1,2,..., 1j h t

h t j

C A B j r t
+ =

= = + -å

FAPKC algorithm consists of the following steps

1. Choose M0 and M1. All Aj, Bj and B’j kept well as a secret key.

2. Compute Cj and Cj’ of Aj, Bj and Bj’, then randomly choose s = (x(-1), x(-2), ..., x(-r - τ))

as the initial state. Making Cj, Cj’ with the public.

3. To encrypt the plaintext x(0) x(1) ... x(m), first choose arbitrary x(m +1) ... x(m + τ) ∈ X
τ
.

Then give x(0) x(1) ... x(m) x(m + 1) ... x(m + τ) to the input automaton M = M0 ◦ M1 with

initial state s. Exit z(0) z(1) ... z(m) z(m + 1) ... z(m + τ) would be a ciphertext.

4. To decrypt z(0) z(1) ... z(m) z(m + 1) ... z(m + τ) must first be use automatic M1
-1

 and s1

for y(0), ..., y(m), and then transferred y(0), ..., y(m) at the input automaton M0
-1

 with the

initial state s0, to get the output plaintext.

4. Model of Tunable Machine

As mentioned above, the private key of the components A0, ..., Ar, B0, ..., Bt represents an l

× l matrix over the field
2¢ . And the component to the public key Cj, C’j are matrix

polynomials, the size of which also depends on the parameters l and τ.

Computational complexity of the expansion machine for encrypting machines M0 and M1

equal to

(1)

22
l t +

 [8]. When l = 8, τ > 15 complexity 2
64

 . Therefore cryptosystem FAPKC

plaintext encrypted nonlinear reversible automaton with delay τ > 15. Due this increases the

length key cryptosystem, as is seen from Table 1, here for some values l, r1 and r2

corresponding dimensions are shown in bits N1 and N2 of public key FAPKC with τ2 ≤ r2 =

μ(f2), τ1 ≤ r1 = μ(f1), respectively , and linear and nonlinear function f1 [9,11].

International Journal of Advanced Science and Technology

Vol.67 (2014)

Copyright ⓒ 2014 SERSC 39

Table 1. Dependence of the size of the key parameters of the cryptosystem
FAPKC [9]

Necessary is for practical to use of the cryptosystem FAPKC, on the one hand, to keep the

size of the public key within acceptable limits, on the other hand, does not reduce

cryptosystem parameters, thereby lowering the Cipher.

To solve this problem, we propose to use the model of a tunable automaton [8].

Automatic is tunable if its transition and output functions are not only depend on the input

alphabet and the set of states, but also on a parameter k ∈ K, where K - finite set of settings.

Definition 4.1. Tunable machine is six M = (X, Y, S, K, δ, λ), where the input alphabet X,

output alphabet Y, alphabet of the S and K are setting non-empty finite sets , and the transition

function δ: S × X × K → S and output λ: S × X × K → Y - valued functions . A set tunable

specifies of automatic machines Mealy {Ak = (X, Y, S, δk, λk): k ∈ K}, where δk(s, x) = δ(s, x,

k), λk(s, x) = λ(s, x , k), for all s ∈ S, x ∈ X and k ∈ K.

In [18] it is shown that a finite automaton with modifiable behavior can be created based

on statically or dynamically reconfigurable matrix FPGA using blocks of memory. Cascade

model proposed by the reprogrammable finite automaton consists of two blocks of memory,

register and programmable multiplexer. To configure the machine using a tunable

initialization key, which is a boolean vector.

Let us consider an example. Fig. 1 depicts four state transition graphs for FSMs that permit to

perform the following operations with Boolean vectors of size S:

a) Detecting three or more successive ones in the Boolean vector;

b) Counting the number of ones in the Boolean vector;

c) Testing if the vector contains just one position with value "1" and returning an index of

this position in the counter (see also fig. 1). If vector does not satisfy this requirement the

counter is set to "0";

d) Testing if the vector contains either odd (in this case counter =1) or even (in this case

counter =0) number of values "1".

International Journal of Advanced Science and Technology

Vol.67 (2014)

40 Copyright ⓒ 2014 SERSC

Figure 1. A circuit that detects three or more successive ones in Boolean
vector

The structure in Figure 1 can be modeled by the following C++ class, which we call

Boolean_vector:

class Boolean_vector

{ public:

 unsigned Solve(FSM_template&);

 unsigned Run(unsigned);

Boolean_vector(unsigned V=0, int S=0) :

vector(V),size(S), index(0), counter(0), flag(0) {};

 virtual ~Boolean_vector();

// other functions

protected:

 unsigned vector;

 int index;

 int size;

 int counter;

 int flag;

International Journal of Advanced Science and Technology

Vol.67 (2014)

Copyright ⓒ 2014 SERSC 41

5. Implementation of Cryptosystems FAPKC

Cryptosystem values also affect the amount of computation involved with the generation of

weakly nonlinear reversible automata. Generating technique of nonlinear reversible

automaton is suitable and invulnerable species to attack with the chosen plaintext is described

in [6, 10].

Using this method, and a class library functions for C++, implementing basic and

derivative operations in various groups, rings, fields, designed generator ciphering machines

for cryptosystems FAPKC3. The result of the generator are the values of public and private

keys, as well as tables of states and transitions ciphering machines.

To move from the abstract machine to a structural part in the program implemented

encryption algorithm encrypts the state machine. Each setting tunable machine generates an

automaton that specifies the process encryption/ decryption. According to the results of the

synthesis system allows to receive output code in VHDL. Subsequent automatic synthesis and

final implementation on FPGA implemented by StateCAD ISE Xilinx.

The logical structure of the proposed hardware implementation cryptosystem FAPKC

modeled using two machines work together, one (encoded machine) of which is rigidly fixed

behavior, and the behavior of other tunable machine specified by the user using an

initialization key. Output function system is fixed and the transition function is constructed

from two transition functions automata. In this regard, the design and implementation on

XStend board containing FPGA XC4010XL of Xilinx level redundancy overlapping elements

implementing the transition function.

As already mentioned, the shortcomings can be attributed cryptosystem FAPKC large size

of the keys. At the same time a large amount of computation to generate ciphering machine,

and the need for frequent rekeying make cryptosystems finitely automata models unsuitable

for practical widespread use. Implementation of the proposed model with adjustable machine

allows use once generated automatic encryption for a long time with frequent change shorter

initialization key.

Configuring each machine k ∈ K automaton M = (X, Y, S, K, δ, λ), in correspondence one-

to-one put vector values of the transition δk: S × X × K → S. It is a Boolean vector of length

|S × X|, so the key length of the proposed implementation FAPKC cryptosystem does not

exceed the number mn, Herein n = |S|, m = |X| = |Y|. For example, when m = 32, n = 20, this

number is 640 bits.

6. Conclusions

The paper presents a novel technique for the design of FSMs with statically and

dynamically modifiable behavior and demonstrates the use of such FSMs for finite automaton

public key cryptosystem. It is shown that reconfigurable FSM can be constructed in such a

way that it might be used for reducing the length of the key cryptosystems preserving

stability. The paper examines some models of reconfigurable FSMs and demonstrates their

implementation in software and in hardware. The results of hardware implementation based

on FPGA XC4010XL of Xilinx have shown that the respective circuits require very limited

FPGA resources and they can be reprogrammed much like we are doing this for software

development.

References

[1] R. C. Tao and S. H. Chen, “A Finite Automaton Public Key Cryptosystem and Digital Signatures”, Chinese

J. of Computer, no. 8, (1985), pp. 401-409.

International Journal of Advanced Science and Technology

Vol.67 (2014)

42 Copyright ⓒ 2014 SERSC

[2] B. Schneier, “Applied Cryptography: Protocols, Algorithms, and Source Code”, John Wiley & Sons, New

York, (1996).

[3] R. J. Tao and S. H. Chen, “Two Varieties of Finite Automaton Public Key Cryptosystem and Digital

Signatures”, J. of Compt. Sci. and Tech., no. 1, (1986), pp.9-18.

[4] R. J. Tao and S. H. Chen and X. M. Chen, “FAPKC3: a new finite automaton public key cryptosystem”,

Laboratory for Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100080,

China, ISCAS-LCS-95-07, (1995).

[5] T. Meskanen, “On Finite Automaton Public Key Cryptosystems”, TUCS Technical Report, no. 408, (2001)

August.

[6] R. J. Tao and S. H. Chen, “The generalization of public key cryptosystem FAPKC4”, Chinese Science

Bulletin, vol. 44, no. 9, (1999), pp. 784-790.

[7] A. Ivone, M. Antonio, R. Rogerio, “On Linear Finite Automata and Cryptography”, Technical Report Series:

DCC-2011-11, Version 1.0, August (2011).

[8] G. Xiang, “Finite automaton public key cryptosystems and digital signatures - analysis, design and

implementation”, Dissertation (in Chinese), Institute of Software, Chinese Academy of Sciences, Beijing,

(1994).

[9] V. Sklyarov, “Reconfigurable models of finite state machines and their implementation in FPGAs”, Systems

Architecture, no. 47, (2002), pp. 1047-1064.

[10] P. Kitsos, N. Sklavos, M. Galanis and O. Koufopavlou, “64-bit ciphers: hardware implementations and

comparison analysis”, Computer and Electrical Engineering, no. 30, (2004), pp. 593-604.

[11] P. Vishwanath, R. Joshi and J. Saxena, “FPGA implementation of DES using pipeling concept with skew

core key-scheduling”, Journal of Theoretical and Applied Information Technology, no. 3, (2009), pp. 295-

300.

Author

Nguyen Huu Khanh Nhan

He received his B. Eng. degrees in Electrical and Electronic

Engineering from University of Technical education Ho Chi Minh City,

Vietnam in 1991- 1996, and received his M. Eng. degrees in Nano

materials and electronic devices from Ho Chi Minh City National

University, Vietnam in 2005 – 2007, and Studied PhD. degree at Institute

of researchs and experiments for electrical and electronic equipments,

Mosscow – Russia in 2012. Now, He is teaching at Department of

electrical and electronics engineering, Ton Duc Thang University, Ho

Chi Minh city, Vietnam. His research interests include VLSI, MEMS and

RF chip.

