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Abstract 

Nakagami distribution is a flexible lifetime distribution that may offer a good fit to some 

failure data sets. It has applications in attenuation of wireless signals traversing multiple 

paths, deriving unit hydrographs in hydrology, medical imaging studies etc. In this research, 

we obtain Bayesian estimators of the scale parameter of Nakagami distribution. For the 

posterior distribution of this parameter, we consider Uniform, Inverse Exponential and Levy 

priors. The three loss functions taken up are Squared Error Loss Function (SELF), Quadratic 

Loss Function (QLF) and Precautionary Loss Function (PLF). The performance of an 

estimator is assessed on the basis of its relative posterior risk. Monte Carlo Simulations are 

used to compare the performance of the estimators. It is discovered that the PLF produces the 

least posterior risk when uniform priors is used. SELF is the best when inverse exponential 

and Levy Priors are used. 
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1. Introduction 

Nakagami distribution was proposed for modeling the fading of radio signals (Nakagami, 

1960). Numerous parametric models are used in the analysis of lifetime data and in problems 

related to the modeling of failure processes. Among univariate models, a few particular 

distributions occupy a central role because of their demonstrated usefulness in a wide range of 

situations. This category contains the Exponential, Weibull, Gamma and Lognormal 

distributions.  

Nakagami distribution is also a flexible life time distribution model that may offer a good 

fit to some sets of failure data. It has been used to model attenuation of wireless signals 

traversing multiple paths. The Nakgami-m distribution is widely used to model the fading of 

radio signals and other areas of communicational engineering. It can also be used in 

hydrology to derive the unit hydrographs. It has the applications in medical imaging studies to 

model the ultrasounds especially in Echo (heart efficiency test). It is also useful for modeling 

high-frequency seismogram envelopes. The reliability theory and reliability engineering also 

make extensive use of the Nakagami distribution. Because of the memory less property of this 

distribution, it is well suited to model the constant hazard rate portion and used in reliability 

theory. It is also very convenient because it is so easy to add failure rates in a reliability 

model.  
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The probability density function of the distribution is given as 

          
   

      
        

     

      ;  x > 0                                                      (1) 

Where,  > 0 is the shape parameter and  > 0 is scale parameter, also mean=
         

 
  

 

 
     and 

variance =        
 

 
 
         

    
 
   

 . It collapses to Rayleigh distribution when  =1 and half normal 

distribution  =0.5. 

Hoffman [1] first time used this distribution to model the attenuation of wireless signals 

traversing multiple paths. Valentine [2] analyzed the bit error rate (BER) performance of an 

M-branch maximal-ratio combiner (MRC) for the detection of signals in a correlated 

Nakagami-fading channel. Lin and Yang [4] investigated and derived the statistical model of 

spatial-chromatic distribution of images. Through extensive evaluation of large image 

databases, they discovered that a two-parameter Nakagami distribution well suits the purpose. 

Abdi and Kaveh [3] have shown that this distribution is useful for modeling multipath faded 

envelope in wireless channels and also estimated the shape parameter of the distribution. 

Zhang [6] introduced a direct-sum decomposition principle and determined the statistical 

mapping between the correlated Nakagami process and a set of Gaussian vectors for its 

generation. A simple general procedure is derived for the generation of correlated Nakagami 

channels with arbitrary parameters. Cheng and Beaulieu [5] considered the maximum-

likelihood estimation of the Nakagami shape parameter m. Two new estimators were 

proposed and examined. The sample mean and the sample variance of the new estimators 

were compared with the best reported estimator. The new estimators offered superior 

performance. Shankar [7] and Tsui et al. [8] use the Nakagami distribution to model 

ultrasound data in medical imaging studies. Tsui et al. [11] showed that Nakagami parameter, 

estimated using ultrasonic back scattered envelopes, compressed by logarithmic computation 

denoted by m-log is more sensitive than the original Nakagami parameter m calculated using 

uncompressed envelopes for detecting the variations of scatter concentration in tissues. Kim 

and Latch man [9] used the Nakagami distribution in their analysis of multimedia. Sarkar et 

al. [10] investigated the adequacy of this distribution to derive the Geomorphological 

Instaneous Unit Hydrographs (GIUH) along with two parameter Logistic, two parameter 

Weibull and two parameter Gamma distributions. They compared the results of Nakagami 

distribution with other existing approaches and found that this distribution based on GIUH 

can be good substitute to other existing approaches. Schwartz et al. [12] developed and 

evaluated analytic and bootstrap bias-corrected maximum likelihood estimators for the shape 

parameter in the Nakagami distribution. It was found that both “corrective” and “preventive” 

analytic approaches to eliminating the bias are equally, and extremely, effective and simple to 

implement. Dey [13] obtained Bayes estimators for the unknown parameter of inverse 

Rayleigh distribution using Squared error and Linex loss function. Kazmi et al. [16] 

compared class of life time distributions for Bayesian analysis. They studied properties of 

Bayes estimators of the parameter using different loss functions via simulated and real life 

data. Feroze [15] discussed the Bayesian analysis of the scale parameter of inverse Gaussian 

distribution. Feroze and Aslam [14] found the Bayesian estimators of the scale parameter of 

Error function distribution. Different informative and non informative priors were used to 

derive the corresponding posterior distribution. Yahgmaei et al. [17] proposed classical and 

Bayesian approaches for estimating the scale parameter in the inverse Weibull distribution 

when shape parameter is known. He derived the Bayes estimators for the scale parameter in 

Inverse Weibull distribution, by considering Quasi, Gamma and uniform priors under square 
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error, entropy and precautionary loss function. Zaka and Akhter [18] derived the different 

estimation methods for the parameters of Power function distribution. Zaka and Akhter [19] 

discussed the different modifications of the parameter estimation methods and proved that the 

modified estimators appear better than the traditional maximum likelihood, moments and 

percentile estimators. 

In this paper, we obtain Bayesian estimators of the scale parameter of Nakagami 

distribution. For the posterior distribution of this parameter, we consider Uniform, Inverse 

Exponential and Levy priors. The three loss functions taken up are Squared Error Loss 

Function (SELF), Quadratic Loss Function (QLF) and Precautionary Loss Function (PLF). 

The performance of an estimator is assessed on the basis of its relative posterior risk. Monte 

Carlo Simulations are used to compare the performance of the estimators. It is discovered that 

the PLF produces the least posterior risk when uniform priors is used. SELF is the best when 

inverse exponential and Levy Priors are used. 

 

2. Posterior Distributions under the assumption of different Priors  

The objective of this chapter is to find Bayesian estimators of the scale parameter of 

Nakagami distribution under various loss functions and priors. A comparison of these 

estimates is also made.  

An obvious choice for the non-informative prior is the Uniform distribution. The Uniform 

Prior relating to the scale parameter   is defined as: 

P ( ) = k 

The likelihood function of Nakagami distribution is 

L  ׀   
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The Posterior distribution of scale parameter   using uniform prior is  
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Now we use Inverse Exponential Prior and Levy Prior as informative prior because they 

are compatible with the parameter   of the Nakagami distribution. Similarly Posterior 

distributions using informative priors for the parameter   of the Nakagami distribution are 

derived below: 

Inverse Exponential Prior relating to the scale parameter   is: 
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Then the Posterior distribution of scale parameter   using Inverse Exponential Prior is 
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Now the Levy Prior relating to the scale parameter   is given as: 
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Similarly the Posterior distribution of scale parameter   using Levy Prior is  
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3. Bayesian Estimation under three Loss Functions 

In statistics and decision theory a loss function is a function that maps an event into a real 

number intuitively representing some "cost" associated with the event. Typically it is used for 

parameter estimation, and the event in question is some function of the difference between 

estimated and true values for an instance of data. The use of above lemma is made for the 

derivation of results. 

3.1.  Squared Error Loss Function (SELF) 

The squared error loss function proposed by Legendre (1805) and Gauss (1810) is defined 

as:  

L (   
    

) =      
    

    

 

The derivation of Bayes estimator under SELF using Uniform Prior is given below:         

 

 SELF = E( )  
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3.2. Quadratic Loss Function (QLF) 

A quadratic loss function is defined as: 

  (x) = C (t – x)
 2
 

for some constant C, the value of the constant makes no difference to a decision, and can be 

ignored by setting it equal to 1. 

The quadratic loss function can also be defined as 

L (       ) =  
       

 
 
 

 
 

The Bayes estimator under QLF using Uniform Prior is 
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3.3.  Precautionary Loss Function (PLF) 

Norstrom (1996) introduced an asymmetric precautionary loss function (PLF) which can 

be presented as:  

 

                                   L (         
          

 

 
 

 

Similarly the Bayes estimator under PLF using Uniform Prior is derived as: 
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   ׀                                              
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4. Posterior Risks Under Different Loss Functions 

The Posterior risk of the Bayes estimator under different Loss functions using Uniform   

      Prior are: 

               Using Square Error Loss function (SELF):  
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  Quadratic Loss function (QLF): 
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  Precautionary Loss Function (PLF): 
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Similarly the expressions for Bayes Estimators and Risks under Inverse Exponential and 
Levy Priors can be derived in a similar manner. 

 

5. Simulation Study 

Using Easy fit Software, we have generated 5,000 Random numbers from Nakagami 

Distribution with different values of Parameters   and  . A program has been developed in R 

language to obtain the Bayesian Estimates and Posterior Risks under 10,000 replications and 

averages of 10,000 outputs has been presented in the tables below.  

 

Table 1. Bayes Estimates under (λ= 1.5, β = 2) 
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Table 2. Bayes Estimates under (λ= 1, β = 0.5) 

 
 

 
Table 3. Bayes Estimates under (λ= 1, β = 2) 

  

 
Table 4. Bayes Estimates under (λ= 2, β = 1.5) 
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Table 5. Posterior Risks under (λ= 1, β = 0.5) 

 
 

 
Table 6. Posterior Risks under (λ= 1.5, β = 2)  

 

 

Table 7. Posterior Risks under (λ= 1, β = 2)  
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Table 8. Posterior Risks under (λ= 2, β = 1.5) 

 
 

6. Summary and Conclusions 

The posterior risk based on all priors and for all loss functions, relating to the scale 

parameter of a Nakagami distribution, expectedly decrease with the increase in sample size. 

Using the Uniform prior, the posterior risk increases with increase in the value of   whatever 

the value of   may be. At the same level of  , the posterior risk decreases with for a 

Nakagami distribution with a larger  . For the same unknown   value, the posterior risk 

decreases for a Nakagami distribution with a larger  . The performance of loss function is 

dependent on the values of   and   jointly. Using all Priors, the posterior risk is inversely 

proportional to the choice of values of the  . 

The posterior risk using Uniform prior is independent of the parameter  , but it tends to 

increase for larger values of the parameter   of Nakagami distribution. The posterior risk after 

checking the effect of hyper parameter using Inverse Exponential and Levy Priors is also free 

of  , but for the fixed  , the posterior risk decreases with increase in  . 

With Uniform Prior the posterior risk increases when   increases and   is kept constant. In 

situations when   increases and   is held, the posterior risk decreases. Using Inverse 

Exponential and Levy Priors and after checking the effect of hyper parameter posterior risk 

decreases when   increases and   is constant. In situations when   increases, the posterior risk 

decreases whatever   may be. The performance of loss function is dependent on   and   

jointly. 

When   = 1.5 and   =2 and all values of   for n=5 and for n=20 and above for all values of 

 ,   the PLF under Uniform prior shows minimum posterior risk than Levy prior and Inverse 

Exponential prior. Affect of hyper Parameters did not affect the mentioned results. The PLF 

of Uniform prior showed Least Posterior risk than Levy and Inverse Exponential Priors. 

While in all other cases of SELF and QLF informative Priors give better results than 

uninformative Uniform prior. 
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