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Abstract 

The object of this research paper is to obtain an analytical function that describes the 

dynamics of motion of superparamagnetic beads in a microfluidic channel filled with a liquid 

such as water or blood under the influence of an external magnetic field. A closed-form 

equation was derived from first principles and then simulated using MATLAB® and the 

results compared to those obtained experimentally by other researchers. 

This equation is an adequate tool to calculate the arrival times of functionalized magnetic 

beads of different radii at sensor location which might be useful in biomicrofluidics 

applications, specifically those that fall in the category of Lab-On-A-Chip in which 

segregation of bound and unbound beads could be determined on the basis of their different 

speeds without having to use magnetic separation and further external processing with 

additional instruments. 

Additionally, a practical design equation was developed to calculate the operating point of 

a commercial electromagnet to obtain desired speeds at predetermined distances from the 

magnet’s surface. 
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1. Introduction 

In many microfluidic applications the use of functionalized superparamagnetic microbeads 

is widely used. Most of these microbeads consist of iron oxide (Fe2O3) superparamagnetic 

nanoparticles dispersed in a polymer matrix [1]. The microbeads are usually functionalized by 

covalently binding an antibody to the polymer matrix targeting specific biomolecules [2-4]. 

Since in most cases the object of funcionalized magnetic microbeads is to capture and 

immobilize target biomolecules in immunoassays, the dynamics of the mobility of the beads 

in the microfluidic channel is not quantified. However, the speed of beads bound to their 

target biomolecules is lower than the speed of beads that are not bound, that is, free of cargo. 

By comparing the different speeds and arrival times at an adequately placed sensor, a biochip 

would be able to recognize the presence of the molecule(s) of interest. For this reason we 

decided to study in more detail the displacement velocities of microbeads under the influence 

of externally applied magnetic fields. 

Most researchers have arrived at a differential equation similar to Eq. (11) but instead of 

solving it have proposed to either, using numerical approximations such as FEA (Finite 
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Element Analysis) [5], assuming that in a small range of interest the speed is constant and 

thus the acceleration is zero [6], using micromagnetic simulations with standard software 

such as ANSYS® or COMSOL® [7-10] or by simply measuring the speeds for their 

particular application [11]. 

Our contribution to the discipline of biomicrofluidics was to solve the differential equation 

(11) to obtain a closed-form equation that can be used to design a microfluidic biochip based 

on the speeds of the functionalized superparamagnetic microbeads. 

 

2. Derivation of the Equation 

Figure 1 shows the basic setting and restrictions of the model under study. It is assumed 

that the microbead is several orders of magnitude smaller than the magnet as is normally the 

case. It is also assumed that the magnet has a symmetrical shape such as square, rectangular 

or circular cross-section so that the only component of the magnetic field of interest lies in the 

direction of motion of the microbead. Also, it is assumed that the microbeads have diameters 

between 1 µm and 12 µm so that Brownian motion can be neglected [12]. Similarly, the 

gravitational force, mg, where m is the mass of the bead, is several orders of magnitude 

smaller than the magnetic pull force and thus can be neglected.  

 

 

Figure 1. Basic setting 
 

Since we are interested in the velocity in the axial direction of the magnet, Vz, and Vz is 

the only component of V, we will use velocity and speed interchangeably, although 

technically the first one is a vector quantity and the second is a scalar. 

For the calculation of the magnetophoretic velocity of a superparamagnetic microbead 

moving under the influence of an externally applied magnetic field, we need to obtain the 

magnetic field and its gradient at every single point. The magnetic force exerted on a 

superparamagnetic bead of radius rb and magnetic susceptibility χ is [13]:
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Where J is the magnetic polarization 

 
MJ 0

   (2) 

M is the magnetization of the magnetic bead 

zHM    (3) 

below saturation [14], that is  
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and Vb is the volume of the superparamagnetic bead which is assumed to have an almost 

spherical shape [1] 
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Leading to:
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A superparamagnetic bead of mass mb in a liquid such as water or blood subjected to an 

external magnetic field Hz is accelerated under the influence of two opposing forces, the 

magnetic force Fm and the drag force due to the viscosity of the fluid, Fd. 

 

dmb FFam



    (7)

 

Where the drag viscosity force, also known as Stoke’s drag is [14]: 

vrF bd


6

    (8)
 

The viscosity η is characteristic of each fluid. For water η=8.9x10-4 [Pa.s] and for blood 

varies between 2.8x10-4 and 3.8x10-4 [Pa.s]. It’s important to note that the force due to 

viscosity depends on the velocity and the size of the bead. 

 

The mass of the magnetic bead is obtained with 

bb Vm 
    (9)
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Since 
dt

dv
a   

 
we have   (10) 
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By defining the following dummy variables: 

mk 1      (13) 
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We arrive at the following differential equation: 
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Which has the general form: 

),( yxf
dx

dy


    (17)
 

Or more generally 
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with initial value
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This differential equation has the general solution [15]: 
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In this particular case we have 
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The general solution for  
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From which we have 
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And substituting the dummy variables k1, k2 and k3 we obtain equation: 
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Which is the velocity of the magnetic bead at distance z  from the magnet.  

 

From this equation it can be verified that the initial condition v=0 at t=0 holds. To verify 

this two-independent variable equation, we notice that the right term between parentheses is 

negligible due to the small mass of the bead which explains why gravitational force is not 

considered. Rewriting the velocity equation we arrive at the following simplified equation. 
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Using Eq. (5) to replace Vb in the above equation we arrive at our final equation: 

z

H
H

r
v z

z
b

z









9

2 2

0

   (34) 

The values for Hz and its derivative can be found analytically for most magnets with 

symmetrical shapes as will be shown with an example in a following section. It can be seen 

from Eq. (34) that the speed is inversely proportional to the viscosity η as expected. 

 

3. Verification with Experimental Results 

To verify the validity of Eq. (34) we compare the results obtained by Hafeli et al., [11]. 

They specifically designed an experiment aimed at measuring the velocities of several 

microbeads of different radii and magnetic susceptibilities at different magnetic fields and 

gradients. 

The following table shows three of the microbeads used in the experiment for which all 

their parameters are known or could be calculated from the data. The last two columns are the 

calculated speed using Eq. (34) and the error percentage. 
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Table 1. Comparison of Experimental Results with Calculated Speed 

Bead name Χ 

(SI) 

Diamete

r 

(µm) 

η (Pa.s) 

(water) 

H (A/m) dH/dz v (µm/s) 

Measured 

v (µm/s) 

Calculated 

Error 

(%) 

Dynabeads® 

M280 

0.3 2.8 9.33x10-4 1.79x104 4.77x106 12.50±3.99 13.99 10.65 

Specimen 1 0.03131 1.72 9.33x10-4 1.03x106 1.11x108 48.9±30.2 69.78 29.93 

Specimen 4 0.02665 1.74 9.33x10-4 1.03x106 1.11x108 65.8±27.0 60.78 -8.25 

 

The error was computed by comparing the calculated speed with the average measured 

speed. However, the measured speeds have a large variation and all the calculated speeds fall 

within the range of measured speeds, thus, the calculated speeds are adequate estimates of the 

expected speeds of the microbeads.  

The susceptibility of Dynabeads® M280 at the experimental magnetic field and gradient 

was calculated from data from another study [17] by using the M.H curve (Figure 11 inset). 

For the Dynabeads® M280, 242 samples were measured and averaged; for Specimen 1 they 

used 110 samples and for Specimen 4, 149 samples were measured. A total of 501 samples 

with different susceptibilities and under different magnetic field strengths and gradients were 

measured and compared with our calculated speeds and found that when using Eq. (34) the 

calculated values are in agreement with the experimental results.. 

The error was computed by comparing the calculated speed with the average measured 

speed. However, the measured speeds have a large variation and all the calculated speeds fall 

within the range of measured speeds, thus, the calculated speeds are adequate estimates of the 

expected speeds of the microbeads.  

The susceptibility of Dynabeads® M280 at the experimental magnetic field and gradient 

was calculated from data from another study [17] by using the M.H curve (Figure 11 inset). 

For the Dynabeads® M280, 242 samples were measured and averaged; for Specimen 1 they 

used 110 samples and for Specimen 4, 149 samples were measured. A total of 501 samples 

with different susceptibilities and under different magnetic field strengths and gradients were 

measured and compared with our calculated speeds and found that when using Eq. (34) the 

calculated values are in agreement with the experimental results.. 

 

4. Design Example Using a Commercial Electromagnet 

As an example, we calculate the magnetic induction, magnetic field, field  gradient and 

magnetophoretic velocity of Dynabeads® 450 moving under the magnetic field generated by 

a commercial electromagnet of cylindrical shape, part number EM050-6-222 from APW 

Company[18] with the following characteristics: 

L = 0.5”, diameter (2a) = 0.5”, Fp = 2 lbs (pull force), µr ≈ 1900 (Low carbon steel IASi 

1800), Operates @6V and 0.16 A. 
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Figure 2. Magnetic field at point P due to a current loop 

 

We begin by obtaining closed form equations for the magnetic induction, magnetic field 

and its gradient. The first step is to derive those variables for a circular current loop and then 

extend it to N loops which corresponds to the geometry of the electromagnet under study. The 

magnetic induction, B, on the radial direction at distance r from a circular current loop is 

defined by [19-20]: 
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We are interested in the value of B in the axial direction, that is, where θ=0.  In the above 

equation the axial field reduces to: 
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Where the variable r was substituted by z, the distance from the center of the loop to the 

point of interest in the axial direction. For a solenoid of radius a, length L and N turns and 

magnetic permeability µ we obtain: 
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at the center of the solenoid on the axis and approximately on the surface of the solenoid [51]. 

From which we obtain 


LB
NI 0 and thus 
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And the gradient in the axial direction: 
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The above equation is more practical because manufacturers of off-the-shelf 

electromagnets usually provide the geometry and the pull-force of the magnet. From the pull 

force we can find 0B
as follows. 

Given an electromagnet of radius a, length L and pull force Fp in pounds the following 

formulas are used: 

pN FF 45.4    To convert from pounds to Newtons. 

0
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Using the above equation we obtain an approximate value for B0. 

B0 ≈ 0.42 T 
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Using this equation with the electromagnet given as an example above, for which B0 ≈ 

0.42 T with a Dynabead  with diameter of 4.5 µm and susceptibility and χ=1.63 moving in 

blood with average viscosity η=3.3x10-4  we obtain the fields and velocity shown in the 

following figures. 

For a Dynabead superparamagnetic bead of diameter 4.5 µm [6] it was found that ρ=1600 

Kg/m3. 
 

 

Figure 3. Magnetic Induction B(z) 
 

 

Figure 4. Magnetic Field H(z) 
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Figure 5. Magnetic Field Gradient dH/dz(z) 
 

 
 

 

Figure 6. Speed of magnetic beads of several radii 
 

From the curves it can be seen that the sensor should be located around 3 mm from the 

magnet’s surface where the differences in speed are larger. 
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5. Conclusions 

A closed-form equation describing the magnetophoretic velocity superparamagnetic 

microbeads subjected to external magnetic fields was obtained from first principles and 

verified with experimental results. The calculated speeds were in good agreement with the 

measured speeds and thus this equation can be used to model and design biochips that make 

use of functionalized magnetic microbeads. Our future work will be to use this equation and 

the simulations developed on this research to design a microchip capable of sensing the 

presence of metastatic cancer cells in the circulation. 
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