
International Journal of Advanced Science and Technology

Vol.65 (2014), pp.39-58

http://dx.doi.org/10.14257/ijast.2014.65.04

ISSN: 2005-4238 IJAST

Copyright ⓒ 2014 SERSC

A Feature Selection Based Model for Software Defect Prediction

Sonali Agarwal and Divya Tomar

Indian Institute of Information Technology, Allahabad, India

sonali@iiita.ac.in and divyatomar26@gmail.com

Abstract

Software is a complex entity composed in various modules with varied range of defect

occurrence possibility. Efficient and timely prediction of defect occurrence in software allows

software project managers to effectively utilize people, cost, time for better quality assurance.

The presence of defects in a software leads to a poor quality software and also responsible

for the failure of a software project. Sometime it is not possible to identify the defects and

fixing them at the time of development and it is required to handle such defects any time

whenever they are noticed by the team members. So it is important to predict defect-prone

software modules prior to deployment of software project in order to plan better maintenance

strategy. Early knowledge of defect prone software module can also help to make efficient

process improvement plan within justified period of time and cost. This can further lead to

better software release as well as high customer satisfaction subsequently. Accurate

measurement and prediction of defect is a crucial issue in any software because it is an

indirect measurement and is based on several metrics. Therefore, instead of considering all

the metrics, it would be more appropriate to find out a suitable set of metrics which are

relevant and significant for prediction of defects in any software modules. This paper

proposes a feature selection based Linear Twin Support Vector Machine (LSTSVM) model to

predict defect prone software modules. F-score, a feature selection technique, is used to

determine the significant metrics set which are prominently affecting the defect prediction in

a software modules. The efficiency of predictive model could be enhanced with reduced

metrics set obtained after feature selection and further used to identify defective modules in a

given set of inputs. This paper evaluates the performance of proposed model and compares it

against other existing machine learning models. The experiment has been performed on four

PROMISE software engineering repository datasets. The experimental results indicate the

effectiveness of the proposed feature selection based LSTSVM predictive model on the basis

standard performance evaluation parameters.

Keywords: Software Defect Prediction; Feature Selection; F-Score; Linear Square Twin

Support Vector Machine; PROMISE datasets

1. Introduction

Defect in a software module occurred due to incorrect programming logic or

incorrect code which further produces wrong output and leads to a poor quality software

products. Defective software modules are also responsible for high development and

maintenance cost and customer dissatisfaction [1-3]. Presence of defects in software

module decrease customer satisfaction due to which he/she can ask to fix the problem

or to withdraw the agreement from particular company. Software Metrics are generally

used to analyze the process efficiency and product quality of software projects. Risk

International Journal of Advanced Science and Technology

Vol.65 (2014)

40 Copyright ⓒ 2014 SERSC

assessment is also performed by the software metrics and effectively utilized for defect

prediction. The presence of defects in a software leads to a poor quali ty software and

also responsible for the failure of a software project. Sometime it is not possible to

identify the defects and fixing them at the time of development, so it is important to

handles such defects any time whenever they are noticed by the team members.

Software is a complex entity composed in various modules with varied range of defect

occurrence possibility. So it is important to predict defect -prone software modules prior

to deployment of software project in order to plan better maintenance strategy. Early

knowledge of defect prone software module can also help to make efficient process

improvement plan within justified period of time and cost. This can further lead to

better software release as well as high customer satisfaction subsequently [4]. Since a

software module is classify into two category-defective or not-defective, so it is mostly

predicted using binary classification models. Several classification algorithms such as

Support Vector Machine (Karim & Mahmound, 2008; Hu et al., 2009, Jin 2010),

Decision Tree (DT) (Song et al., 2006), K-Nearest Neighbor (Boetticher, 2005) and

Bayesian Network (Fenton et al., 2002; Zhang 2000, Okutan 2012) are used by the

researchers for software defect prediction [5-11].Twin Support Vector Machine

(TSVM), proposed by Jayadev et al., in 2007, is an effective predictive model in

machine learning, which is faster, less complex and shows comparable accuracy as

compared to Support Vector Machine(SVM) and other machine learning approaches

[12]. In this paper, we have used LSTSVM, which is a variant of TSVM and has better

generalization and less computational time than traditional TSVM. For relevant feature

selection, this study used F-score feature selection approach. The main aim of this

research work is to investigate the capability of proposed predictive model for the

prediction of defective software and also compared its performance with other machine

learning approaches against four datasets of PROMISE repository. The paper is

organized in 7 sections. Section 2 discusses the literature review of the research work.

In Section 3, various classification techniques are described. Section 4 and Section 5

discussed the proposed methodology and experimental results and finally conclusion is

indicated in Section 6.

2. Related Works

Numerous predictive tools have been constructed till now to recognize the defects in

software modules using machine learning and statistical approaches. The impact of

object oriented design metrics for defective class prediction using logistic regression

are explored by Basili et al., in 1996. The models of defect prediction can be

categorized on the basis of metrics used [13]. Defect models proposed by Henry and

Kafura used only two basic metrics for example size and complexity of the software

[14]. Cusumano utilized testing metrics to determine defect in software [15]. Machine

Learning approaches work effectively with problems having less information. Problem

of software domain is defined as a learning process that changes according to various

circumstances. Machine Learning approaches construct predictive model and classified

software modules according to defect, one of the significant characteristics of a

software, and also analyze the defects. Various Data Mining approaches such as DT,

Bayesian Belief Network (BBN), Artificial Neural Network (ANN), SVM and

clustering are some techniques which are generally used to predict defects in software.

SVM is utilized by Karim and Mahmoud for the construction of software defect

prediction model [5]. This study also performed a comparative analysis of the

International Journal of Advanced Science and Technology

Vol.65 (2014)

Copyright ⓒ 2014 SERSC 41

predictive performance of SVM against four NASA datasets with eight machine

learning models. Guo et al., utilized ensemble approach (Random Forest) on NASA

software defect datasets to predict defect-prone software modules and also analyzed its

performance with other existing machine leaning approaches [16].Ghouti et al., have

developed a model for fault prediction using SVM and Probabilistic Neural Network

(PNN) and evaluated it with PROMISE datasets. This research work suggested that

predictive performance of PNN is better for any size of datasets as compared to SVM

[17]. Khoshgoftaar et al., performed experiment on large tele-communication dataset

and used Neural Network (NN) to predict either a modules is faulty or not [18]. They

compared the performance of NN with other models and found that NN performed well

as compared to other approaches in the fault prediction. Utilization of numerous data

mining algorithms for example clustering, association, regression and classification in

software defect prediction is also discussed by Kaur and Pallavi [19]. Another study

used Fuzzy SVM to identify defects in software modules. Since the datasets available

for defect prediction are imbalanced in nature, so this study applied Fuzzy SVM to deal

with imbalanced software data [20]. Fenton et al., and Okutan et al., used Bayesian

Network for predicting the defect in software [4, 10]. Okutan et al., performed

experiment on 9 PROMISE data repository and found most effective software metrics

are lines of code, response for class and lack of coding quality. SVM and Particle

Swarm Optimization (P-SVM) models proposed by Can et al., P-SVM produced

promising results as compared to other existing models such as SVM, GA-SVM and

Back Propagation NN [3, 21].

3. Data Mining

Data Mining (DM) is the process to explore meaningful information from data with

different perspectives. Data Mining is a powerful tool that emerged in the middle of

1990’s with the objective of analyzing and extracting valuable information from huge

datasets. Several studies highlighted that the results of DM approaches can enable the

data holders to make valuable decision [22-24]. There are numerous data mining

algorithms such as classification, regression, association, clustering, etc. are used in

software quality analysis. In this paper, we used classification approach for the

prediction of defective software. Classification approach divides the data samples into

target classes. For example, software module can be categorized into “defective” or

“not-defective” using classification approaches. In Classification, the categories of class

are already known due to which it is a supervised learning approach [23]. Basically,

there are two broad classification methods: Binary and Multilevel. Binary classification

method divided the class only into two categories as “defective” or “not -defective”.

While Multi-level classification is utilized when there are more than two classes and it

divided the class as “highly complex”, “complex” or “simple” software program.

Classification approach works in two phases: Learning and Testing. For this purpose, it

divides the dataset into two parts as training and testing. Various approaches such as

cross fold, Leave-one-out etc. are used to partition the dataset. During learning phase,

classifier is learned using training dataset and is evaluated using testing dataset.

Various classification techniques are available which are discussed below:

3.1. Decision Tree (DT)

The structure of DT is very similar to the structure of flowchart which is shown in Figure

1.The top most node in DT is known as root node. Non-leaf nodes in a DT represents a test

International Journal of Advanced Science and Technology

Vol.65 (2014)

42 Copyright ⓒ 2014 SERSC

that is applied on particular attributes and results of test is indicated by branch. While the

class label is indicated by leaf nodes [23-24]. For example, DT for software decides whether

the software is defective or not based on some test. There is no need of domain knowledge for

the construction of a DT. Decision Tree helps the decision makers to choose best option.

Unique class separation is obtained from root to leaf traversal on the basis of maximum

information gain. Gayatri et al., used Decision Tree in order to predict the defects in software

modules. They used feature selection to extract relevant features and constructed a new

dataset based on relevant features and learned classifier with this new dataset [25].

Figure 1. Decision Tree

This research work also performed comparative analysis of feature selection based DT

with SVM and other feature selection technique on the basis of Receiver Operating

Characteristics (ROC), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

Wang et al. also proposed compressed C4.5 prediction models to predict defects in software

modules. Spearman’s rank correlation coefficient has been used in this research paper for the

selection of root node in decision tree which in turn improves its effectiveness [26].

3.2. Neural Network (NN)

Neural Network is a classification approach that is based on the concept of biological

nervous system. NN works with the help of organized processing elements called neurons.

Due to adaptive nature, NN changes its formation by adjusting its weight and minimizes the

classification error. In this model, information flows inside as well as outside during learning

phase helps to adjust the weight in NN. Interoperability of learned network is improved by the

rules which are fetched from trained NN. It is suitable for both binary and multi-

classification. Multilayer feed-forward technique is used to solve multi-classification problem

in which several neurons have been used in the output layer instead of one neuron [23-24].

Zheng proposed a cost sensitive boosting NN approach to determine either a software

modules is defective or not [27]. Misclassification cost of defective modules is high as

compared to misclassification cost of not-defective modules. This paper utilized this cost

issue and developed three cost-sensitive boosting approaches to boost NN to effectively

predict the defective software modules. Figure 2 represents the neural network system for

software defect prediction.

Root Node

Leaf Node Leaf Node

Branches

Possible outcomes

International Journal of Advanced Science and Technology

Vol.65 (2014)

Copyright ⓒ 2014 SERSC 43

Figure 2. Neural Network for software defect prediction

3.3. Support Vector Machine

The formulation of SVM is proposed by Vapnik et al., in 1990s which is based on

statistical learning theory [28-29]. Initially, SVM was developed to solve the two-

classification problem but later it was formulated and extended to solve multiclass problem

[30-32]. SVM divides the data samples of two classes by determining a hyper-plane in

original input space that maximizes the separation between them. SVM also works effectively

for the classification of data samples which are not separable linearly by utilizing the theory

of kernel function. Several kernel functions for example Gaussian, Polynomial, Sigmoid etc.

are available which are used to maps the data samples into a higher dimension feature space.

Then SVM determines a hyper-plane in this feature space in order to divides the data samples

of different classes [33]. Thus in this way it is a better choice for both linearly and non-

linearly separable data classification. SVM has numerous advantages such as it provides

global solution for data classification. It generates a unique global hyper-plane to separate the

data samples of different classes rather than local boundaries as compared to other existing

data classification approaches. Since SVM follows the Structural Risk Minimization (SRM)

principle, so it reduces the occurrence of risk during the training phase as well as enhances its

generalization capability [31]. Figure 3 represents the binary classification by SVM for

linearly separable data. As shown in figure, it draws a hyper-plane to maximize the separation

of data samples of different classes. The data sample which lies on and near hyper-plane is

termed as support vector. Recently, SVM is gaining popularity and most of researchers used it

to construct a predictive model for software defect prediction.

Figure 3. Support Vector Machine for linearly separable data

International Journal of Advanced Science and Technology

Vol.65 (2014)

44 Copyright ⓒ 2014 SERSC

3.4. K-nearest Neighbor(KNN)

The working of this classifier is based on voting system. KNN finds out new or

unidentified data sample with the help of earlier identified data samples, also called nearest

neighbor, and assigned the class to data samples using voting strategy [23-24]. More than one

nearest neighbor participates in the classification of data samples. The learning of KNN is

slow due to which it is also known as Lazy Learner [23].

3.5. Bayesian Methods

There are two classifiers, Naïve Bayes (NB) and Bayesian Belief Network (BBN) which

are based on Bayes theorem. NB and BBN are probabilistic classifiers and consider discrete,

posterior and prior probability distributions of data samples [23]. Due to great performance

and easier computation process, BBN is utilized effectively in software defect prediction by

various researchers. Fenton et al. proposed a BBN to detect the defect present in software

modules. BBN suggested by Fenton et al., for software defect prediction is shown in Figure 4.

Figure 4. Bayesian Network suggested by Fenton et al.

3.6. Twin Support Vector Machine

TSVM is one of the new emerging machine learning approach suitable for both

classification and regression problem. Jayadev et al. proposed a novel TSVM to solve binary

classification problem which solves a pair a Quadratic Programming Problem (QPP) rather

than single QPP as in traditional SVM. The goal of TSVM is to constructs two non-parallel

planes for each class by optimizing two smaller sizes QPP in such manner that each hyper-

plane is nearer to the data samples of one class while distant from the data samples of other

class [3, 12]. So, TSVM solves a pair of smaller size QPP rather than one complex QPP as in

conventional SVM. Figure 2 represents the categorization of two classes by using TSVM. As

shown in figure there are two class-class1 and class2 which are divided by using two non-

parallel planes in such a way that each plane is nearer to the data samples of one class while

farther from other class [3].

International Journal of Advanced Science and Technology

Vol.65 (2014)

Copyright ⓒ 2014 SERSC 45

Figure 5. Binary classification using TSVM

4. Least Square Twin Support Vector Machine

This research work used Least Square TSVM (LSTSVM) for the construction of

software defect prediction model. The main characteristics of LSTSVM are:

 LSTSVM has better generalization capability.

 Lesser computational time.

 It provides global optimum solution.

 LSTSVM works well for both linear and non-linear type of dataset.

All these qualities of LSTSVM model are utilized to build up an effective software defect

prediction model. Detail description of LSTSVM is given below:

4.1.For linearly separable Data

Kumar et al., proposed LSTSVM which shows better generalization performance as

compared to TSVM. It solves a pair of linear equations instead of a pair of complex QPP due

to which the speed of classification process is increased. Consider the number of data samples

belongs to +ve and -ve class are symbolized by 'p' and 'q' and data samples of +ve and -ve

class are symbolized by matrices and where 'D' indicates k-

dimensional space of training sample [35-36]. Equations of two non-parallel hyper-planes in

k-dimensional real space Dk are given below:

 + and + (1)

The primal optimization problem of linear LSTSVM is formulated as:

 s.t. – (2)

and

International Journal of Advanced Science and Technology

Vol.65 (2014)

46 Copyright ⓒ 2014 SERSC

 s.t. (3)

Where slack variables and penalty parameters are represented by and and c1 and c2

respectively. e1 and e2 represents two vectors of suitable dimension and having all values as

1's. Lagrangian of equation 2 and 3 is obtained as [36]:

 +

 – (4)

 +

 (5)

Where are the vectors of Lagrangian multiplier. KKT conditions

equation 4 are given below:

 (6)

 (7)

 (8)

 – (9)

Following equation is obtained after merging equation 6 and 7 as:

 (10)

Let H= and G= . We achieved weights and biases after solving equation 8,

9 and 10 which further helpful to obtain two non-parallel hyper-planes:

 (11)

And

 (12)

A class is assigned to new data sample by determining its distance from each hyper-plane

and the corresponding class, to which the distance is minimum, is assigned to it as [36]:

 (13)

4.2. For non-linear separable Data

LSTSVM is also helpful to classify the data points which are not separable by linear class

boundaries by using several kernel functions such as Gaussian, Polynomial, etc. [36]. The

primal problem of non-linear LSTSVM is formulated as:

 s.t. – (14)

and

International Journal of Advanced Science and Technology

Vol.65 (2014)

Copyright ⓒ 2014 SERSC 47

 s.t. (15)

where Z= . After substituting P= , Q= , We obtain

following equations:

 (16)

 (17)

Following are the kernel generated surfaces instead of planes:

 K() K() (18)

 ,obtained from equation 16 and 17, utilized to find kernel surfaces and a

particular class is assigned to new data sample by using following formulation:

 (19)

The distance of a data sample is measured from each kernel surfaces and the

corresponding class to which the distance is lesser is assigned to the data sample. Let

denotes to Gaussian Kernel function and consider two vectors in the input space,

the mapping of these two vectors from input space to high dimension space by using is

achieved as [36]:

 =

 (20)

LSTSVM classifier model is generated by using the above mentioned equations. Feature

selection based LSTSVM model is used to predict the defects in software modules prior to its

deployment in real scenario which not only reduces the overall project cost but also results

quality software.

5. Methodology and Experiments

In this research work PROMISE dataset repository has been used to perform the

experiment [37]. We have developed a predictive model using F-score feature selection

technique to identify and predict defects in software modules.

5.1. Dataset Details

CM1, PC1, KC1 and KC2 dataset are available from PROMISE software dataset

repository. All these dataset are used for software defect prediction. This study used these

International Journal of Advanced Science and Technology

Vol.65 (2014)

48 Copyright ⓒ 2014 SERSC

datasets so that we can easily compare the performance of our predictive model with other

existing model with same datasets.

Table 1. Details of Software Defect dataset

Dataset Language No. of Modules % Defective

CM1 C 496 9.7%

PC1 C 1,107 6.9%

KC1 C++ 2,109 15.5%

KC2 C++ 522 20.5%

This dataset contains several software metrics such as Line of Code, number of operands

and operators, Design complexity, Program length, effort and time estimator and various

other metrics as shown in Figure 2 which are useful to identify either a software has any

defect or not [3, 37] . Detail descriptions of software metrics used in this paper are given in

Table 2 [3].

Table 2. Details of software metrics

S.No
.

Attribute Description

1 Loc It counts the line of code in software module

2 v(g) Measure McCabe Cyclomatic Complexity

3 ev (g) McCabe Essential Complexity

4 iv (g) McCabe Design Complexity

5 N Total number of operators and operands

6 V Volume

7 L Program length

8 D Measure difficulty

9 I Measure Intelligence

10 E Measure Effort

11 B Effort estimate

12 T Time Estimator

13 Locoed Number of lines in software module

14 Locomment Number of comments

15 Loblank Number of blank lines

16 Locodeandcomment Number of codes and comments

17 uniq_op Unique operators

18 uniq_opnd Unique operands

19 total_op Total operators

20 total_opnd Total operands

21 Branchcount Number of branch count

22 Defects Class that describes Software module has defects
or not

 5.2. Feature Selection (FS)

Feature Selection, also known as attribute selection, is one of the significant issues in the

construction of classification model. Feature selection is used to reduce the number of input

features and select relevant features for a classifier to improve its predictive performance. FS

is responsible for obtaining relevant data for future analysis, as per problem formulation.

International Journal of Advanced Science and Technology

Vol.65 (2014)

Copyright ⓒ 2014 SERSC 49

Since there are lots of software metrics available in software dataset repository, so FS select

significant feature which in turn will reduce the total project cost. F-score is one of the simple

and significant feature selection technique which is mostly used in machine learning [36, 38-

39]. It calculates the discrimination between two sets of real numbers. Let number of +ve and

–ve samples are symbolized by ‘m’ and ‘n’ respectively and xk is any training vectors, then

the F-score for i
th
 feature is evaluated as [36, 38-39]:

 (21)

Where

 and

 represent the mean of the total ith features, mean of positive ith

feature and mean of negative ith feature respectively.

 and

 indicate ith feature of k-

positive and k-negative samples correspondingly. The larger value of F-score indicates that

the corresponding feature is more discriminative or highly significant [36, 38-39].

 5.3. Proposed Model

Following are the steps of proposed model as shown in Figure 6:

Step1: Load the Software defect dataset from PROMISE repository.

Step2: Perform pre-processing of the dataset.

Step3: Divide the dataset using k-fold cross validation process.

Step4: Calculate the F-score for each feature and arrange them in descending order.

Step5: Generate new dataset with N features, where N=1,…,m, m is the total number of

feature.

Step6: Train the model for each feature subset.

Step7: Compare the results with different feature subset and with other existing data mining

approaches.

Step 8: Select the feature subset showing highest accuracy.

International Journal of Advanced Science and Technology

Vol.65 (2014)

50 Copyright ⓒ 2014 SERSC

Figure 6. Proposed Model

5.4. Performance Evaluation Parameters

The performance of proposed model is measured with the help of confusion matrix which

store the results of classifier in the form of actual and predicted class as indicated in Table 3.

Table 3. Confusion Matrix

Actual Class

Predicted Class

Defective Not Defective

 Defective True Negative (TN) False Positive (FP)

Not Defective False Negative (FN) True Positive (TP)

Performance evaluation model of proposed system is shown in Figure 7.

International Journal of Advanced Science and Technology

Vol.65 (2014)

Copyright ⓒ 2014 SERSC 51

Figure 7. Performance evaluation model for the proposed system

Using confusion matrix, we can estimate accuracy, specificity, Precision and F-measure

which further utilized for performance evaluation of proposed model [3]

a. Accuracy: Accuracy is also referred as “correct classification rate” and is measured by

taking the ratio of correctly prediction to the total prediction made by the software defect

prediction model and is formulated as:

 Accuracy= (TP+TN)/(TP+FP+FN+TN) (22)

b. Sensitivity: Sensitivity, also called true positive rate, is estimated by calculating the % of

correctly identified not-defective software modules and is formulated as:

 Sensitivity= TP/ (TP+FN) (23)

c. Specificity: Specificity, also termed as true negative rate, is measured by calculating the %

of correctly recognized defective modules and is formulated as:

 Specificity= TN/ (TN+FP) (24)

d. Precision: Sometime it is also referred as correctness and is measured by taking the

proportion of correctly recognized defect free modules and total predicted not-defective

software modules by classifier and is formulated as:

 Precision= TP/(TP+FP) (25)

e. F-Measure: It is measured by taking the harmonic mean of precision and sensitivity and is

calculated as:

 F-Measure= (2 *Sensitivity*Precision)/ (Sensitivity + Precision) (26)

International Journal of Advanced Science and Technology

Vol.65 (2014)

52 Copyright ⓒ 2014 SERSC

6. Results and Discussion

This paper has performed experiment on 4 PROMISE datasets as CM1, PC1, KC1 and

KC2. We also applied normalization technique to all datasets. Normalization has been

performed by dividing each attribute value with maximum value of that particular attribute.

The F-score value of each feature for CM1, PC1, KC1, KC2 datasets are shown in Table 4.

Table 4. Average Feature importance of each feature using k-fold cross
validation

Feature Number Average F-score

CM1 PC1 KC1 KC2

1 0.1699 0.3457 0.4067 0.0018

2 0.1742 0.3096 0.4962 0.0025

3 0.1288 0.2158 0.3596 0.0023

4 0.1156 0.1924 0.2964 0.0022

5 0.1158 0.2276 0.2655 0.0020

6 0.1044 0.2166 0.2277 0.0017

7 0.0465 0.1353 0.0839 0.0005

8 0.0455 0.1023 0.1176 0.0007

9 0.0506 0.0952 0.1113 0.0006

10 0.0364 0.0725 0.0848 0.0005

11 0.0350 0.0726 0.0760 0.0004

12 0.0288 0.0616 0.0663 0.0004

13 0.0246 0.0644 0.0675 0.0004

14 0.0256 0.0694 0.0618 0.0004

15 0.0263 0.0721 0.0594 0.0004

16 0.0293 0.0733 0.0706 0.0004

17 0.0292 0.0746 0.0702 0.0005

18 0.0280 0.0711 0.0656 0.0004

19 0.0270 0.0678 0.0621 0.0004

20 0.0249 0.0657 0.059 0.0004

21 --- 0.0601 --- 0.0003

Twenty one predictive models are constructed using different number of feature. Then the

LSTSVM model is constructed and learned for each feature set. This study has performed

experiment using 10-fold cross validation in windows 7, 64-bit operating system. The

performance of each model is evaluated using equation 22-26. The model with better

performance is selected and further utilized for defect prediction in software modules. For

CM1 dataset the descending order of feature according to its F-score values are- F2, F1, F3,

F5, F4, F6 and so on. In the same way, for PC1 dataset the rank of features are F1, F2, F5, F6,

F3, F4, F7, F8 and so on according to their F-score. We found that LOC, cyclomatic

complexity, essential complexity, design complexity, difficulty and effort measure are

significant metrics for defect prediction. Table 5 represents the 21 predictive models having

different feature subset for PC1 dataset. In the same way, this study also obtains different

predictive models with different number of feature. Then, the performance of each predictive

model against different performance estimators is evaluated using 10-fold cross validation

method.

International Journal of Advanced Science and Technology

Vol.65 (2014)

Copyright ⓒ 2014 SERSC 53

Table 5. Feature subset Model for PC1 dataset

Performance comparison of PC1, CM1, KC1 and KC2 datasets with different models have

compared using accuracy, sensitivity, precision, F-measure and specificity. Table 6, 7, 8 and

9 indicate the comparative analysis of proposed approach using above mentioned parameters

against four datasets.

Table 6. Performance comparison of PC1 dataset

Model Accuracy Precision F-measure Sensitivity Specificity

#1 94.53% 0.9346 0.9612 0.9904 0.7639

#2 89.05% 0.9523 0.9284 0.9064 0.7894

#3 89.88% 0.9519 0.9348 0.9162 0.7728

#4 90.71% 0.9515 0.9396 0.9310 0.7061

#5 94.42% 0.9383 0.9603 0.9835 0.7344

#6 94.63% 0.9575 0.9614 0.9875 0.7150

#7 94.34% 0.9396 0.9587 0.9816 0.7428

#8 93.62% 0.9440 0.9529 0.9663 0.7467

#9 94.06% 0.9403 0.9571 0.9758 0.8780

#10 91.04% 0.9460 0.9411 0.9400 0.8294

#11 89.66% 0.9468 0.9392 0.9265 0.8161

#12 87.61% 0.9529 0.9230 0.8972 0.8256

#13 86.71% 0.9572 0.9271 0.8865 0.7428

#14 87.33% 0.9545 0.9246 0.8950 0.7144

#15 86.89% 0.9555 0.9192 0.8873 0.7567

#16 86.35% 0.9568 0.9121 0.8786 0.7678

#17 85.49% 0.9444 0.9254 0.8685 0.7500

#18 92.40% 0.9328 0.9035 0.9693 0.8417

#19 92.28% 0.9157 0.9017 0.9638 0.8667

#20 88.87% 0.9545 0.9048 0.9077 0.6650

#21 86.65% 0.9609 0.8995 0.8860 0.6422

International Journal of Advanced Science and Technology

Vol. x, No. x, xxxxx, 2014

54

Table 7. Performance comparison of CM1 dataset

Model Accuracy Precision F-measure Sensitivity Specificity

#1 89.16% 0.9423 0.8981 0.8964 0.7674

#2 88.96% 0.9345 0.9048 0.9177 0.7650

#3 90.36% 0.9117 0.9072 0.9256 0.8311

#4 87.95% 0.9342 0.9003 0.9183 0.8154

#5 87.35% 0.9011 0.9187 0.9383 0.8276

#6 82.72% 0.9366 0.8624 0.8758 0.7963

#7 80.33% 0.8643 0.8802 0.8779 0.7841

#8 79.15% 0.9094 0.8771 0.8437 0.6340

#9 83.14% 0.8832 0.9015 0.9147 0.8407

#10 90.45% 0.9507 0.9376 0.9210 0.7761

#11 70.65% 0.9211 0.7831 0.6847 0.7063

#12 60.18% 0.8974 0.7786 0.7902 0.5474

#13 60.37% 0.9101 0.8771 0.8479 0.5341

#14 58.37% 0.9093 0.7354 0.6451 0.4228

#15 58.63% 0.8931 0.7527 0.6841 0.4276

#16 58.42% 0.8887 0.7372 0.6289 0.5494

#17 65.85% 0.8867 0.7563 0.6371 0.7702

#18 73.37% 0.9282 0.7694 0.6944 0.7582

#19 82.37% 0.8981 0.8993 0.9002 0.7353

#20 81.53% 0.8634 0.8759 0.9261 0.7254

Table 8. Performance comparison of KC1 dataset

Model Accuracy Precision F-measure Sensitivity Specificity

#1 84.69% 0.8718 0.9074 0.9462 0.6392

#2 85.39% 0.8680 0.9125 0.9619 0.6991

#3 85.25% 0.8717 0.9112 0.9456 0.6299

#4 83.88% 0.8842 0.9007 0.9181 0.6407

#5 85.06% 0.8811 0.9087 0.9383 0.6067

#6 70.61% 0.9366 0.7824 0.6758 0.7427

#7 78.05% 0.9136 0.8478 0.7930 0.5825

#8 85.15% 0.8908 0.9111 0.9327 0.6710

#9 86.06% 0.9401 0.9143 0.9417 0.6527

#10 85.21% 0.8899 0.9087 0.9288 0.6680

#11 83.07% 0.8987 0.9001 0.9024 0.6386

#12 82.83% 0.8974 0.8986 0.9002 0.6353

#13 79.98% 0.9101 0.8771 0.8479 0.6370

#14 79.07% 0.9093 0.8754 0.8451 0.6340

#15 71.74% 0.9311 0.7827 0.7841 0.7050

#16 69.75% 0.8887 0.7572 0.6371 0.7702

#17 71.60% 0.9340 0.7652 0.6527 0.7400

#18 73.51% 0.9368 0.7730 0.6617 0.7491

#19 73.03% 0.9382 0.7684 0.6544 0.7582

#20 74.46% 0.9391 0.7631 0.6466 0.7642

International Journal of Advanced Science and Technology

Vol. x, No. x, xxxxx, 2014

55

Table 9. Performance comparison of KC2 dataset

Model Accuracy Precision F-measure Sensitivity Specificity

#1 82.47% 0.8100 0.8943 1.0000 0.4642

#2 85.13% 0.8297 0.9022 0.9842 0.6047

#3 85.7% 0.8418 0.9081 0.9836 0.6505

#4 85.89% 0.8446 0.9089 0.9814 0.6667

#5 85.89% 0.8667 0.9118 0.954 0.6837

#6 86.07% 0.8605 0.9086 0.9654 0.6528

#7 86.04% 0.8584 0.9049 0.9584 0.6607

#8 85.54% 0.8679 0.8947 0.9289 0.7782

#9 86.12% 0.8939 0.8907 0.9405 0.7142

#10 84.72% 0.8534 0.8998 0.9624 0.6176

#11 83.9% 0.8591 0.9018 0.9671 0.6716

#12 83.13% 0.8525 0.9028 0.9624 0.6389

#13 82.77% 0.8728 0.8870 0.9318 0.7120

#14 83.03% 0.8735 0.8827 0.9321 0.7020

#15 81.83% 0.8693 0.8671 0.9226 0.7145

#16 81.81% 0.8606 0.8678 0.9181 0.7199

#17 81.26% 0.8681 0.8739 0.9367 0.7199

#18 81.39% 0.8779 0.8822 0.9173 0.7707

#19 80.41% 0.8662 0.8802 0.8775 0.7838

#20 79.37% 0.8933 0.8694 0.8575 0.6023

#21 79.86% 0.8937 0.8752 0.8507 0.6026

It is clear from the above results that model-10 of CM1, model -6 of PC1, model- 9 of KC1

and KC2 dataset has performed well in terms of accuracy, precision and F-measure. The

accuracy of model-6 of PC1 is 94.63%, precision is 95.75 % and F-measure is 96.14 % while

the above mentioned parameters for model-10 of CM1 dataset are 90.45%, 95.07% and

93.76% respectively. Accuracy, Precision and F-measure for model-9 of KC1 and KC2

dataset are 86.06%, 94.01%, 91.43% and 86.12%, 89.39%, 89.07% respectively. Performance

of proposed model for sensitivity and specificity against above stated datasets varies from one

model to another. So considering sensitivity and specificity as a performance measure is not

making any sense, thus this research work considers accuracy, precision and F-measure to

evaluate the performance of classifier. This study also performed a comparative analysis of

feature selection based LSTSVM model with other existing methods. Comparative analysis of

various classification approaches against four PROMISE datasets is shown in table 10. The

proposed feature selection based LSTSVM predictive model for software defect prediction

performs well with PC1, KC1 and KC2 dataset. Accuracy of proposed approach for CM1

dataset is also comparable with SVM.

International Journal of Advanced Science and Technology

Vol. x, No. x, xxxxx, 2014

56

Table 10. Comparative analysis with other existing dataset

Prediction Approach CM1 PC1 KC1 KC2

This study 90.45% 94.63% 86.06% 86.12%

SVM 90.69% 93.10% 84.59% 84.67%

LR 90.17% 93.19% 85.55% 82.90%

KNN 83.27% 91.82% 83.99% 81.19%

MLP 89.32% 93.59% 85.68% 84.48%

RBF 89.91% 92.84% 84.81% 83.57%

BBN 76.83% 90.44% 75.99% 82.80%

DT 89.82% 93.58% 84.56% 82.85%

7. Conclusion

This study proposed a feature selection based LSTSVM model for defect prediction. F-

score feature selection technique is used to select significant feature which are helpful to

predict defects in software modules. There is a significant difference in classifier’s

performance which is developed using new feature subset as compared to the classifier built

on complete feature set. This study has evaluated the predicting performance of proposed

model for defective software modules and also performed a comparative analysis against

seven statistical and machine learning approaches using four PROMISE datasets. The

experimental results show that the predictive capability of the proposed approach is better or

at least comparable with other approaches. This research discloses the effectiveness of

proposed feature selection based LSTSVM approach in predicting defective software modules

and suggests that the proposed model can be useful in predicting software quality. The

performance of proposed work can also be compared by using other feature selection

techniques as well as other software repositories so that the impact of changing the feature

selection method, datasets in LSTSVM could also be established.

References

[1] N. E. Fenton and S. L. Pfleeger, “Software metrics: a rigorous and practical approach”, PWS Publishing Co.,

(1998).

[2] A. Koru and H. Liu, “Building effective defect-prediction models in practice”, IEEE Software, (2005), pp.

23–29.

[3] A. Sonali and D. Siddhant, “Prediction of Software Defects using Twin Support Vector Machine”, 2nd

International conference on Information Systems & computer Networks (ISCON-2014), In press.

[4] A. Okutan O. T. Yıldız, “Software defect prediction using Bayesian networks”, Empirical Software

Engineering, (2012), pp. 1-28.

[5] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using support vector machines”, The

Journal of Systems and Software, vol. 81, (2008), pp. 649–660.

[6] Y. Hu, X. Zhang, X. Sun, M. Liu and J. Du, “An intelligent model for software project risk prediction”, In:

International conference on information management, innovation management and industrial engineering, vol.

1, (2009), pp. 629–632.

[7] C. Jin and J. Liu, “Applications of support vector machine and unsupervised learning for predicting

maintainability using object-oriented metrics”, 2010 second international conference on multimedia and

information technology (MMIT), vol. 1, (2010), pp. 24–27.

[8] Q. Song, M. Shepperd, M. Cartwright and C. Mair, “Software defect association mining and defect correction

effort prediction”, IEEE Trans Softw Eng., vol. 32, no. 2, (2006), pp. 69–82.

[9] G. Boetticher, T. Menzies and T. Ostrand, “Promise repository of empirical software engineering data”,

Department of Computer Science, West Virginia, University, (2007), http://promisedata.org/repository.

[10] N. Fenton, M. Neil and D. Marquez, “Using Bayesian networks to predict software defects and reliability”, J

Risk Reliability, vol. 222, no. 4, (2008), pp. 701–712.

[11] D. Zhang, “Applying machine learning algorithms in software development”, Proceedings of the 2000

Monterey workshop on modeling software system structures in a fastly moving scenario, (2000), pp. 275–291.

file:///C:/Users/g470/Desktop/S016412120700235X.htm
file:///C:/Users/g470/Desktop/S016412120700235X.htm

International Journal of Advanced Science and Technology

Vol. x, No. x, xxxxx, 2014

57

[12] R. Jayadeva, R. Khemchandani and S. Chandra, “Twin Support vector Machine for pattern classification”,

IEEE Trans Pattern Anal Mach Intell., vol. 29, no. 5, (2007), pp. 905-910.

[13] V. Basili, L. Briand and W. Melo, “A validation of object-oriented design metrics as quality indicators”,

IEEE Transactions on Software Engineering, vol. 22, no. 10, (1996), pp. 751–761.

[14] S. Henry and D. Kafura, “The evaluation of software systems' structure using quantitative software metrics”,

Software: Practice and Experience, vol. 14, no. 6, (1984), pp. 561-573.

[15] M. A. Cusumano, “Japan’s Software Factories”, Oxford University Press, (1991).

[16] L. Guo, Y. Ma, B. Cukic and H. Singh, “Robust prediction of fault proneness by random forests”,

Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE’04), (2004),

pp. 417–428.

[17] H. A. Al-Jamimi and L. Ghouti, “Efficient prediction of software fault proneness modules using support

vertor machines and probabilistic neural networks”, IEEE, 5th Malaysian Conference in Software

Engineering (MySEC), (2011)B.

[18] T. Khoshgoftaar, E. Allen, J. Hudepohl and S. Aud, “Application of neural networks to software quality

modeling of a very large telecommunications system”, IEEE Transactions on Neural Networks, vol. 8, no. 4,

(1997), pp. 902–909.

[19] J. Kaur and Pallavi, “Data Mining Techniques for Software Defect Prediction”, International Journal of

Software and Web Sciences (IJSWS), (2013), pp. 54-57.

[20] Z. Yan, X. Chen and P. Guo, “Software Defect Prediction Using Fuzzy Support Vector Regression”,

Springer-Verlag Berlin Heidelberg, (2010).

[21] H. Can, X. Jianchun, Z. R. L. Juelong, Y. Quiliang and X. Liqiang, “A new model for software defect

prediction using particle swarm optimization and support vector machine”, IEEE, (2013).

[22] D. Hand, H. Mannila and P. Smyth, “Principles of data mining”, MIT, (2001).

[23] J. Han and M. Kamber, “Data mining: concepts and techniques”, 2nd ed. The Morgan Kaufmann Series,

(2006).
[24] T. Divya and A. Sonali, “A survey on Data Mining approaches for Healthcare”, International Journal of Bio-

Science and Bio-Technology, vol. 5, no. 5, (2013), pp. 241-266.

[25] N. Gayatri, S. Nickolas and A. V. Reddy, “Feature selection using decision tree induction in class level

metrics dataset for software defect predictions”, In Proceedings of the World Congress on Engineering and

Computer Science, vol. 1, (2010), pp. 124-129.

[26] J. Wang, B. Shen and Y. Chen, “Compressed C4. 5 Models for Software Defect Prediction”, 2012 12th

International Conference on Quality Software (QSIC), IEEE, (2012) August, pp. 13-16.

[27] J. Zheng, “Cost-sensitive boosting neural networks for software defect prediction”, Expert Systems with

Applications, vol. 37, no. 6, (2010), pp. 4537-4543.

[28] C. Cortes and V. Vapnik, “Support Vector Network”, Mach Learn., vol. 20, (1995), pp. 273-297.

[29] V. Vapnik, “The nature of statistical Learning, @nd edn”, Springer, New York, (1998).

[30] N. Chistianini and J. Shawe-Taylor, “An Introduction to Support Vector Machines, and other kernel-based

learning methods”, Cambridge University Press, (2000).

[31] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vector Machines”, Cambridge University

Press, (2000).

[32] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-correcting output codes”,

Journal of Artificial Intelligence Research, vol. 2, (1995), pp. 263–286.

[33] B. Sch¨olkopf, C. Burges and A. Smola, (Eds.), “Advances in Kernel Methods—Support Vector Learning”,

MIT Press, (1998).

[34] C. W. Hsu, C. C. Chang and C. J. Lin, “A practical guide to support vector classification”,

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, (2003).

[35] M. A. Kumar and M. Gopal, “Least squares twin support vector machines for pattern classification”, Expert

Systems with Applications, vol. 36, (2009), pp. 7535–7543.

[36] T. Divya and A. Sonali, “Feature Selection based Least Square Twin Support Vector Machine for diagnosis

of heart disease”, Unpublished Manuscript.

[37] Software Defect Dataset, PROMISE REPOSITORY, http://promise.site.uottawa.ca/SERepository/datasets-

page.html, (2013) December 4.

[38] Y. W. Chen and C. J. Lin, “Combining SVMs with various feature selection strategies”,

http://www.csie.ntu.edu.tw/~cjlin/ papers/features.pdf, (2005).

[39] M. F. Akay, “Support vector machines combined with feature selection for breast cancer diagnosis”, Expert

systems with applications, vol. 36, no. 2, (2009), pp. 3240-3247.

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

International Journal of Advanced Science and Technology

Vol. x, No. x, xxxxx, 2014

58

Authors

Dr. Sonali Agarwal

Dr. Sonali Agarwal is working as an Assistant Professor in the

Information Technology Division of Indian Institute of Information

Technology (IIIT), Allahabad, India. Her primary research interests are

in the areas of Data Mining, Data Warehousing, E Governance and

Software Engineering. Her current focus in the last few years is on the

research issues in Data Mining application especially in E Governance

and Healthcare.

Divya Tomar

She is a research scholar in Information Technology Division of

Indian Institute of Information Technology (IIIT), Allahabad, India

under the supervision of Dr. Sonali Agarwal. Her primary research

interests are Data Mining, Data Warehousing especially with the

application in the area of Medical Healthcare.

