
International Journal of Advanced Science and Technology

Vol.58, (2013), pp.13-28

http://dx.doi.org/10.14257/ijast.2013.58.02

ISSN: 2005-4238 IJAST

Copyright ⓒ 2013 SERSC

A Hybrid Scheduling Algorithm with Load Balancing for
Computational Grid

P. Keerthika1 and N. Kasthuri2
1Research Scholar and Assistant Professor (Senior Grade), Department of CSE,

Kongu Engineering College, Perundurai, Erode, Tamilnadu-638052
2Professor, Department of ECE,

Kongu Engineering College, Perundurai, Erode, Tamilnadu-638052
1keerthikame@gmail.com,2kasthurisena@yahoo.com

Abstract
Grid Computing provides seamless and scalable access to wide-area distributed resources.

Since, computational grid shares, selects and aggregates wide variety of geographically
distributed computing resources and presents them as a single resource for solving large
scale computing applications, there is a need for a scheduling algorithm which takes into
account the various requirements of grid environment. Hence, this research proposes a new
scheduling algorithm for computational grids that considers load balancing, fault tolerance
and user satisfaction based on the grid architecture, resource heterogeneity, resource
availability and job characteristics such as user deadline. This algorithm reduces the
makespan of the schedule along with user satisfaction and balanced load. A simulation is
conducted using Grid Simulator Toolkit (GridSim). The simulation results shows that the
proposed algorithm has better makespan, hit rate and resource utilization.

Keywords: Load Balancing, User deadline, Fault tolerance, Scheduling, Grid Computing,
Resource Utilization

1. Introduction

Grid Computing is an important paradigm that supports sharing and access to a large
amount of computational and storage resources which are heterogeneous and geographically
distributed. The two variations of grid enclose computational grids and data grids.
Computational grid exploits the synergy between a set of interconnected grid nodes to reach a
common goal to solve massive computational problems [11, 35]. Data intensive computing is
concerned with addressing the technical challenges generated by the ever growing demands
for processing large scale data sets [27]. The main aspect of grid computing that is to be
considered is the dynamicity of resources. The resources of grid can be freely added or
withdrawn at any time according to the owner’s discretion. So, the performance of grid nodes
and their load frequently changes with respect to time [1]. In Grid environment, scheduling is
an important aspect to be taken care since it is known to be a NP hard problem [5]. Grid
Scheduling is a process of splitting a larger problem to a number of sub problems and
allocating those tasks to the resources based on resource capability and job requirements. The
Scheduler plays an important role in computational grids. The selection of proper scheduling
algorithm should be of at most care in order to maximize the throughput.

Since scheduling is a NP hard problem, finding an exact solution for larger problems is not
possible. Instead an approximate solution can be achieved. Many heuristic scheduling
algorithms have been proposed that provide approximate solutions to problems. [25, 36]

International Journal of Advanced Science and Technology

Vol.58, (2013)

14 Copyright ⓒ 2013 SERSC

presents many heuristic methods for static and dynamic scheduling. But those algorithms
lacks of balanced load among geographically distributed heterogeneous grid resources. The
main objective of heuristic algorithms is to minimize makespan which is the maximum
completion time spent for execution of a batch of tasks [33]. Among most of the static
scheduling algorithms, Genetic algorithm (GA) has better makespan [32] and in case of
dynamic scheduling, min-min algorithm has better makespan and they are considered as the
benchmark algorithms [24,37]. One of the aspects considered in this research is load
balancing. They attempt to improve the response time and also ensure maximum utilization of
resources available. Load balancing can be defined by the following policies [16].

1. Information Policy - specifies what workload information is to be collected, when it
is to collected and from where.

2. Triggering Policy - determines the appropriate at which to start a load balancing
operation.

3. Resource type Policy - classifies resource as a server or a receiver of tasks according
to its availability status.

4. Location Policy – uses the results of the resource type policy to find a suitable partner
for a resource provides or a resource receiver.

5. Selection Policy – defines the tasks that should be migrated from overloaded resource
to the idlest resources.

Load balancing algorithms can be classified into two categories such as static algorithms
and dynamic algorithms. In static load balancing, decision is made at compile time when
resource requirements are estimated. Dynamic load balancing algorithm allocates/reallocates
resources at runtime. The second aspect considered in this research is fault tolerance which
deals with failure of resources dynamically. When a task is submitted to a grid broker, it
schedules the task to resources available based on the factors and allocates task to the selected
resource. If that resource fails due to any of the following reasons, that should also be handled
by the proposed algorithm. Failures may be network failure, resource failure etc. There are
two types of failure handling mechanisms - Proactive and Passive. In pro-active mechanisms,
the failure consideration for the grid is made before the scheduling of a job, and dispatched
with hopes that the job does not fail. Whereas, post-active mechanisms handles the job
failures after it has occurred. However, in the dynamic systems only post-active mechanism is
relevant [23]. The third aspect is user satisfaction which is achieved by considering the user
deadline of the tasks submitted. The tasks are received along with its deadline. The task is
expected to be executed within the deadline.

2. Related Works

This section discusses some of the recent algorithms designed for load balancing, fault
tolerance and user satisfaction based scheduling algorithms. An adaptive scheduling
algorithm that considers both quality of service (QoS) and non-dedicated computing is
proposed in [13]. Similar to existing task scheduling algorithms, this scheduling algorithm is
designed to achieve high throughput computing. A minimum time to release job scheduling
algorithm is proposed [22] in which Time to Release (TTR) is calculated. The tasks are
arranged in descending order based on TTR value. Tasks are scheduled in the sorted order.
This algorithm performs better when compared with First Come First Serve and min min

International Journal of Advanced Science and Technology

Vol.58, (2013)

Copyright ⓒ 2013 SERSC 15

algorithms. A Grouping based Scheduling algorithm is proposed in [31] in which user
deadline and reduces communication overhead by adopting the grouping technique.

A cost optimization scheduling algorithm to optimize the cost to execute the jobs is
described in [3]. It also reduces the execution time of the jobs. But in this algorithm failure
rate of the resources and user deadline of the jobs are not considered. A fault-tolerant
scheduling for differentiated classes of independent tasks is introduced in [38]. This
methodology has two algorithms such as MRC-ECT and MCT-LRC based on minimum
replication cost and minimum completion time respectively. This algorithm does not consider
the fault rate of the computational resources. A fault tolerance based resource management
service which considers different types of failure and QoS requirement is proposed in [19].
This algorithm fails to concentrate on user satisfaction and execution time. A greedy meta-
scheduling algorithm based on multiple simultaneous requests is proposed in [28]. In this
algorithm, scheduler identified the sites that can start the job earliest. This is suitable only for
homogeneous resources and does not take data requirements into account.

An application demand aware algorithm [15] considers application demand of the jobs for
scheduling. It produces better user satisfaction and fault rate of the resources are not
considered. A Prioritized user demand algorithm is proposed [29] that considers user deadline
for allocating jobs to different heterogeneous resources from different administrative
domains. It produces better makespan and more user satisfaction but data requirement is not
considered. While scheduling the jobs, failure rate is not considered. So the scheduled jobs
may be failed during execution. A novel method of modeling job execution on grid compute
clusters is proposed in [5]. This algorithm uses Performance Evaluation Process Algebra
(PEPA) as the system description formalism, capturing both workload and computing fabric.

In our previous work [17], we have proposed an efficient fault tolerant scheduling
algorithm (FTMM) which is based on data transfer time and failure rate. System performance
is also achieved by reducing the idle time of the resources and distributing the unmapped
tasks equally among the available resources. A scheduling strategy that considers user
deadline and communication time for data intensive tasks with reduced makespan, high hit
rate and reduced communication overhead is introduced by [30]. This strategy does not
consider the occurrence of resource failure. The fault tolerant algorithm discussed by [26]
surveys the importance of fault tolerance for achieving reliability by all possible mechanisms
such as Replication, Check pointing and job migration. It extends the cost-optimisation
algorithm to optimise the time without incurring additional processing expenses. This is
accomplished by applying the time-optimisation algorithm to schedule task farming or
parameter-sweep application jobs on distributed resources having the same processing cost. A
DAG mechanism [34] to enter tasks and thereby brings out an efficient algorithm namely Ant
Colony Optimization algorithm.

In [23], fault tolerance in grid environment can be divided into pro-active and post-active
mechanisms. The pro-active mechanisms consider the job failure history of each resource
before scheduling of a job and dispatches jobs to resources with hopes that the job does not
fail. Whereas, post-active mechanisms handles the job failures after it has occurred. However,
for dynamic grid systems only post-active mechanism is relevant than the pro-active
mechanisms. For Grid environment, [12] proposed that there are several reasons for
workflow execution failure. The reasons are variation in the execution environment
configuration, non-availability of required services or software components, overloaded
resource conditions, system running out of memory, and faults in computational and network
fabric components. Grid workflow management systems should be able to identify and handle
failures and support reliable execution in the presence of concurrency and failures.

International Journal of Advanced Science and Technology

Vol.58, (2013)

16 Copyright ⓒ 2013 SERSC

At the application level and for resource management systems, many fault-tolerance
techniques are proposed for cluster and Grid environments which are discussed by [20, 21].
Since, the Grid infrastructure is still emerging, there are only a few works that has been done
for job failure analysis and they all find it tough to collect traces at hierarchical levels. A new
fault tolerance approach [6] with several masters called brokers. The Grid broker receives
jobs from their users and divides them into tasks. These subtasks are made available to the
resources that compose the grid. Brokers are usually specific to one class of applications and
they only know how to decompose jobs of this class. For example, if the application deals
with processing satellite images, the images are treated as jobs and the broker decomposes the
job into several tasks and analyzes them by different resources. After executing a task, the
resources send the result to the broker and the broker assembles all results and returns them to
the user. In [7], all communication between brokers/masters and resources/workers is done
exclusively through the tuple space.

The survey done by [4] shows that both the commercial grid systems and research grid
systems that are currently in use behave reliably at present levels of scale using available
technology. However, efforts to develop reliable and fault tolerant methods for grid
environments are in progress with increased scale, heterogeneity, and dynamism. The
challenge of ensuring reliability in grid systems is discussed [8-10]. The vision of grid
systems was articulated in which, computing and data resources belonging to many
enterprisers are organized into a single, virtual computing entity that can be transparently
utilized to solve compute- and data-intensive problems. Subsequently, this vision has
continued to evolve as use of grid technology grown within industry and science. A hybrid
scheduling policy with fault tolerance and load balancing has been introduced by [14]. In the
first phase, a static load balancing policy selects the desired sites. If any site is unable to
complete the assigned job, a new site will be located using the dynamic load balancing policy.

In our previous work [18], we have proposed a new Bicriteria scheduling algorithm that
considers both user satisfaction and fault tolerance. The pro-active fault tolerant technique is
adopted and the scheduling is carried out by considering the deadline of gridlets submitted.
The main contribution of this paper includes achieving user satisfaction along with fault
tolerance and minimizing the makespan of jobs. The main objective of this paper is to
develop a scheduling algorithm which reduces makespan and improves resource utilization.
It also ensures that the tasks are completed within the user expected deadline. While
scheduling the jobs, failure rate of the resources and the load of each resource is also
considered. The proposed algorithm improves system performance, user satisfaction, resource
utilization and reduces number of failures of the jobs by considering fault rate of the
resources.

The remaining part of this paper is organized as follows. The materials and methods
section describes about the problem formulation with the proposed scheduling architecture
and the proposed algorithm. The results obtained for the parameters considered are compared
with the min-min algorithm, FTMM algorithm and BSA algorithm in results and discussion
section.

3. Materials and Methods

3.1. Problem Formulation

Grid Scheduling is an important aspect of computational grid. Scheduler plays a major role
in scheduling the submitted tasks based on their requirements. The scheduling architecture is
given in Figure.1 which has a scheduler where the proposed Multi Criteria scheduling

International Journal of Advanced Science and Technology

Vol.58, (2013)

Copyright ⓒ 2013 SERSC 17

algorithm (MCSA) works. The Grid Information Service (GIS) holds the information of all
the resources such as resource id, resource availability and resource capacity, type of resource
and current load of the resource. The users submit the tasks to the grid scheduler and the grid
scheduler assigns the submitted tasks to the available resources based on load of resource, its
failure rate, resource capacity and user deadline.

Figure 1. Proposed Scheduling Architecture

Each resource differs from other resources in many ways that includes number of
processing elements, processing speed, internal scheduling policy and its load factor etc.
Similarly each job differs from other jobs by execution time, deadline, time zone etc. The
static mapping of meta tasks is done in which each machine executes one task at a time. It is
assumed that the size of the meta tasks, number of resources, expected execution time of each
task in each machine are known priori. The proposed scheduling architecture follows the
hierarchy in Figure 2. Machine is a collection of Processing Elements (PE) and it acts as a
processing entity manager. In Gridsim simulator, the resource module simulates and allocates
gridlets to available PE’s. The gridlets received are queued and then assigned to PE’s based
on resource availability time and gridlet’s expected execution time. When a gridlet is
executed, then an internal event is delivered to machine regarding the completion of gridlet.
Then the PE is freed and made available for other gridlets in queue. The selection policy is
where scheduling is to be done. This research determines the scheduling policy based on user
deadline, load of PE’s and failure rate of PE’s.

The resources are categorized as overloaded, under loaded and normally loaded based on
threshold value calculated. An ETC matrix (Expected Time to Compute) is constructed using
the EET which is the estimated execution time of task i on resource j. The experimental
results are based on Braun et al [8] wherein the scheduling problem is defined by

• A number of independent tasks to be allocated to the available grid resources.
• Number of resources is available to participate in the allocation of tasks.
• Workload of each task (MI).
• Computing capacity of each resource (MIPS)

International Journal of Advanced Science and Technology

Vol.58, (2013)

18 Copyright ⓒ 2013 SERSC

• RT (Rj) represents the ready time of the resource after completing the previously
assigned jobs.

Figure 2. Scheduling Hierarchy

3.2. Proposed MCSA Algorithm

The proposed MCSA algorithm works as follows. The gridlets are submitted to the grid
broker or scheduler. The Grid Information Service (GIS) maintains the information about all
resources. The grid scheduler gets information about the resources like load of a resource, its
availability time and capacity from GIS. Grid Scheduler receives the gridlets with user
deadline 𝑈𝐷(𝑇𝑖). The gridlet’s information such as its length in Million Instructions (MI), is
used to calculate the execution time 𝐸𝑇𝐶�𝑇𝑖 ,𝑅𝑗�of each gridlet in each of the available
resources by using the formula,

𝐸𝑇𝐶�𝑇𝑖,𝑅𝑗� =
𝐿𝑒𝑛𝑔𝑡ℎ𝑖
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗

 (1)

where
 𝐿𝑒𝑛𝑔𝑡ℎ𝑖 is the length of job in MI and
 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗 is the processing capacity of resource in MIPS.

With the ready time information 𝑅𝑇�𝑅𝑗� available for each resource at GIS, the algorithm
calculates the completion time using the formula,

𝐶𝑇�𝑇𝑖,𝑅𝑗� = 𝐸𝑇𝐶�𝑇𝑖,𝑅𝑗� + 𝑅𝑇�𝑅𝑗� (2)

International Journal of Advanced Science and Technology

Vol.58, (2013)

Copyright ⓒ 2013 SERSC 19

Information available about each resource is the communication time 𝐶𝑀𝑇(𝑇𝑖,𝑅𝑗) is used
to calculate the total completion time of each gridlet at each resource as

𝑇𝐶𝑇�𝑇𝑖,𝑅𝑗� = 𝐶𝑇�𝑇𝑖,𝑅𝑗� + 𝐶𝑀𝑇�𝑇𝑖,𝑅𝑗� (3)

The failure information of resources such as number of gridlets submitted to a resource
𝑇𝑠𝑢𝑏 and number of gridlets successfully completed 𝑇𝑠𝑢𝑐𝑐and number of gridlets not
completed successfully 𝑇𝑓 is also available in GIS which helps in calculating the failure rate
as

𝐹𝑅�𝑅𝑗� =
𝑇𝑓
𝑇𝑠𝑢𝑏

 (4)

Since the main focus is on load balancing, calculation of load of each PE, Machine and
Resource becomes essential. Load of each PE is calculated by using the weighted sum of
squares method as follows.

 𝐿𝑜𝑎𝑑(𝑃𝐸𝑖) = �∑ �𝑎𝑘𝐿𝑘2�𝑛
𝑘=1 (5)

where 𝐿𝑘 is the load attribute considered in our algorithm. The load attribute considered in
our algorithm is the CPU utilization in seconds. Hence the load of PE is given by,

𝐿𝑜𝑎𝑑(𝑃𝐸𝑖) =
∑ 𝑀𝐼𝑖𝑛
𝑗=0

𝑀𝐼𝑃𝑆𝑖 × 𝐴𝑇𝑖
 (6)

where n is the number of tasks allocated to 𝑃𝐸𝑖. Machine is the collection of PE’s and the
average load of each machine 𝑀𝑖 is calculated using the formula,

𝐴𝐿 (𝑀𝑖) =
∑ 𝐿𝑜𝑎𝑑 (𝑃𝐸𝑘)𝑛
𝑘=1

𝑛
 (7)

where n is the number of PE’s under Machine 𝑖. Resource is the collection of machines and
the average load of each resource 𝑅𝑖 is calculated by,

𝐴𝐿 (𝑅𝑖) =
∑ 𝐴𝐿 (𝑀𝑘)𝑛
𝑘=1

𝑛
 (8)

where n is the number of machines under resource 𝑖. The average load of the system is
calculated as,

𝐴𝐿 =
� 𝐴𝐿 (𝑅𝑘)𝑛

𝑘=1
𝑛

 (9)

where n is the number of resources in the system. In order to balance the load of the
resources in grid, a balance threshold Ω is defined such that the average loads of each
resource 𝐴𝐿(𝑅𝑖) to be less than the balance threshold of the system.

Ω = 𝐴𝐿 + 𝜎 (10)

where σ is the standard deviation of the load of the system which is defined as below:

𝜎 = �
∑ (𝐴𝐿 (𝑅𝑖) − 𝐴𝐿)2𝑁
𝑖=1

𝑁
 (11)

where N is the number of resources in the system. The New load of PE can be calculated
by,

International Journal of Advanced Science and Technology

Vol.58, (2013)

20 Copyright ⓒ 2013 SERSC

𝑁𝑒𝑤𝑙𝑜𝑎𝑑�𝑃𝐸𝑗� = 𝐿𝑜𝑎𝑑�𝑃𝐸𝑗� +
𝑀𝐼𝑖

𝑀𝐼𝑃𝑆𝑗 + 𝐴𝑇𝑗
 (12)

The list of resource in which the task gets completed within user deadline is collected for
each task and they are sorted based on their failure rate. Based on the balance threshold, the
resources are categorized as overloaded and underloaded and finally the load is balanced by
submitting the task to the underloaded resource. When a resource is assigned a task, the load
of each resource and system, balance threshold, failure rate and ready time are recalculated.
The same procedure is repeated for all tasks till the task list becomes empty.

3.3. Simulation Setup

The main aim of the proposed scheduling algorithm is to minimize the makespan and to
improve fault tolerance of the system proactively with balanced load of resources. Fault
tolerance is achieved by increasing the Hit rate. User Satisfaction is achieved by improving
the deadline hit count. The simulation is done with Gridsim 5.0 toolkit.

Number of Resources : 16

Number of Tasks : 512

In this work, the gridlets are assumed to be computationally intensive and the length of the
gridlet is considered random with a range of 50,000 to 1, 00,000 MI. The gridlets are assumed
to arrive randomly following a Poisson process. The gridlets are mutually independent and
can be executed by any resource that satisfies the gridlet requirements. Each resource can
execute a single gridlet at a time and no pre-emption is possible. The characteristics of
resources and the scheduling parameters considered are given in Table 1 and Table 2
respectively.

Table 1. Grid Resource Characteristics
No. of machines 1-4

No. of PE’s per machine 1-2

PE ratings 5 to 50 MIPS

Table 2. Scheduling Parameters and their Values
No. of Gridlets 512

Gridlet Length 50,000 to 1,00,000 MI

I/P file size 50 to 500 MB

O/P file size 100 to 700 MB

International Journal of Advanced Science and Technology

Vol.58, (2013)

Copyright ⓒ 2013 SERSC 21

Step 1: Get the Task_list 𝑇 of tasks submitted by the user with its user deadline 𝑈𝐷 (𝑇𝑖)
Step 2: Get the list 𝑅 of resources available in grid from GIS and initialize the counters Deadline Hit
 Count and Hit Count
Step 3: Construct 𝐸𝑇𝐶�𝑇𝑖 ,𝑅𝑗� matrix of size m × n where m represents the number of tasks and n
 represents the number of resources involved.
Step 4: For all resources 𝑅j in 𝑅, where 1≤ j ≤ n, and n denotes number of resources,
 do
 4.1: Calculate Failure rate
 4.2: Calculate Ready Time
 𝑅𝑇�𝑅𝑗� = ∑ 𝐸𝑇𝐶(𝑇𝑖 ,𝑅𝑗)𝑛

𝑖=1
 where n is the number of tasks submitted to 𝑅j.
 4.3: Calculate Load of each Processing Element, Average Load of each machine
 and Average Load of each resource
 done
Step 5: Calculate Average Load of the system and Balance Threshold
Step 6: Create a list of underloaded resources 𝑈𝑅 which has 𝐴𝐿(𝑅𝑗) < Ω.
Step 7: For each task in 𝑇𝑖 in queue and for each resource 𝑅𝑗,
 do
 7.1: Construct (𝑇𝑖 ,𝑅𝑗) , 𝐶𝑀𝑇�𝑇𝑖 ,𝑅𝑗�, 𝑇𝐶𝑇(𝑇𝑖 ,𝑅𝑗) matrix of size m×n
 done
Step 8: For all task 𝑇𝑖 in Task_list 𝑇,
 do
 8.1: Create lists 𝑈𝑇𝑖1 and 𝑈𝑇𝑖2 with resources that has 𝑇𝐶𝑇(𝑇𝑖 ,𝑅𝑗) ≤ 𝑈𝐷 (𝑇𝑖)
 and 𝑇𝐶𝑇(𝑇𝑖 ,𝑅𝑗) > 𝑈𝐷 (𝑇𝑖) respectively.
 8.2: Sort the lists 𝑈𝑇𝑖1 and 𝑈𝑇𝑖2 based on 𝐹𝑅�𝑅𝑗�of resources in ascending order
 8.3: Create lists 𝑈𝐿𝑇𝑖1 and 𝑈𝐿𝑇𝑖2 with the set of underloaded resources from
 𝑈𝑇𝑖1 and 𝑈𝑇𝑖2 respectively in order.
 8.4: If entries in 𝑈𝐿𝑇𝑖1,
 Select the first resource in the list for task 𝑇𝑖 and check for load
balancing using the equation (12) and if the load is balanced, dispatch 𝑇𝑖 to resource 𝑅𝑗 and Increment Deadline
Hit Count and Hit Count after receiving the completion status. Otherwise, select next resource and repeat step
8.4.
 else if entries in 𝑈𝐿𝑇𝑖2,
 Select the first resource in the list for task 𝑇𝑖 and check for load
balancing using the equation (12) and if the load is balanced, dispatch 𝑇𝑖 to resource 𝑅𝑗and Increment Hit Count
after receiving the completion status. Otherwise, select next resource and repeat step 8.4.
 8.5: Remove task 𝑇𝑖 from Task_list 𝑇.
 8.6: Update 𝑅𝑇�𝑅𝑗�and 𝐹𝑅�𝑅𝑗� where j is the resource to which the task 𝑇𝑖 is
 dispatched.
 done
Step 9: If there are tasks in Task_list 𝑇, Repeat steps from 4.3.
 else
 Compute 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥 {𝑅𝑇�𝑅𝑗�} and 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 = 𝑇𝑠𝑢𝑐𝑐

𝑇𝑠𝑢𝑏
 ∀ 𝑗 ∈ 𝑛

 where 𝑇𝑠𝑢𝑐𝑐 is the number of tasks successfully completed by a resource 𝑅𝑗
 without any failure and 𝑇𝑠𝑢𝑏 is the number of tasks failed to be executed by a resource 𝑅𝑗 .

 Compute Resource Utilization

 𝑅𝑈�𝑅𝑗� =
∑ 𝑀𝐼𝑖𝑛
𝑗=0

𝑀𝐼𝑃𝑆𝑗×𝐴𝑇𝑗
 × 100

 Compute Average Resource Utilization
 𝐴𝑅𝑈 = 1

𝑁
∑ 𝑅𝑈�𝑅𝑗�𝑁
𝑗=1

 endif
Algorithm 1. MCSA Algorithm

International Journal of Advanced Science and Technology

Vol.58, (2013)

22 Copyright ⓒ 2013 SERSC

4. Results and Discussion
In this section, the simulation results of the proposed algorithm are compared with the

some of the existing algorithms which are recent in scheduling with fault tolerance and
satisfying user satisfaction. The existing algorithm considered for comparison are FTMM and
BSA which are discussed in our previous work [17, 18] and the benchmark scheduling
algorithm Min-Min discussed in [8]. The proposed algorithm differs from these existing
algorithms in such a way that these algorithms do not deal with load balancing but the
proposed MCSA takes load balancing as an important factor along with those parameters
considered in the existing algorithms. The cases discussed in this simulation are forms of
consistent matrices.

- Low task and Low Machine

- Low task and High Machine

- High Task and Low Machine

- High Task and High Machine

The proposed MCSA algorithm is evaluated for makespan, hit rate, deadline hit count and
resource utilization and compared with the other three algorithms. Table 3 and Figure 3
represent the makespan comparison of the proposed MCSA and the existing Min-Min,
FTMM and BSA algorithms. The analysis show that the makespan is minimized to some
extent in most of the cases and there is a possibility of increased makespan in few cases.

Table 3. Comparison based on Makespan (in sec)
CASES MIN-MIN FTMM BSA MCSA

1

1245621

1130121

1000811

987600

2

746543

626549

554387

589070

3

1963786

1842149

1687876

1484316

4

559650

453986

342111

287605

Table 4. Comparison based on Hit Count
CASES MIN-MIN FTMM BSA MCSA

1 311 332 381 381

2 233 278 297 309

3 265 287 312 324

4 341 356 362 358

International Journal of Advanced Science and Technology

Vol.58, (2013)

Copyright ⓒ 2013 SERSC 23

Figure 3. Comparison based on Makespan (sec)

Figure 4 and Table 4 show the hit count comparison of the proposed MCSA algorithm
and the existing BSA, FTMM and Min-Min algorithm. It is inferred that the number of tasks
completed (hit count) in MCSA algorithm is more or less similar to BSA algorithm but has a
notable deviation with the other two algorithms FTMM and Min-Min.

Figure 4. Comparison based on Hit Count

Figure 5 and Table 5 show the analysis of proposed MCSA with the existing BSA,
FTMM and Min-Min based on deadline hit count, the evaluation parameter considered to
evaluate on the basis of user satisfaction. When the deadline hit count is more, it is inferred

International Journal of Advanced Science and Technology

Vol.58, (2013)

24 Copyright ⓒ 2013 SERSC

that the user satisfaction is more. The analysis shows that the user satisfaction is more with
the MCSA algorithm than the other three algorithms.

Table 5. Comparison based on Deadline Hit Count
CASES MIN-MIN FTMM BSA MCSA

1 213 238 371 372

2 148 197 283 296

3 170 226 292 302

4 231 245 296 290

Figure 5. Comparison based on Deadline Hit Count

An important parameter used in this work to analyse the load balancing strategy of the
proposed algorithm is the average resource utilization and is expressed in percentage.

Table 6. Comparison based on Average Resource Utilization
CASES MIN-MIN FTMM BSA MCSA

1 70 77 78 90

2 68 74 75 89

3 73 80 83 92

4 69 74 78 84

International Journal of Advanced Science and Technology

Vol.58, (2013)

Copyright ⓒ 2013 SERSC 25

Figure 6. Comparison based on Average Resource Utilization

Table 6 and Figure 6 illustrates the average resource utilization of the proposed MCSA is
relatively high when compared to the existing algorithms. The average percentage
improvement of four different sets of 512 tasks and 16 resources based on makespan over
BSA is 5.7%and FTMM is 18.7% and over Min-Min is 28.7%. Based on hit count, the
average percentage improvement is 0.9% over BSA, 5.8% over FTMM and 10.8% over Min-
Min.

5. Conclusion and Future Work

The proposed MCSA Algorithm implements proactive fault tolerance, user deadline and
load balancing for scheduling the jobs. Experiments have been done for makespan that serves
as a parameter for evaluating the efficiency of the algorithm and hit count that serves as the
fault tolerance parameter and deadline hit count which is a measure of user satisfaction and
finally average resource utilization that serves as the evaluation parameter for proper load
balancing. From the results and discussion section it is observed that the adoption of fault
tolerance measures and consideration of user deadline of tasks and balance threshold achieves
a better result than the existing min-min, FTMM and BSA algorithms. The proposed MCSA
algorithm considers the user deadline of each tasks and the failure rate, load of each resource
at the time of scheduling which are very important in grid environment. This can be extended
in future with factors for reducing the communication overhead of the grid system.

References
[1] A. Torkestani, “ A new approach to the job scheduling problem in computational grids”, Cluster

Computing, DOI 10.1007/s10586-011-0192-5, vol. 15, no. 3, (2012), pp. 201-210.
[2] B. Anne, C. Murray, G. Stephen and H. Jane, “Enhancing the effective utilization of Grid clusters by

exploiting on-line performability analysis”, IEEE International symposium on Cluster Computing and the
Grid (CCGRID), http://dl.acm.org/citation.cfm?id=1169483, (2005), pp. 317-324.

[3] R. Buyya, M. Murshed and D. Abramson, “A deadline and budget constrained cost-time optimization
algorithm for Scheduling task farming applications on global grids”, Proceedings of the international
conference on parallel and distributed processing techniques and applications, Las Vegas, USA, pp. 24-
27. http://arxiv.org/ftp/cs/papers/0203/0203020.pdf, (2002).

http://link.springer.com/journal/10586/15/3/page/1
http://arxiv.org/ftp/cs/papers/0203/0203020.pdf

International Journal of Advanced Science and Technology

Vol.58, (2013)

26 Copyright ⓒ 2013 SERSC

[4] D. Christopher, “Reliability in grid computing systems”, Concurrency and Computation: Practice and
Experience, John Wiley & Sons, Ltd, DOI: 10.1002/cpe.1410, (2009).

[5] A. Di Stefano and G. Morana, “ A bio-inspired distributed algorithm to improve scheduling performance
of multi-broker grids”, Springer Natural Computing, DOI 10.1007/s11047-012-9319-8, vol. 11, no. 4,
(2012), pp. 687-700.

[6] F. Favarim, D. Joni Silva Fraga, L. C. Lung and M. Correia, “ GRIDTS: A New Approach for Fault-
Tolerant Scheduling in Grid Computing”, Proceedings of Sixth IEEE International Symposium on
Network Computing and Applications, (2007), pp. 187-194.

[7] F. Favarim, D. Joni Silva Fraga, L. C. Lung, M. Correia, and J. F. Santos, “Exploiting tuple spaces to
provide fault-tolerant scheduling on computational grids”, 10th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing, (2007), pp. 403-411.

[8] I. Foster, C. Kesselman and S. Tuecke, “ The anatomy of the Grid: Enabling scalable virtual
organizations”, International Journal of High Performance Computing Applications, vol. 15, no. 2, (2001),
pp. 200-222.

[9] I. Foster, C. Kesselman, J. Nick and S. Tuecke, “The physiology of the Grid: An open Grid services
architecture for distributed systems integration”, http://www.globus.org/alliance/publications/papers.php,
(2008).

[10] I. Foster, J. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist,
R. Subramaniam, J. Treadwell and J. Von Reich, “ The open Grid services architecture”, version 1.5.
GFD.80, Open Grid Forum, (2006).

[11] P. Ghosh and S. K. Das, “Mobility-aware cost-efficient job scheduling for single-class Grid jobs in a
generic mobile Grid architecture”, Future Gener. Comput. Syst., vol. 26, (2010), pp. 1356-1367.

[12] G. Wrzesinska, R. V. van Nieuwport, J. Maassen, T. Kielmann and H. E. Bal, “ Fault-tolerance
scheduling of fine grained tasks in Grid environment”, International Journal of High Performance
Applications, vol. 20, no. 1, (2006), pp. 103-114.

[13] H. Xiaoshan, X.-H. Sun and G. Von Laszewski, “QoS Guided Min-min Heuristic for Grid Task
Scheduling”, Journal of Computer Science and Technology, (2003), pp. 442-451.

[14] J. Balasangameshwara and N. Raju, “ A hybrid policy for fault tolerant Load Balancing in grid
computing environments”, Journal of Network and Computer Applications, vol. 35, (2012), pp. 412-422.

[15] J. Lin, B. Gong, H. Liu, C. Yang and Y. Tian, “An Application Demand aware Scheduling Algorithm in
Heterogeneous Environment”, IEEE proceedings of the 11th International Conference on Computer
Supported Cooperative Work in Design, IEEE Xplore press, Melbourne, Vic, (2007), pp. 509-604.

[16] H. D. Karatza, “Job scheduling in heterogeneous distributed systems”, Journal of Systems and Software,
(1994), pp. 203-212.

[17] P. Keerthika and N. Kasthuri, “ An Efficient Fault Tolerant Scheduling Approach for Computational
Grid”, American Journal of Applied Sciences, vol. 9, no. 12, pp. 2046-2051, doi:10.3844/
ajassp.2012.2046.2051, (2013).

[18] P. Keerthika and N. Kasthuri, “An Efficient Grid Scheduling Algorithm with Fault Tolerance and User
Satisfaction”, Mathematical Problems in Engineering, Mathematical Problems in Engineering, vol.
2013, Article ID 340294, http://dx.doi.org/10.1155/2013/340294, (2013).

[19] H. Lee, D. Park, M. Hong, S.-S. Yeo, S. K. Kim and S. H Kim, “ A Resource Management System for
Fault Tolerance in Grid Computing”, IEEE International Conference on Computational Science and
Engineering, DOI 10.1109/CSE.2009.257, (2009).

[20] H. Li, M. Muskulus and L. Wolters, “Modeling job arrivals in a data-intensive grid”, proceedings of Job
Scheduling Strategies for Parallel Processing (JSSPP), (2006), pp. 210-23.

[21] M. Limaye, B. Leangsuksun, Z. Greenwood, S. L. Scott, C. Engelmann, R. Libby and K. Chanchio, “Job-
site level fault tolerance for cluster and grid environments”, Proceedings of IEEE Cluster, (2005), pp. 1-9.

[22] N. Malarvizhi and V. Rhymend Uthariaraj, “A Minimum Time to Release Job Scheduling Algorithm in
Computational Grid Environment”, IEEE Fifth International Joint Conference on INC, IMS,
IDC.http://doi.ieeecomputersociety.org/ 10.1109/NCM.2009.373, (2009).

[23] R. Medeiros, W. Cirne, M. Brasileiro and J. Sauve, “Faults in grids: why are they so bad and what can be
done about it?”, Proceedings of the 4th international workshop, (2003), pp. 18-24.

[24] M. Maheswaran, S. Ali, H. Jay Siegel, D. Hensgen, R. F. Freund, “Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems”, J. Parallel Distrib. Comput. vol. 59, (1999),
pp. 107-131.

[25] N. Fujimoto and K. Hagihara, “A comparison among grid scheduling algorithms for independent coarse-
grained tasks”, Proceedings of the 2004, International Symposium on Applications and the Internet
Workshops (SAINTW'04), vol. 26-30, (2004), pp. 674-680.

[26] R. Garg and A. Kumar Singh, “Fault Tolerance in grid computing: state of the art and open issues”,
International Journal of Computer Science & Engineering Survey (IJCSES), vol. 2, no. 1,

http://link.springer.com/journal/11047/11/4/page/1
http://link.springer.com/journal/11047/11/4/page/1
http://www.globus.org/alliance/publications
http://dx.doi.org/10.1155/2013/340294
http://link.springer.com/book/10.1007/978-3-540-71035-6
http://link.springer.com/book/10.1007/978-3-540-71035-6
http://doi.ieeecomputersociety.org/%2010.1109/NCM.2009.373

International Journal of Advanced Science and Technology

Vol.58, (2013)

Copyright ⓒ 2013 SERSC 27

DOI:10.5121/ijcses.2011.2107, (2011).
[27] C. Rosas, A. Sikora, E. Cesar, J. Jorba and A. Moreno, “Improving Performance on Data-intensive

Applications Using a Load Balancing Methodology Based on Divisible Load Theory”, International
Journal of Parallel Programming, DOI: 10.1007/s10766-012-0199-4, (2012).

[28] V. Subramani, R. Kettimuthu, S. Srinivasan and P. Sadayappan, “Distributed Job Scheduling on
Computational Grids Using Multiple Simultaneous Requests”, Proceedings of the 11th IEEE Symposium
on HPDC 2002), Edinburgh, Scotland, “www.mcs.anl.gov/~kettimut/ publications/ hpdc02.pdf”, pp. 359-
366, (2002).

[29] P. Suresh, P. Balasubramanie and P. Keerthika, “ Prioritized User Demand Approach for Scheduling Meta
Tasks on Heterogeneous Grid Environment”, International Journal of Computer Applications (0975-
8887), vol. 23, no. 1, (2011).

[30] P. Suresh and P. Balasubramanie, “User Demand Aware Scheduling Algorithm for Data Intensive Tasks in
Grid Environment”, European Journal of Scientific Research, vol. 74, no. 4, pp. 609-616,
http://www.europeanjournalofscientificresearch.com/ ISSUES/EJSR_74_4_14.pdf, (2012).

[31] P. Sures and P. Balasubramanie, “Grouping based User Demand Aware job scheduling Approach for
computational Grid”, International Journal of Engineering Science and Technology, vol. 4, no. 12,
http://www.ijest.info/docs/ IJEST12-04-12-093.pdf, (2012).

[32] T. D. Braun, H. Jay Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, B. Yao, D. Hensgen and R. F. Freund, “A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing systems”, Parallel Distrib. Comput.,
vol. 61, (2001), pp. 810-837.

[33] L.Y. Tseng, Y. H. Chin and S. C. Wang, “The anatomy study of high performance task scheduling
algorithm for Grid computing system”, Journal of Computer Standards & Interfaces, DOI:
10.1016/j.csi.2008.09.017, vo l . 31, n o . 4, (2010), pp. 713-722.

[34] V. Modiri, M. Analoui and S. Jabbehdari, “Fault tolerance in grid using Ant colony optimization and
Directed acyclic graph”, International Journal of Grid Computing & Applications,
DOI:10.5121/ijgca.2011.2102, vol. 2, no. 1, (2011).

[35] J. Wu, X. Xu, P. Zhang, C. Liu, “A novel multi-agent reinforcement learning approach for job scheduling in
Grid computing”. Future Gener, Comput. Syst. 27, pp. 430-439, (2011).

[36] F. Xhafa and A. Abraham, “ Computational models and heuristic methods for Grid scheduling
problems”, Future Gener, Comput. Syst., vol. 26, (2010), pp. 608-621.

[37] Y. Han, C. Jiang, Y. Fu and X. Luo, “ Resource scheduling algorithms for grid computing and its
modeling and analysis using Petri Net”, GCC (2), LNCS 3033, Springer, Shanghai, China, (2004), pp. 73-
80.

[38] Q. Zheng, B. Veeravalli and C. Tham, “Fault-tolerant Scheduling for Differentiated Classes of Tasks with
Low Replication Cost in Computational Grids, ACM, HPDC’07, DOI:10.1145/1272366.1272409, (2007).

http://www.mcs.anl.gov/~kettimut/
http://www.europeanjournalofscientificresearch/
http://www.europeanjournalofscientificresearch/
http://www.ijest.info/docs/
http://dx.doi.org/10.1016/j.csi.2008.09.017
http://dx.doi.org/10.1145/1272366.1272409

International Journal of Advanced Science and Technology

Vol.58, (2013)

28 Copyright ⓒ 2013 SERSC

