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Abstract 

Software is a complex entity composed in various modules with varied range of defect 

occurrence possibility. Efficient and timely prediction of defect occurrence in software allows 

software project managers to effectively utilize people, cost, time for better quality assurance. 

The presence of defects in a software leads to a poor quality software and also responsible 

for the failure of a software project. Sometime it is not possible to identify the defects and 

fixing them at the time of development and it is required to handle such defects any time 

whenever they are noticed by the team members. So it is important to predict defect-prone 

software modules prior to deployment of software project in order to plan better maintenance 

strategy. Early knowledge of defect prone software module can also help to make efficient 

process improvement plan within justified period of time and cost. This can further lead to 

better software release as well as high customer satisfaction subsequently. Accurate 

measurement and prediction of defect is a crucial issue in any software because it is an 

indirect measurement and is based on several metrics. Therefore, instead of considering all 

the metrics, it would be more appropriate to find out a suitable set of metrics which are 

relevant and significant for prediction of defects in any software modules. This paper 

proposes a feature selection based Linear Twin Support Vector Machine (LSTSVM) model to 

predict defect prone software modules. F-score, a feature selection technique, is used to 

determine the significant metrics set which are prominently affecting the defect prediction in 

a software modules. The efficiency of predictive model could be enhanced with reduced 

metrics set obtained after feature selection and further used to identify defective modules in a 

given set of inputs. This paper evaluates the performance of proposed model and compares it 

against other existing machine learning models. The experiment has been performed on four 

PROMISE software engineering repository datasets. The experimental results indicate the 

effectiveness of the proposed feature selection based LSTSVM predictive model on the basis 

standard performance evaluation parameters. 

 

Keywords: Software Defect Prediction; Feature Selection; F-Score; Linear Square Twin 

Support Vector Machine; PROMISE datasets 

 

1. Introduction 

Defect in a software module occurred due to incorrect programming logic or 

incorrect code which further produces wrong output and leads to a poor quality software 

products. Defective software modules are also responsible for high development and 

maintenance cost and customer dissatisfaction [1-3]. Presence of defects in software 

module decrease customer satisfaction due to which he/she can ask to fix the problem 

or to withdraw the agreement from particular company. Software Metrics are generally 

used to analyze the process efficiency and product quality of software projects. Risk 
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assessment is also performed by the software metrics and effectively utilized for defect 

prediction. The presence of defects in a software leads to a poor quali ty software and 

also responsible for the failure of a software project. Sometime it is not possible to 

identify the defects and fixing them at the time of development, so it is important to 

handles such defects any time whenever they are noticed by the team members. 

Software is a complex entity composed in various modules with varied range of defect 

occurrence possibility. So it is important to predict defect -prone software modules prior 

to deployment of software project in order to plan better maintenance strategy. Early 

knowledge of defect prone software module can also help to make efficient process 

improvement plan within justified period of time and cost. This can further lead to 

better software release as well as high customer satisfaction subsequently  [4]. Since a 

software module is classify into two category-defective or not-defective, so it is mostly 

predicted using binary classification models. Several classification algorithms such as 

Support Vector Machine (Karim & Mahmound, 2008; Hu et al., 2009, Jin 2010), 

Decision Tree (DT) (Song et al., 2006), K-Nearest Neighbor (Boetticher, 2005) and 

Bayesian Network (Fenton et al., 2002; Zhang 2000, Okutan 2012) are used by the 

researchers for software defect prediction [5-11].Twin Support Vector Machine 

(TSVM), proposed by Jayadev et al., in 2007,  is an effective predictive model in 

machine learning, which is faster, less complex and shows comparable accuracy as 

compared to Support Vector Machine(SVM) and other machine learning approaches 

[12]. In this paper, we have used LSTSVM, which is a variant of TSVM and has better 

generalization and less computational time than traditional TSVM. For relevant feature 

selection, this study used F-score feature selection approach. The main aim of this 

research work is to investigate the capability of proposed predictive model for the 

prediction of defective software and also compared its performance with other machine 

learning approaches against four datasets of PROMISE repository. The paper is 

organized in 7 sections. Section 2 discusses the literature review of the research work. 

In Section 3, various classification techniques are described. Section 4 and Section 5 

discussed the proposed methodology and experimental results and finally conclusion is 

indicated in Section 6.    

 

2. Related Works 

Numerous predictive tools have been constructed till now to recognize the defects in 

software modules using machine learning and statistical approaches. The impact of 

object oriented design metrics for defective class prediction using logistic regression 

are explored by Basili et al., in 1996. The models of defect prediction can be 

categorized on the basis of metrics used [13]. Defect models proposed by Henry and 

Kafura used only two basic metrics for example size and complexity of the software 

[14]. Cusumano utilized testing metrics to determine defect in software [15]. Machine 

Learning approaches work effectively with problems having less information. Problem 

of software domain is defined as a learning process that changes according to various 

circumstances. Machine Learning approaches construct predictive model and classified 

software modules according to defect, one of the significant characteristics of a 

software, and also analyze the defects. Various Data Mining approaches such as  DT, 

Bayesian Belief Network (BBN), Artificial Neural Network (ANN), SVM and 

clustering are some techniques which are generally used to predict defects in software. 

SVM is utilized by Karim and Mahmoud for the construction of software defect 

prediction model [5]. This study also performed a comparative analysis of the 
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predictive performance of SVM against four NASA datasets with eight machine 

learning models. Guo et al., utilized ensemble approach (Random Forest) on NASA 

software defect datasets to predict defect-prone software modules and also analyzed its 

performance with other existing machine leaning approaches [16].Ghouti et al., have 

developed a model for fault prediction using SVM and Probabilistic Neural Network 

(PNN) and evaluated it with PROMISE datasets. This research work suggested that 

predictive performance of PNN is better for any size of datasets as compared to SVM 

[17]. Khoshgoftaar et al., performed experiment on large tele-communication dataset 

and used Neural Network (NN) to predict either a modules is faulty or not [18]. They 

compared the performance of NN with other models and found that NN performed well 

as compared to other approaches in the fault prediction. Utilization of numerous data 

mining algorithms for example clustering, association, regression and classification in 

software defect prediction is also discussed by Kaur and Pallavi [19]. Another study 

used Fuzzy SVM to identify defects in software modules. Since the datasets available 

for defect prediction are imbalanced in nature, so this study applied Fuzzy SVM to deal 

with imbalanced software data [20].  Fenton et al., and Okutan et al., used Bayesian 

Network for predicting the defect in software [4, 10]. Okutan et al., performed 

experiment on 9 PROMISE data repository and found most effective software metrics 

are lines of code, response for class and lack of coding quality. SVM and Particle 

Swarm Optimization (P-SVM) models proposed by Can et al., P-SVM produced 

promising results as compared to other existing models such as SVM, GA-SVM and 

Back Propagation NN [3, 21].  

 

3. Data Mining 

Data Mining (DM) is the process to explore meaningful information from data with 

different perspectives. Data Mining is a powerful tool that emerged in the middle of 

1990’s with the objective of analyzing and extracting valuable information from huge 

datasets. Several studies highlighted that the results of DM approaches can enable the 

data holders to make valuable decision [22-24]. There are numerous data mining 

algorithms such as classification, regression, association, clustering, etc. are used in 

software quality analysis.  In this paper, we used classification approach for the 

prediction of defective software.  Classification approach divides the data samples into 

target classes. For example, software module can be categorized into “defective” or 

“not-defective” using classification approaches. In Classification, the categories of class 

are already known due to which it is a supervised learning approach [23]. Basically, 

there are two broad classification methods: Binary and Multilevel. Binary classification 

method divided the class only into two categories as “defective” or “not -defective”. 

While Multi-level classification is utilized when there are more than two classes and it 

divided the class as “highly complex”, “complex” or “simple” software program. 

Classification approach works in two phases: Learning and Testing. For this purpose, it 

divides the dataset into two parts as training and testing. Various approaches such as 

cross fold, Leave-one-out etc. are used to partition the dataset. During learning phase, 

classifier is learned using training dataset and is evaluated using testing dataset. 

Various classification techniques are available which are discussed below:  

 

3.1.  Decision Tree (DT) 

The structure of DT is very similar to the structure of flowchart which is shown in Figure 

1.The top most node in DT is known as root node. Non-leaf nodes in a DT represents a test 
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that is applied on particular attributes and results of test is indicated by branch. While the 

class label is indicated by leaf nodes [23-24]. For example, DT for software decides whether 

the software is defective or not based on some test. There is no need of domain knowledge for 

the construction of a DT. Decision Tree helps the decision makers to choose best option. 

Unique class separation is obtained from root to leaf traversal on the basis of maximum 

information gain. Gayatri et al., used Decision Tree in order to predict the defects in software 

modules. They used feature selection to extract relevant features and constructed a new 

dataset based on relevant features and learned classifier with this new dataset [25]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Decision Tree 

 

This research work also performed comparative analysis of feature selection based DT 

with SVM and other feature selection technique on the basis of Receiver Operating 

Characteristics (ROC), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). 

Wang et al. also proposed compressed C4.5 prediction models to predict defects in software 

modules. Spearman’s rank correlation coefficient has been used in this research paper for the 

selection of root node in decision tree which in turn improves its effectiveness [26].  

3.2. Neural Network (NN) 

Neural Network is a classification approach that is based on the concept of biological 

nervous system. NN works with the help of organized processing elements called neurons. 

Due to adaptive nature, NN changes its formation by adjusting its weight and minimizes the 

classification error. In this model, information flows inside as well as outside during learning 

phase helps to adjust the weight in NN. Interoperability of learned network is improved by the 

rules which are fetched from trained NN. It is suitable for both binary and multi-

classification. Multilayer feed-forward technique is used to solve multi-classification problem 

in which several neurons have been used in the output layer instead of one neuron [23-24]. 

Zheng proposed a cost sensitive boosting NN approach to determine either a software 

modules is defective or not [27]. Misclassification cost of defective modules is high as 

compared to misclassification cost of not-defective modules. This paper utilized this cost 

issue and developed three cost-sensitive boosting approaches to boost NN to effectively 

predict the defective software modules. Figure 2 represents the neural network system for 

software defect prediction.   

 

Root Node 

Leaf Node Leaf Node 

Branches 

Possible outcomes 
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Figure 2. Neural Network for software defect prediction 

3.3. Support Vector Machine  

The formulation of SVM is proposed by Vapnik et al., in 1990s which is based on 

statistical learning theory [28-29]. Initially, SVM was developed to solve the two-

classification problem but later it was formulated and extended to solve multiclass problem 

[30-32]. SVM divides the data samples of two classes by determining a hyper-plane in 

original input space that maximizes the separation between them. SVM also works effectively 

for the classification of data samples which are not separable linearly by utilizing the theory 

of kernel function. Several kernel functions for example Gaussian, Polynomial, Sigmoid etc. 

are available which are used to maps the data samples into a higher dimension feature space. 

Then SVM determines a hyper-plane in this feature space in order to divides the data samples 

of different classes [33]. Thus in this way it is a better choice for both linearly and non-

linearly separable data classification. SVM has numerous advantages such as it provides 

global solution for data classification. It generates a unique global hyper-plane to separate the 

data samples of different classes rather than local boundaries as compared to other existing 

data classification approaches. Since SVM follows the Structural Risk Minimization (SRM) 

principle, so it reduces the occurrence of risk during the training phase as well as enhances its 

generalization capability [31]. Figure 3 represents the binary classification by SVM for 

linearly separable data. As shown in figure, it draws a hyper-plane to maximize the separation 

of data samples of different classes. The data sample which lies on and near hyper-plane is 

termed as support vector. Recently, SVM is gaining popularity and most of researchers used it 

to construct a predictive model for software defect prediction.  
 

 

Figure 3. Support Vector Machine for linearly separable data 
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3.4. K-nearest Neighbor(KNN) 

The working of this classifier is based on voting system. KNN finds out new or 

unidentified data sample with the help of earlier identified data samples, also called nearest 

neighbor, and assigned the class to data samples using voting strategy [23-24]. More than one 

nearest neighbor participates in the classification of data samples. The learning of KNN is 

slow due to which it is also known as Lazy Learner [23]. 

3.5. Bayesian Methods 

There are two classifiers, Naïve Bayes (NB) and Bayesian Belief Network (BBN) which 

are based on Bayes theorem. NB and BBN are probabilistic classifiers and consider discrete, 

posterior and prior probability distributions of data samples [23]. Due to great performance 

and easier computation process, BBN is utilized effectively in software defect prediction by 

various researchers. Fenton et al. proposed a BBN to detect the defect present in software 

modules. BBN suggested by Fenton et al., for software defect prediction is shown in Figure 4.  

 

 

Figure 4. Bayesian Network suggested by Fenton et al. 

3.6. Twin Support Vector Machine 

TSVM is one of the new emerging machine learning approach suitable for both 

classification and regression problem. Jayadev et al. proposed a novel TSVM to solve binary 

classification problem which solves a pair a Quadratic Programming Problem (QPP) rather 

than single QPP as in traditional SVM. The goal of TSVM is to constructs two non-parallel 

planes for each class by optimizing two smaller sizes QPP in such manner that each hyper-

plane is nearer to the data samples of one class while distant from the data samples of other 

class [3, 12]. So, TSVM solves a pair of smaller size QPP rather than one complex QPP as in 

conventional SVM. Figure 2 represents the categorization of two classes by using TSVM. As 

shown in figure there are two class-class1 and class2 which are divided by using two non-

parallel planes in such a way that each plane is nearer to the data samples of one class while 

farther from other class [3].     
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Figure 5. Binary classification using TSVM 
 

4. Least Square Twin Support Vector Machine 

This research work used Least Square TSVM (LSTSVM) for the construction of 

software defect prediction model. The main characteristics of LSTSVM are: 

 LSTSVM has better generalization capability. 

 Lesser computational time. 

 It provides global optimum solution. 

 LSTSVM works well for both linear and non-linear type of dataset. 

All these qualities of LSTSVM model are utilized to build up an effective software defect 

prediction model. Detail description of LSTSVM is given below:  

4.1.For linearly separable Data 

Kumar et al., proposed LSTSVM which shows better generalization performance as 

compared to TSVM. It solves a pair of linear equations instead of a pair of complex QPP due 

to which the speed of classification process is increased. Consider the number of data samples 

belongs to +ve and -ve class are symbolized by 'p' and 'q' and data samples of +ve and -ve 

class are symbolized by matrices          and          where 'D' indicates k- 

dimensional space of training sample [35-36]. Equations of two non-parallel hyper-planes in 

k-dimensional real space Dk are given below: 

                                            +     and      +                                                   (1)   

The primal optimization problem of linear LSTSVM is formulated as:  

                     
 

 
               

  

   
   

                                                 s.t. –                                                            (2) 
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                                           s.t.                                                                    (3) 

                 

Where slack variables and penalty parameters are represented by   and   and c1 and c2 

respectively. e1 and e2 represents two vectors of suitable dimension and having all values as 

1's. Lagrangian of equation 2 and 3 is obtained as [36]: 
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Where                     are the vectors of Lagrangian multiplier. KKT conditions 

equation 4 are given below: 
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Following equation is obtained after merging equation 6 and 7 as:   
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Let H=             and G=          . We achieved weights and biases after solving equation 8, 

9 and 10 which further helpful to obtain two non-parallel hyper-planes: 
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And 

                                                              
  

  
        

 

  
    

  
                        (12)           

A class is assigned to new data sample by determining its distance from each hyper-plane 

and the corresponding class, to which the distance is minimum, is assigned to it as [36]: 

                                                                     
   

      

    
                            (13)             

4.2. For non-linear separable Data 

LSTSVM is also helpful to classify the data points which are not separable by linear class 

boundaries by using several kernel functions such as Gaussian, Polynomial, etc. [36]. The 

primal problem of non-linear LSTSVM is formulated as: 

                                                              
 

 
                  

  

 
        

                                             s.t.     –                                                  (14) 

and   
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                                                      s.t.                                                (15) 

                        

where Z=         . After substituting P=                 , Q=                  , We obtain 

following equations: 

                                                                
  

         
 

  
                               (16) 

                                                                 
  

        
 

  
                                 (17) 

Following are the kernel generated surfaces instead of planes:  

                           K(     )             K(     )                                   (18) 

                 ,obtained from equation 16 and 17, utilized to find kernel surfaces and a 

particular class is assigned to new data sample by using following formulation: 

                                                                    
         

    
                           (19)      

The distance of a data sample is measured from each kernel surfaces and the 

corresponding class to which the distance is lesser is assigned to the data sample. Let    

denotes to Gaussian Kernel function and consider two vectors            in the input space, 

the mapping of these two vectors from input space to high dimension space by using    is 

achieved as [36]: 

                                                            =      
       

 

                                                 (20) 

                                                                                               

LSTSVM classifier model is generated by using the above mentioned equations. Feature 

selection based LSTSVM model is used to predict the defects in software modules prior to its 

deployment in real scenario which not only reduces the overall project cost but also results 

quality software.    

 

5. Methodology and Experiments 

In this research work PROMISE dataset repository has been used to perform the 

experiment [37]. We have developed a predictive model using F-score feature selection 

technique to identify and predict defects in software modules.  

5.1. Dataset Details 

CM1, PC1, KC1 and KC2 dataset are available from PROMISE software dataset 

repository. All these dataset are used for software defect prediction. This study used these 



International Journal of Advanced Science and Technology 

Vol.65 (2014) 

 

 

48   Copyright ⓒ 2014 SERSC 
 

datasets so that we can easily compare the performance of our predictive model with other 

existing model with same datasets.  

 

Table 1. Details of Software Defect dataset 

Dataset Language No. of Modules % Defective 

CM1 C 496 9.7% 

PC1 C 1,107 6.9% 

KC1 C++ 2,109 15.5% 

KC2 C++ 522 20.5% 

 

This dataset contains  several software metrics such as  Line of Code, number of operands 

and operators, Design complexity, Program length, effort and time estimator  and various 

other metrics as shown in Figure 2 which are useful to identify either a software has any 

defect or not [3, 37] . Detail descriptions of software metrics used in this paper are given in 

Table 2 [3]. 

 
Table 2. Details of software metrics 

S.No
. 

Attribute Description 

1 Loc It counts the line of code in software module 

2 v(g) Measure McCabe Cyclomatic Complexity 

3 ev (g) McCabe Essential Complexity 

4 iv (g) McCabe Design Complexity 

5 N Total number of operators and operands 

6 V Volume 

7 L Program length 

8 D Measure difficulty 

9 I Measure Intelligence 

10 E Measure Effort 

11 B Effort estimate 

12 T Time Estimator 

13 Locoed Number of lines in software module 

14 Locomment Number of comments 

15 Loblank Number of blank lines 

16 Locodeandcomment Number of codes and comments 

17 uniq_op          Unique operators 

18 uniq_opnd        Unique operands 

19 total_op         Total operators 

20 total_opnd       Total operands 

21 Branchcount Number of branch count 

22 Defects Class that describes Software module has defects 
or not 

 5.2. Feature Selection (FS) 

Feature Selection, also known as attribute selection, is one of the significant issues in the 

construction of classification model. Feature selection is used to reduce the number of input 

features and select relevant features for a classifier to improve its predictive performance. FS 

is responsible for obtaining relevant data for future analysis, as per problem formulation. 
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Since there are lots of software metrics available in software dataset repository, so FS select 

significant feature which in turn will reduce the total project cost. F-score is one of the simple 

and significant feature selection technique which is mostly used in machine learning [36, 38-

39]. It calculates the discrimination between two sets of real numbers. Let number of  +ve and 

–ve samples are symbolized by ‘m’ and ‘n’ respectively and xk is any training vectors, then 

the F-score for i
th
 feature is evaluated as [36, 38-39]: 

                                 
    

   
     

        
   

     
  

 

   
      

   
    

   
   

     
 

   
      

   
    

   
   

    
                                     (21)     

Where         
   

 and    
   

 represent the mean of the total ith  features, mean of positive ith 

feature and mean of negative ith feature respectively.     
   

 and     
   

 indicate ith  feature of k-

positive and k-negative samples correspondingly. The larger value of F-score indicates that 

the corresponding feature is more discriminative or highly significant [36, 38-39].  

 5.3. Proposed Model 

Following are the steps of proposed model as shown in Figure 6: 

Step1: Load the Software defect dataset from PROMISE repository. 

Step2: Perform pre-processing of the dataset. 

Step3: Divide the dataset using k-fold cross validation process. 

Step4: Calculate the F-score for each feature and arrange them in descending order. 

Step5: Generate new dataset with N features, where N=1,…,m, m is the total number of 

feature. 

Step6: Train the model for each feature subset. 

Step7: Compare the results with different feature subset and with other existing data mining 

approaches. 

Step 8: Select the feature subset showing highest accuracy. 
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Figure 6. Proposed Model 

5.4. Performance Evaluation Parameters 

The performance of proposed model is measured with the help of confusion matrix which 

store the results of classifier in the form of actual and predicted class as indicated in Table 3.  

 

Table 3. Confusion Matrix 

Actual Class 
 

Predicted Class 

Defective Not Defective 

     Defective True Negative (TN) False Positive (FP) 

Not Defective False Negative (FN) True Positive (TP) 

 

Performance evaluation model of proposed system is shown in Figure 7. 
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Figure 7. Performance evaluation model for the proposed system 
 

Using confusion matrix, we can estimate accuracy, specificity, Precision and F-measure 

which further utilized for performance evaluation of proposed model [3] 

a. Accuracy: Accuracy is also referred as “correct classification rate” and is measured by 

taking the ratio of correctly prediction to the total prediction made by the software defect 

prediction model and is formulated as:    

                                                  Accuracy= (TP+TN)/(TP+FP+FN+TN)                     (22) 

b. Sensitivity: Sensitivity, also called true positive rate, is estimated by calculating the % of 

correctly identified not-defective software modules and is formulated as: 

                                                       Sensitivity= TP/ (TP+FN)                                     (23) 

c. Specificity: Specificity, also termed as true negative rate, is measured by calculating the % 

of correctly recognized defective modules and is formulated as: 

                                                             Specificity= TN/ (TN+FP)                              (24) 

d. Precision: Sometime it is also referred as correctness and is measured by taking the 

proportion of correctly recognized defect free modules and total predicted not-defective 

software modules by classifier and is formulated as:  

                                            Precision= TP/(TP+FP)                                                    (25) 

e. F-Measure: It is measured by taking the harmonic mean of precision and sensitivity and is 

calculated as: 

                     F-Measure= (2 *Sensitivity*Precision)/ (Sensitivity + Precision)          (26)  
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6. Results and Discussion 

This paper has performed experiment on 4 PROMISE datasets as CM1, PC1, KC1 and 

KC2. We also applied normalization technique to all datasets. Normalization has been 

performed by dividing each attribute value with maximum value of that particular attribute. 

The F-score value of each feature for CM1, PC1, KC1, KC2 datasets are shown in Table 4.  

 

Table 4. Average Feature importance of each feature using k-fold cross 
validation 

Feature Number Average F-score 

CM1 PC1 KC1 KC2 

1 0.1699 0.3457 0.4067 0.0018 

2 0.1742 0.3096 0.4962 0.0025 

3 0.1288 0.2158 0.3596 0.0023 

4 0.1156 0.1924 0.2964 0.0022 

5 0.1158 0.2276 0.2655 0.0020 

6 0.1044 0.2166 0.2277 0.0017 

7 0.0465 0.1353 0.0839 0.0005 

8 0.0455 0.1023 0.1176 0.0007 

9 0.0506 0.0952 0.1113 0.0006 

10 0.0364 0.0725 0.0848 0.0005 

11 0.0350 0.0726 0.0760 0.0004 

12 0.0288 0.0616 0.0663 0.0004 

13 0.0246 0.0644 0.0675 0.0004 

14 0.0256 0.0694 0.0618 0.0004 

15 0.0263 0.0721 0.0594 0.0004 

16 0.0293 0.0733 0.0706 0.0004 

17 0.0292 0.0746 0.0702 0.0005 

18 0.0280 0.0711 0.0656 0.0004 

19 0.0270 0.0678 0.0621 0.0004 

20 0.0249 0.0657 0.059 0.0004 

21 --- 0.0601 --- 0.0003 

 

Twenty one predictive models are constructed using different number of feature. Then the 

LSTSVM model is constructed and learned for each feature set.  This study has performed 

experiment using 10-fold cross validation in windows 7, 64-bit operating system. The 

performance of each model is evaluated using equation 22-26. The model with better 

performance is selected and further utilized for defect prediction in software modules. For 

CM1 dataset the descending order of feature according to its F-score values are- F2, F1, F3, 

F5, F4, F6 and so on. In the same way, for PC1 dataset the rank of features are F1, F2, F5, F6, 

F3, F4, F7, F8 and so on according to their F-score. We found that LOC, cyclomatic 

complexity, essential complexity, design complexity, difficulty and effort measure are 

significant metrics for defect prediction. Table 5 represents the 21 predictive models having 

different feature subset for PC1 dataset. In the same way, this study also obtains different 

predictive models with different number of feature. Then, the performance of each predictive 

model against different performance estimators is evaluated using 10-fold cross validation 

method. 
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Table 5. Feature subset Model for PC1 dataset 

 
 

Performance comparison of PC1, CM1, KC1 and KC2 datasets with different models have 

compared using accuracy, sensitivity, precision, F-measure and specificity. Table 6, 7, 8 and 

9 indicate the comparative analysis of proposed approach using above mentioned parameters 

against four datasets.   

 

Table 6. Performance comparison of PC1 dataset 

Model Accuracy Precision F-measure Sensitivity Specificity 

#1 94.53% 0.9346 0.9612 0.9904 0.7639 

#2 89.05% 0.9523 0.9284 0.9064 0.7894 

#3 89.88% 0.9519 0.9348 0.9162 0.7728 

#4 90.71% 0.9515 0.9396 0.9310 0.7061 

#5 94.42% 0.9383 0.9603 0.9835 0.7344 

#6 94.63% 0.9575 0.9614 0.9875 0.7150 

#7 94.34% 0.9396 0.9587 0.9816 0.7428 

#8 93.62% 0.9440 0.9529 0.9663 0.7467 

#9 94.06% 0.9403 0.9571 0.9758 0.8780 

#10 91.04% 0.9460 0.9411 0.9400 0.8294 

#11 89.66% 0.9468 0.9392 0.9265 0.8161 

#12 87.61% 0.9529 0.9230 0.8972 0.8256 

#13 86.71% 0.9572 0.9271 0.8865 0.7428 

#14 87.33% 0.9545 0.9246 0.8950 0.7144 

#15 86.89% 0.9555 0.9192 0.8873 0.7567 

#16 86.35% 0.9568 0.9121 0.8786 0.7678 

#17 85.49% 0.9444 0.9254 0.8685 0.7500 

#18 92.40% 0.9328 0.9035 0.9693 0.8417 

#19 92.28% 0.9157 0.9017 0.9638 0.8667 

#20 88.87% 0.9545 0.9048 0.9077 0.6650 

#21 86.65% 0.9609 0.8995 0.8860 0.6422 
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Table 7. Performance comparison of CM1 dataset 

Model Accuracy Precision F-measure Sensitivity Specificity 

#1 89.16% 0.9423 0.8981 0.8964 0.7674 

#2 88.96% 0.9345 0.9048 0.9177 0.7650 

#3 90.36% 0.9117 0.9072 0.9256 0.8311 

#4 87.95% 0.9342 0.9003 0.9183 0.8154 

#5 87.35% 0.9011 0.9187 0.9383 0.8276 

#6 82.72% 0.9366 0.8624 0.8758 0.7963 

#7 80.33% 0.8643 0.8802 0.8779 0.7841 

#8 79.15% 0.9094 0.8771 0.8437 0.6340 

#9 83.14% 0.8832 0.9015 0.9147 0.8407 

#10 90.45% 0.9507 0.9376 0.9210 0.7761 

#11 70.65% 0.9211 0.7831 0.6847 0.7063 

#12 60.18% 0.8974 0.7786 0.7902 0.5474 

#13 60.37% 0.9101 0.8771 0.8479 0.5341 

#14 58.37% 0.9093 0.7354 0.6451 0.4228 

#15 58.63% 0.8931 0.7527 0.6841 0.4276 

#16 58.42% 0.8887 0.7372 0.6289 0.5494 

#17 65.85% 0.8867 0.7563 0.6371 0.7702 

#18 73.37% 0.9282 0.7694 0.6944 0.7582 

#19 82.37% 0.8981 0.8993 0.9002 0.7353 

#20 81.53% 0.8634 0.8759 0.9261 0.7254 

 

 

Table 8. Performance comparison of KC1 dataset 

Model Accuracy Precision F-measure Sensitivity Specificity 

#1 84.69% 0.8718 0.9074 0.9462 0.6392 

#2 85.39% 0.8680 0.9125 0.9619 0.6991 

#3 85.25% 0.8717 0.9112 0.9456 0.6299 

#4 83.88% 0.8842 0.9007 0.9181 0.6407 

#5 85.06% 0.8811 0.9087 0.9383 0.6067 

#6 70.61% 0.9366 0.7824 0.6758 0.7427 

#7 78.05% 0.9136 0.8478 0.7930 0.5825 

#8 85.15% 0.8908 0.9111 0.9327 0.6710 

#9 86.06% 0.9401 0.9143 0.9417 0.6527 

#10 85.21% 0.8899 0.9087 0.9288 0.6680 

#11 83.07% 0.8987 0.9001 0.9024 0.6386 

#12 82.83% 0.8974 0.8986 0.9002 0.6353 

#13 79.98% 0.9101 0.8771 0.8479 0.6370 

#14 79.07% 0.9093 0.8754 0.8451 0.6340 

#15 71.74% 0.9311 0.7827 0.7841 0.7050 

#16 69.75% 0.8887 0.7572 0.6371 0.7702 

#17 71.60% 0.9340 0.7652 0.6527 0.7400 

#18 73.51% 0.9368 0.7730 0.6617 0.7491 

#19 73.03% 0.9382 0.7684 0.6544 0.7582 

#20 74.46% 0.9391 0.7631 0.6466 0.7642 

 

  



International Journal of Advanced Science and Technology 

Vol. x, No. x, xxxxx, 2014 

 

 

55 

Table 9. Performance comparison of KC2 dataset 

Model Accuracy Precision F-measure Sensitivity Specificity 

#1 82.47% 0.8100 0.8943 1.0000 0.4642 

#2 85.13% 0.8297 0.9022 0.9842 0.6047 

#3 85.7% 0.8418 0.9081 0.9836 0.6505 

#4 85.89% 0.8446 0.9089 0.9814 0.6667 

#5 85.89% 0.8667 0.9118 0.954 0.6837 

#6 86.07% 0.8605 0.9086 0.9654 0.6528 

#7 86.04% 0.8584 0.9049 0.9584 0.6607 

#8 85.54% 0.8679 0.8947 0.9289 0.7782 

#9 86.12% 0.8939 0.8907 0.9405 0.7142 

#10 84.72% 0.8534 0.8998 0.9624 0.6176 

#11 83.9% 0.8591 0.9018 0.9671 0.6716 

#12 83.13% 0.8525 0.9028 0.9624 0.6389 

#13 82.77% 0.8728 0.8870 0.9318 0.7120 

#14 83.03% 0.8735 0.8827 0.9321 0.7020 

#15 81.83% 0.8693 0.8671 0.9226 0.7145 

#16 81.81% 0.8606 0.8678 0.9181 0.7199 

#17 81.26% 0.8681 0.8739 0.9367 0.7199 

#18 81.39% 0.8779 0.8822 0.9173 0.7707 

#19 80.41% 0.8662 0.8802 0.8775 0.7838 

#20 79.37% 0.8933 0.8694 0.8575 0.6023 

#21 79.86% 0.8937 0.8752 0.8507 0.6026 

 

It is clear from the above results that model-10 of CM1, model -6 of PC1, model- 9 of KC1 

and KC2 dataset has performed well in terms of accuracy, precision and F-measure. The 

accuracy of model-6 of PC1 is 94.63%, precision is 95.75 % and F-measure is 96.14 % while 

the above mentioned parameters for model-10 of CM1 dataset are 90.45%, 95.07% and 

93.76% respectively. Accuracy, Precision and F-measure for model-9 of KC1 and KC2 

dataset are 86.06%, 94.01%, 91.43% and 86.12%, 89.39%, 89.07% respectively. Performance 

of proposed model for sensitivity and specificity against above stated datasets varies from one 

model to another. So considering sensitivity and specificity as a performance measure is not 

making any sense, thus this research work considers accuracy, precision and F-measure to 

evaluate the performance of classifier. This study also performed a comparative analysis of 

feature selection based LSTSVM model with other existing methods. Comparative analysis of 

various classification approaches against four PROMISE datasets is shown in table 10. The 

proposed feature selection based LSTSVM predictive model for software defect prediction 

performs well with PC1, KC1 and KC2 dataset. Accuracy of proposed approach for CM1 

dataset is also comparable with SVM.   
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Table 10. Comparative analysis with other existing dataset 

Prediction Approach CM1 PC1 KC1 KC2 

This study 90.45% 94.63% 86.06% 86.12% 

SVM 90.69% 93.10% 84.59% 84.67% 

LR 90.17% 93.19% 85.55% 82.90% 

KNN 83.27% 91.82% 83.99% 81.19% 

MLP 89.32% 93.59% 85.68% 84.48% 

RBF 89.91% 92.84% 84.81% 83.57% 

BBN 76.83% 90.44% 75.99% 82.80% 

DT 89.82% 93.58% 84.56% 82.85% 

 

7. Conclusion 

This study proposed a feature selection based LSTSVM model for defect prediction. F-

score feature selection technique is used to select significant feature which are helpful to 

predict defects in software modules. There is a significant difference in classifier’s 

performance which is developed using new feature subset as compared to the classifier built 

on complete feature set. This study has evaluated the predicting performance of proposed 

model for defective software modules and also performed a comparative analysis against 

seven statistical and machine learning approaches using four PROMISE datasets. The 

experimental results show that the predictive capability of the proposed approach is better or 

at least comparable with other approaches. This research discloses the effectiveness of 

proposed feature selection based LSTSVM approach in predicting defective software modules 

and suggests that the proposed model can be useful in predicting software quality. The 

performance of proposed work can also be compared by using other feature selection 

techniques as well as other software repositories so that the impact of changing the feature 

selection method, datasets in LSTSVM could also be established. 
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