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Abstract 

An adaptive neural network backstepping control for a class of uncertain nonlinear 

systems is presented in this paper. Three main issues will be treated: (1) unknown 

nonlinearities; (2) unknown system parameters; (3) external or internal disturbances. The 

proposed technique is applied to a simple pendulum. This latter is an unstable system which 

is perfectly described by a nonlinear model obtained by applying physics laws. A solution has 

to be found to stabilize pendulum in a desired position. A specific type of artificial neural 

networks (ANN) called "Multilayer Perceptron (MLP)" is used and simulation results clearly 

demonstrate the power of this extension. 
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1. Introduction 

The problems encountered in practice are rarely those which concern approximation of a 

known function. In the vast majority of cases, it seeks to establish a model of a physical 

action from the real system, or, in other words, to find a function that imitates conveniently 

the system behaviour. 

When the model structure is known, the detection and location of faults can be performed 

using identification techniques. The basic idea is to estimate system parameters in real time 

and compare them with nominal values. For that, a mathematical model of the system to 

diagnose has to be established and all links between physical parameters and those of the 

model have to be described, then the identification of the parameters is operated via an 

adaptive law. 

On a theoretical level, [1, 2] explained the development of a direct adaptive controller 

based on multilayer neural network (MNNs) for a class of nonlinear systems. This work goes 

on to focus on an adaptive control of strict feedback nonlinear systems using MNNs and 

backstepping. The application was expanded in [3] where a procedure is developed for the 

design of an adaptive neural network controller for a class of SISO uncertain nonlinear 

systems using a pure feedback form. The design procedure is a combination of an adaptive 

backstepping and neural network-based techniques. In [4], a comparative study between an 

adaptive backstepping control and an adaptive backstepping sliding mode control for an 

uncertain system is presented; and parameters variations in the presence of disturbances cases 

are considered to test the robustness of the two control techniques. 
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The aforementioned theoretical developments can be applied to physical processes. Here, 

simple and inverted pendulums represent typical examples for control studies. In literature, a 

classical backstepping method was applied to the stabilisation of the inverted pendulum [5, 

6]. Furthermore, in [7], a design methodology for a novel robust adaptive backstepping 

controller for the stabilization control of an inverted pendulum on a movable cart has been 

presented in a systematic manner. 

The principal aim of this work is to control a simple pendulum for trajectory tracking in 

respect of global stability and taking into account certain imposed contextual constraints and 

conditions. 

 

2. Adaptive Neural Network Control 

In this work, an adaptive backstepping law is combined to neural network technique in 

order to control a simple pendulum subject to disturbances. The following scheme depicts the 

proposed technique and shows the connections between the different parts. 

 

 

Figure 1. Neural adaptive control diagram 
 

In order to analyze the neural adaptive backstepping control, we consider the following 

assumptions: 

 Nonlinear functions are unknown; 

 The system states are measurable; 

 System parameters are unknown; 

 The system is disturbed. 
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These considerations allow the system to take the following form: 
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where: u and y,x ,.....,x ,x n21  denote respectively the states of input and the output of the 

system, θR
P
 is a vector of unknown parameters, i (x): RR

P
 is a vector of unknown 

nonlinear functions that must be approximated by neural networks,  t,xi  are the 

disturbances and 01mm b ,.....,b ,b   are unknown constants. 

 

3. Control Development of a Simple Pendulum 

We can assimilate a manipulator arm to a simple pendulum as shown in Figure 2 below: 

 

 
Figure 2. Simple pendulum scheme 
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The Lagrangian is given by: 
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which implies : 
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The differential equations are: 
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According to the Lagrange expression, the equation of the system will be expressed by: 

 

uqsin.l.g.mq.l.m 2   (5) 

 

4. Development and Procedure Control 
 

4.1. Model 

To simplify the state representation and to apply the algorithm of backstepping, equation 

(5) can be written as: 

 

u
l.m

1
qsin.

l

g
q

2
  (6) 

 

The following state variables are chosen: 

 

x1=q  : represent the angular position, 

x2= q  : represent the angular velocity. 
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then the general model is as follows: 
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The following parameters are used: 
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These transformations lead to: 
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where the nonlinear function 11 xsin)x(  . 

In the following development, the simple pendulum is supposed to be affected by 

disturbances. So, equation (9) becomes: 
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4.2. Backstepping procedure 

 Step 1 

The following transformations are adopted: 

 

 yyz r1   (11) 

1r22 αyxz    (12) 

 

where 1 is the virtual control law and is yet to be defined. 

The first Lyapunov function is defined by: 
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Its derivative can be written as follows: 

 

111 z.zV    

 r121 yx.z       (14) 

 

This leads to: 

 

 r12111
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The first virtual control law (stabilizing function) can be defined by the following 

expression: 

 

1111 hzc   (16) 

 

with : 11 h  

Then, the dynamics of the error is expressed as: 

 

 11112r11 hzc-zyxz    (17) 

 

which gives: 
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 Step 2 

The Lyapunov function is defined by the following expression: 
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Its derivative is written as: 
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The term  21 zz   can be developed as follows: 
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which gives: 
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 Step 3 

The neural network (MLP) in this example is composed of an input layer, a hidden layer 

(with four neurons) and an output layer. The structure of the MLP network is shown in 

Figure 3, where x1 represents the input state, ̂  the approximating of nonlinear unknown 

function, i the sigmoidal activation function of the i
th
 neuron (i = 1, ..., 4), V1i the input 

vector related to the neuron i and x1 state, W the weight vector of the output weight. 

where: Vi=[V1i , bi] ; W=[ w1, w2, w3, w4]
T 

. 
 

 

Figure 3. Structure of the MLP network 
 

Based on the network structure shown in Figure 3, the corresponding expression to the 

input link I/O can be described by: 
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where ib  is the bias related to the neuron i. The sigmoidal activation function used in this 

case is given by the expression: 

 

     0λ   .,yλexp1/1y    (24) 
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and its derivative is defined by the following expression : 

 

      y1.yy   (25) 

 

The nonlinear function which is approximated by the neural network is defined by the 

expression: 

 

     xexV.Wx 1
TT

1   (26) 

 

where:  xe  is the approximation error, ]1  x[x 11   the vector state increased by one. 

To overcome the problems caused by the main drawbacks already mentioned in the 

method of control design "standard backstepping", we propose to change the form given by 

equation (10) of the system as follows: 
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This last step will enable to find the control law. First, we define the relationship between 

an actual value, its estimation and the estimation error: 
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The third Lyapunov function is: 
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A and B are two symmetrical constant matrices A=A
T
>0, B=B

T
> 0, 

From equations (26), (27), (28) and (29), the derivative of the Lyapunov function is given 

by: 
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Using the Taylor development, we can write: 
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Using equation (31), the term    21
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For the sigmoidal activation function, which is continuous and derivable in an interval, we 

can perform the following constraint: 
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Thus, the following expression is obtained: 
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~

u.zθ̂
g

1
θ
~

xV̂.Ŵzθ̂
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where   is a constant positive value. 
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Using equations (30), (32) and (34), we can deduce the following control law: 
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k is a positive value, 22 h  and   Mexe  . 

The update laws are defined by: 
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Finally, the derived Lyapunov function takes the following form: 

 
2

2

3 j 1 1 1

1

 z z .


     j

j

V c h  (39) 

 

5. Simulation Results 

 

5.1. Adaptive Neural Network Control - Regulation-(yr=/6) 

The aim is to adjust the angle of the rod. In this neural-based test, the selected parameters 

of the pendulum are: m=0.1 kg, l=0.23m. g=9.81 m/s
2
. The system is perturbed by sinusoidal 

signals 1  and 2 respectively limited by h1 =0.3 and h2 =0.2. In this approach, the reference 

angle of the rod is equal to /6. The selected parameters of the pendulum are:  Adaptation 

gains are c1=2, c2=10. Spline parameter adaptation gain is gl=20 and load parameter 

adaptation gain is gu=10. 
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Figure 4. Desired output tracking   Figure 5. The control law 
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    Figure 6. Tracking error         Figure 7. Estimation of the parameter l 
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Figure 8. Estimation of the parameter u 
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It is clearly seen that the error tends to zero and the output “y” follows perfectly the 

reference trajectory “yr”. These results reflect the efficiency of the proposed technique. 

 

5.2. Adaptive Neural Network Control -Variable reference-(yr=0.23.sin(2.t)) 

In order to test the robustness of the proposed control technique, a variable setpoint is 

imposed. Sinusoid signals 1 and 2  are respectively limited by h1 = 0.0089 and h2 = 0.0059. 

The selected parameters of the pendulum are: Adaptation gains are c1=c2=10. Spline 

parameter adaptation gain is gl=20 and load parameter adaptation gain is gu=10. 

The network used contains four neurons in hidden layer and all the biases are also 

estimated with weights by neural backstepping techniques.  

The performance of the neural adaptive control law has been verified by assuming that the 

nonlinear functions are also unknown. The results represented by the following figures are 

obtained. 
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 Figure 9. Desired variable output Tracking        Figure 10. The control law 
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Figure 11. Tracking error              Figure 12. Estimation of the parameter l 
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Figure 13. Estimation of the parameter u 

 

6. Conclusion 

In this paper, an adaptive neural network control based on backstepping technique is 

synthesized and applied to a simple pendulum in the presence of model uncertainties and 

disturbances. 

In addition, the proposed technique permits to obtain a robust control law that permits to 

achieve variable setpoint tracking case in respect of a good time response. The control law 

behaviour is smooth and shows reasonable amplitude.  

The error convergence and the total stability of the controller system express well the 

advantage of this control strategy. Besides, the estimation of the unknown parameters of the 

considered plant is well accepted. 
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