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Abstract 
Sorting is a commonly used operation in computer science. In addition to its main job, 

sorting is often required to facilitate some other operation such as searching, merging and 
normalization. There are many sorting algorithm that are being used in practical life as well 
as in computation. A sorting algorithm consists of comparison, swap, and assignment 
operations. Bubble sort, selection sort and insertion sort are algorithms which are easy to 
comprehend but have the worst time complexity of O(n2). In this paper enhancement of the 
selection sort and the bubble sort by eliminating some useless comparisons is presented. A 
stack is used to store the locations of the past or local maximums, which can be used in later 
iterations of these algorithms. The insertion sort is improved by reducing shift operations 
with the aid of a double sized temporary array. The new algorithms are discussed, analyzed, 
tested and executed for benchmarking along with representing results. A significant 
improvement of well above 200% is achieved. 
 

Keywords: Bubble sort, Selection sort, Insertion sort, Comparisons, Shifts, Stack, 
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1. Introduction 

One of the basic problems of computer science is sorting a list of items. It refers to the 
arranging of numerical or alphabetical or character data in statistical order (either in 
increasing order or decreasing order) or in lexicographical order (alphabetical value like 
addressee key) [1-3]. There are a number of solutions to this problem, known as sorting 
algorithms. There are several elementary and advanced sorting algorithms. Some sorting 
algorithms are simple and spontaneous, such as the bubble sort. Others, such as the quick sort 
are enormously complex, but produce super-fast results. Some sorting algorithm work on less 
number of elements, some are suitable for floating point numbers, some are good for specific 
range, some sorting algorithms are used for huge number of data, and some are used if the list 
has repeated values. Other factors to be considered in choosing a sorting algorithm include 
the programming effort, the number of words of main memory available, the size of disk or 
tape units and the extent to which the list is already ordered [4]. That means all sorting 
Algorithms are problem specific, meaning they work well on some specific problem and do 
not work well for all the problems. However, there is a direct correlation between the 
complexity of an algorithm and its relative effectiveness [5]. Many different sorting 
algorithms have been developed and improved to make sorting fast. 

The classical bubble sort, selection sort, and insertion sort are very simple algorithms, 
often included in the text books to introduce algorithms and sorting, having runtime 
complexity of Ο(n2) making them impractical to use. The selection sort has a slight better 
running time than the simplest bubble sort algorithm and worse than the insertion sort. It 



International Journal of Advanced Science and Technology 

Vol. 56, July, 2013 

 

 

14 

yields around 60% performance improvement over the bubble sort, but the insertion sort is 
over twice as fast as the bubble sort and is just as easy to implement as the selection sort [6]. 
Though other better techniques such as divide and conquer [7] exist, still there are scopes for 
fine-tuning these algorithms. Philosophy of these simple algorithms most closely matches 
human intuition [8]. They can be classified as an in-place [9] and a comparison sort [10]. 

In the classical selection sort algorithm to sort a list with n data elements n-1 passes are 
carried out. Each pass finds out the largest or the smallest data item. To do this the entire list 
is checked form the beginning until the portion of the list, which was sorted in the earlier 
passes. But, instead of looking from the start of the list in each pass, some information 
regarding the locations of the local maximum or minimum gathered and stored in the earlier 
iterations can be used to omit some useless search operations and the overall runtime can be 
reduced. The enhanced selection sort algorithm is based on this idea. The bubble sort also 
places the largest element in the proper location in each pass. As the bubble sort and selection 
sort are closely analogous, the enhancement of the bubble sort is done with the same method. 
In the classical insertion sort a sorted portion is maintained and in each pass of the algorithm 
a data item from the unsorted portion is inserted into the sorted portion from a certain side 
such that with the additional item it remains sorted. Considering just one side to insert leads 
many shift operations, which can be reduced if both sides of the sorted list is considered to 
insert a data item. The enhanced insertion sort incorporates this strategy. 

This paper is organized in the following order. In Section 2 some previous works relating 
to improvement of these sorting algorithms are discussed briefly. Section 3 introduces the 
classical versions of each algorithm followed by detailed discussion and analysis of the 
proposed enhanced algorithms. Section 5 summarizes and concludes this paper after 
discussion of the results in Section 4 that shows superiority of the new algorithms. 
 
2. Related Works 

A bidirectional variant of selection sort, sometimes called cocktail sort or shaker sort or 
dual selection sort is an algorithm, which finds both the minimum and maximum values in the 
list in every pass [11-14]. Selection sort is enhanced by reduction of swap operations in [15]. 
Bingo sort takes advantage of having many duplicates in a list. After finding the largest item, 
another pass is performed to move any other items equal to the maximum item to their final 
place [16]. Exact sort is another new variation, which locates the elements to their sorted 
positions at once [17]. To find the exact positions of elements it counts the smaller elements 
than the element, which is indented to be located. It changes elements positions just once, to 
directly their destination. It is highly advantageous if changing positions of elements is costly 
in a system. It makes too many comparisons to find positions of elements and thus is highly 
disadvantageous if comparing two elements is costly, which is the case in common. 

Other than the cocktail sort, another bi-directional approach is presented in [15]. A new 
approach is presented in [18] that works on the principle that rather than swapping two 
variables using third variable, a shift and replace procedure should be followed, which takes 
less time as compared to swapping. In [19] Oyelami’s Sort is presented that combines the 
techniques of bidirectional bubble sort with a modified diminishing increment sorting. 

The inner loop of insert sort can he simplified by using a sentinel value as discussed in 
[20]. A bidirectional approach like the binary insertion sort is presented in [21], which 
achieves time complexity of O(n1.585) for some average cases. When people run insertion sort 
in the physical world, they leave gaps between items to accelerate insertions. Gaps help in 
computers as well. This idea of gapped insertion sort discussed in [22] has insertion times of 
O(log n) with high probability, yielding a total running time of O(n log n) with high 
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probability. An end-to-end bi-directional sorting algorithm is proposed to address the 
shortcomings of the bubble sort, selection sort, and insertions sort algorithms [23]. 
 
3. The Proposed Enhanced Sorting Algorithms 

In the subsequent discussion, sorting is assumed to be in the ascending order for 
standardization. The classical algorithms are briefly described before the discussion of the 
proposed algorithms for reference and comparison. 
 
3.1. Selection Sort 
 
3.1.1. Classical Selection Sort Algorithm: The classical selection sort algorithm looks for 
the maximum value in a list and interchanges the last element with it. Then it looks for the 
second maximum value in the list. To do this it looks for the maximum value in the list 
excluding the last element, which was found in the previous step. It interchanges this value 
with the last element but one. In every step the list is shrunk by one element at the end of the 
list. These processing is continued until the list becomes of size one when the list becomes 
trivially sorted.  

In each step, to look for the maximum value the classical selection sort starts from the 
beginning of the list. It starts assuming the first element to be the maximum and tests every 
element in the list whether the current maximum is really the maximum. If it finds a greater 
value it considers that value to be the new maximum. The classical selection sort algorithm is 
listed below. 

 
Algorithm: Selection Sort (a[], length) 
Here a is the unsorted input list and length is the length of array. After completion of the 
algorithm array will become sorted. Variable max keeps the location of the maximum 
value. 
1. Repeat steps 2 to 5 until length=1 
2. Set max=0 
3. Repeat for count=1 to length 

If (a[count]>a[max]) 
Set max=count 

End if 
4. Interchange data at location length-1 and max 
5. Set length=length-1 

 
3.1.2. Concept of Enhances Selection Sort (ESSA): The steps involved in the classical 
selection sort algorithm lead to huge unnecessary comparisons and large running time. But 
the location of the previous maximum can be memorized when a new maximum is found and 
it can be exploited later on. It is guaranteed that no value in the list is larger than the former 
maximum value before the location of the former maximum. Next iteration can start from the 
location of the former maximum while looking for the maximum. However, this approach can 
be further improved. It is also guaranteed that in the range between the former maximum and 
the just found current maximum no value is greater than the former maximum. Therefore, it is 
also wastage of time to look for a value greater than the former maximum in this range. Then, 
in the next iteration it is safe for to look for the maximum from the location of the current 
maximum and can put the former maximum element at the location just before the current 
maximum value by interchanging appropriately to minimize the search space.  
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One important thing to note here that in this process multiple local maximums can be 
discovered in a single pass and all of them must be remembered to use in later passes of the 
algorithm. A stack can be used to accomplish this. When a new maximum value is found, 
there should be an interchange between the old maximum value and the value located just 
before the current maximum value and this new location of the old maximum value should be 
pushed on the stack. When the end of the list is reached, the top item in the stack is 
considered to be the location of the former maximum value. Then the latest maximum value 
is swapped with the last item and the location of the current maximum value is considered as 
the starting point in the next iteration to look for the maximum. The next pass starts by 
assigning the value at the location stored at top in the stack to the current maximum. The local 
maximums stored in the stack as indices are sorted in ascending order according to their 
discovery time. The most recently discovered local maximum is always the largest and the 
initial local maximum is the smallest among them. Figure-1 illustrates the operations and the 
relationships among them in the proposed algorithm. 

 
Figure 1. Concept of ESSA is to Memorize the Locations of the Past Maximum 

and Start from there in the Next Pass 

3.1.3. Example: Let the list 11, 3, 45, 6, 97, 62, 75, 13, 27 is to be sorted. In this list the 
maximum is 97 and it will be interchanged with the last value of the list, which is 27. If the 
classical selection sort approach is followed, the list will be like 11, 3, 45, 6, 27, 62, 75, 13, 
97 after the first pass. But the fact that before finding 97, the maximum value was 45 should 
be noticed. So it is guaranteed that there is no value greater than 45 before the location of 45 
in the list. So instead of starting from the beginning of the list, the next pass can start from the 
location of 45, removing some unnecessary searches. It is also observed that before finding 97 
the maximum value was 45. So, there is no value greater than 45 in the location range 
between 45 and the immediate past of the location of 97. Consequently, it is apparent that in 
the next iteration it is wastage of time to look for values greater than 45 before the current 
location of 97. Therefore, the next iteration can start from the current location of the value 97, 
reducing unnecessary comparisons. And 45, the former maximum, can be safely placed at the 
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immediate past location of 97 by interchanging with the current value 6. This strategy leads to 
the list having the content 3, 11, 6, 45, 27, 62, 75, 13, 97 after the first iteration and now it 
possess more degree of sorting, compared to the list generated by the classical selection sort 
approach. 

The second iteration finds the second largest item and looks for larger value than 45, 
starting from 27. It finds 62 to be the maximum and consider 45 to be the former maximum. 
Then, 75 is found to be the new maximum and 62 to be the new former maximum. By 
following the same strategy, after this iteration the updated list is 3, 11, 6, 27, 45, 62, 13, 75, 
97. In the third iteration, a larger value than 62 is looked for starting from the location of 13, 
which was the old location of the maximum 75 in the second iteration. After the third 
iteration the list will be 3, 11, 6, 27, 45, 13, 62, 75, 97. It is clearly seen that in the next 
iteration, the search should start from the location of 13 because there is no value greater than 
45 before the location of 45. The benefit of memorizing the location of the former maximum 
value when a new maximum value is found is obvious. 

Table-1 represents the content of the list and the stack in each pass or iteration of the outer 
loop of the above example with ESSA. Notice that the locations of the values are stored in the 
list instead of storing the actual values. A 0 based indexing is assumed. The values to be 
interchanged are shown in bold font and the former or local maximums are shown with an 
underline. The portion of the list sorted so far is represented by italic font. 

Table 1. Example of ESSA Working Procedure for a Random List 

Iteration List Stack Max. 
Former 
Max. 
Value 

Starting 
point of 
search 

0 11, 3, 45, 6, 97, 62, 75, 13, 27 - - - 1 
1 3, 11, 6, 45, 27, 62, 75, 13, 97 1, 3 97 45 4 
2 3, 11, 6, 27, 45, 62, 13, 75, 97 1, 4, 5 75 62 6 
3 3, 11, 6, 27, 45, 13, 62, 75, 97 1, 4 62 45 5 
4 3, 11, 6, 27, 13, 45, 62, 75, 97 1 45 11 2 
5 3, 6, 11, 13, 27, 45, 62, 75, 97 2 27 13 3 
6 3, 6, 11, 13, 27, 45, 62, 75, 97 2 13 11 3 
7 3, 6, 11, 13, 27, 45, 62, 75, 97 - 11 - 1 
8 3, 6, 11, 13, 27, 45, 62, 75, 97 0 6 - 1 

 

3.1.4. ESSA pseudo-code: 

Algorithm: ESSA(a[], length) 
Here a is the unsorted input list and length is the length of array. After completion of 
the algorithm array will become sorted. Variable max keeps the location of the 
current maximum. 
1. Repeat steps 2 to 9 until length=1 
2. If stack is empty  

Push 0 in the stack 
End if 

3. Pop stack and put in max 
4. Set count=max+1 
5. Repeat steps 6 and 7 until count<length 
6. If (a[count]>a[max]) 
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a. Push count-1 on stack 
b. Interchange data at location count-1 and max 
c. Set max=count 

End if 
7. Set count=count+1 
8. Interchange data at location length-1 and max 
9. Set length=length-1 

 
3.1.5. Analysis: 

a) Time complexity: Let the input list consists of n items. Like other sorting algorithms 
number of comparisons is used as a measure of computations required for sorting. It is 
observed in the above algorithm that the outer loop (statement 1) is always executed but the 
inner loop (statement 5) is problem instance dependent. So the complexity of this algorithm is 
not deterministic and three special situations need to be dealt for complexity analysis. 

Best case: in every pass statement 5 will be executed just once and hence the comparison 
in statement 6 will be accomplished also once and hence, T(n) = n-1 = O(n). The best-case 
complexity of the classical selection sort is O(n2). 

Worst case: in the iteration no k, when k-1 items are already sorted and n-k+1 items are 
still unsorted, n-k comparisons are required to find the largest element. Thus in this case T(n) 
= (n-1) + (n-2) +(n-3) + ……. +  3 + 2 + 1 = n(n-1)/2 = (n2-n)/2 = O(n2). 

Average case: probabilistically an item is greater than half of the items in the list and 
smaller than the other half in the list. So, in iteration k, when k-1 items are already sorted and 
n-k+1 items are still unsorted, (n-k)/2 comparisons are required to find the current maximum. 
This leads to T(n) = ((n-1) + (n-2) + (n-3)  + ……. +  3 + 2 + 1)/2 = n(n-1)/4 = (n2-n)/4 = 
O(n2). 

b) Space complexity: It is obvious that the enhanced selection sort algorithm uses a stack. 
In the worst case, the size of the stack can be as large as the size of the data array to be sorted. 
So the space complexity of the proposed algorithm is O(n). But the classical selection sort 
algorithm does not use such stack. Hence, the enhanced algorithm’s memory requirement is 
roughly double of that of the classical algorithm. But classical computers always biases for 
increased performance with the cost of some extra memory in case of time-space tradeoff 
scenarios [24]. 
 
3.2. Bubble Sort 
 
3.2.1. Classical bubble sort algorithm (EBSA): The bubble sort works by iterating down an 
array to be sorted from the first element to the last, comparing each pair of elements and 
switching their positions if necessary. This ensures the placement of the largest item in its 
proper location at the end of the list. This process is repeated as many times as necessary, 
until no swaps are needed, which indicates that the list is sorted. Since the worst case scenario 
is that the array is in reverse order, and that the first element in sorted array is the last element 
in the starting array, the most exchanges that will be necessary is equal to the length of the 
array. 

Algorithm: Bubble Sort (a[], length) 
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Here a is the unsorted input list and length is the length of array. After completion of the 
algorithm array will become sorted. Variable max keeps the location of the maximum 
value. 

1. Repeat step 2 for i = 0 to length-2  
2. Repeat step 3 for j= 0 to length-i-2 
3. If (a[j]>a[j+1]) 

Interchange a[j] and a[j+1] 
End if 

 
3.2.2. Concept of Enhanced Bubble Sort: The enhanced bubble sort exploits exactly the 
same idea of the enhanced selection sort algorithm presented earlier. In the classical bubble 
sort, in a single iteration a data item is shifted to the end until a larger item is found and in this 
case no swap operation takes place and this indicates that the element located just before the 
larger item is the largest till that location and it is guaranteed no data item beyond this can 
reach the end in the next pass. So the next pass can start from the location where no swap 
operation occurs. Figure 2 shows the operations and the relationships among them in the 
proposed algorithm. 

 
Figure 2. Concept of EBSA is to Memorize the Locations of the Local Maximum 

and Start from there in the Next Pass 

3.2.3. Example: The same input list is used here to illustrate the enhanced bubble sort 
algorithm in Table 2. Found local maximums are marked with underlines. The portion that is 
sorted till the current pass is italicized and the item just placed in its proper place is marked 
with a bold font. The bubble sort has no direct specification about maximum values and also 
omitted in this example. 
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Table 2. Example of Enhanced Bubble Sort Working Procedure for a Random 
List 

Iteration List Stack Starting point of 
search 

0 11, 3, 45, 6, 97, 62, 75, 13, 27 - 0 
1 3, 11, 6, 45, 62, 75, 13, 27, 97 1, 3 3 
2 3, 11, 6, 45, 62, 13, 27, 75, 97 1, 3, 4 4 
3 3, 11, 6, 45, 13, 27, 62, 75, 97 1, 3 3 
4 3, 11, 6, 13, 27, 45, 62, 75, 97 1 1 
5 3, 6, 11, 13, 27, 45, 62, 75, 97 2, 3 3 
6 3, 6, 11, 13, 27, 45, 62, 75, 97 2 2 
7 3, 6, 11, 13, 27, 45, 62, 75, 97 - 0 
8 3, 6, 11, 13, 27, 45, 62, 75, 97 0 0 

 
3.2.4. Pseudo-code of EBSA: 

Algorithm: EBSA (a[], length) 
Here a is the unsorted input list and length is the length of array. After completion of the 
algorithm array will become sorted. 

1. Set top = -1 
2. Repeat steps 3 to 5 for i = 0 to n-2 
3. If (top<0) 

Push 0 on stack 
End if 

4. Pop stack and put in val 
5. Repeat step 6 for j = val to n-i-2 
6. If (a[j]>a[j+1]) 

Interchange a[j] and a[j+1] 
Else 

Push j on stack 
End if 

 

3.2.5. Analysis: The same analysis for the enhanced selection sort algorithm is applicable for 
the enhanced bubble sort algorithm. That is the best-case complexity is O(n) instead O(n2) of 
the classical bubble sort algorithm. The average case and the worst-case complexity remains 
O(n2), the same as the classical version. 

Again here, the stack can grow as large as the array to be sorted. So the space complexity 
is O(n). 
 
3.3. Insertion Sort 
 
3.3.1. Classical Insertion Sort Algorithm: An insertion sort works by separating an array 
into two sections, a sorted section and an unsorted section. Initially the entire array is 
unsorted. The sorted section is then considered to be empty. The algorithm considers the 
elements in the unsorted portion one at a time, inserting each item in its suitable place among 
those already considered (keeping them sorted). To insert an item in a certain location all 
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other items up to that location needs to be shifted to the right. However, memory writes are 
costlier than memory read and many write operations are required only to place a single item 
in its proper place. 

The proper location of a new item in the sorted portion can be searched either by a linear 
search or by a binary search. Certainly, the binary insertion sort, the version using binary 
search, has better performance than the other one. Anyway, for simplicity the linear search 
version of the insertion sort is listed below. 
 

Algorithm: Insertion Sort (a[], length) 
Here a is the unsorted input list and length is the length of array. After completion of 
the algorithm array will become sorted. 
1. Repeat steps 2 to 5 for i=1 to n-1 
2. Set temp = a[i] 
3. Set j=i-1 
4. Repeat steps 4a and 4b while (temp<a[j] and j>=0) 

4a. Set a[j+1] = a[j] 
4b. Set j = j-1 

5. Set a[j+1] = temp 
 

3.3.2 Concept of Enhanced Insertion Sort Algorithm (EISA): As mentioned earlier, many 
costly write operations are necessary to insert a single item in the classical insertion sort. 
However, a linear array has two sides and both of them can be considered to insert an element 
in it. It is natural that there will be unequal number of required shifts to insert an item along 
the left or the right side. So, it would be cost effective in terms of memory writes to insert an 
item along the side which demands less number of shifts. But this has a major drawback. This 
cannot be implemented in place. That is the same array containing the list to be sorted cannot 
be used to accomplish this strategy. As data can be shifted left or right, there must be 
sufficient space in the left to hold the shifted data. This requires equal number of cells of the 
original array both in the left and the right sides. A temporary array with a double length of 
the original array can come to aid in this situation. The first item of the original array should 
be copied in the middle of the temporary array. Subsequent items would be either appended to 
the left or to the right or to be inserted along the left side or the right side of the temporary 
array according to the need.  

It is guaranteed that the temporary list is capable to hold the whole sorted array in all 
situations. In the worst cases, the sorted array will be entirely in the right or entirely in the left 
from the middle position of the temporary array. However, the partial content of the 
temporary array that represents the sorted array must be copied back to the original array at 
the end to give output to the user. Therefore starting and ending locations of the sorted array 
in the temporary list must be maintained and updated in each pass. Figure 3 shows the 
working principle of the proposed algorithm for two consecutive iterations. 
 
3.3.3. Example: Again the previous input list is used here to describe the enhanced insertion 
sort in table-3. The enhanced sort is not in place. A temporary array is used. Initially the list is 
empty and the first item is copied in the middle. Then each element of the original array is 
considered one after another to insert into the temporary list. Then number of shifts required 
from the left side and from the right side is computed. The side with the minimum shifts is 
chosen. For a tie situation the left side is chosen to break it. Data item just inserted is shown 
in bold in the temporary list. 
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Figure 3. Concept of EISA is to insert into the Side giving Minimum Data Shifts 

Table 3: Example of Enhanced Insertion Sort Working Procedure for a Random 
List 

i Data Temporary List Shifts Loc L R 
0 11 -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, - 0 0 9 
1 3 -, -, -, -, -, -, -, -, -, 11, -, -, -, -, -, -, -, - 0 1 8 
2 45 -, -, -, -, -, -, -, -, 3, 11, -, -, -, -, -, -, -, - 2 0 10 
3 6 -, -, -, -, -, -, -, -, 3, 11, 45, -, -, -, -, -, -, - 1 2 8 
4 97 -, -, -, -, -, -, -, 3, 6, 11, 45, -, -, -, -, -, -, - 4 0 11 
5 62 -, -, -, -, -, -, -, 3, 6, 11, 45, 97, -, -, -, -, -, - 4 1 11 
6 75 -, -, -, -, -, -, -, 3, 6, 11, 45, 62, 97, -, -, -, -, - 5 1 12 
7 13 -, -, -, -, -, -, -, 3, 6, 11, 45, 62, 75, 97, -, -, -, - 3 4 9 
8 27 -, -, -, -, -, -, 3, 6, 11, 13, 45, 62, 75, 97, -, -, -, - 4 4 9 
- - -, -, -, -, -, 3, 6, 11, 13, 27, 45, 62, 75, 97, -, -, -, - - - - 

 
3.3.4. Pseudo-code of EISA: 

Algorithm: EISA (a[], length) 
Here a is the unsorted input list and length is the length of array and b is a temporary 
array of size 2*length. After completion of the algorithm array will become sorted. 

1. Set left = length 
2. Set right = length 
3. Set b[left] = a[0] 
4. Repeat steps 5 to 9 for i = 1 to length-1 
5. If (a[i]>=b[right]) 

5a. Set right = right+1 
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5b. Set b[right]=a[i] 
5c. Go to step 4 

End if 
6. If(a[i]<=b[left]) 

6a. Set left = left-1 
6b. Set b[left] = a[i]; 
6c. Go to step 4 

End if 
7. Set loc = right 
8. Repeat while (a[i]<b[loc]) 

Set loc = loc-1; 
9. If (right-loc<loc-left) 

9a. Set j=right+1 
9b. Repeat steps 9bx and 9by while (j>loc+1) 

9bx. Set b[j]=b[j-1] 
9by. Set j=j-1 

9c. Set right=right+1 
9d. Set b[loc+1]=a[i] 

 
Else 

9a. Set j=left-1 
9b. Repeat step 9bx and 9by while (j<loc) 

9bx. Set b[j]=b[j+1] 
9by. Set j=j+1 

9c. Set left = left-1 
9d. Set b[loc] = a[i] 

End if 
10. Repeat steps 10a and 10b for i = 0 to n-1 

10a. Set a[i]=b[left] 
10b. Set left = left+1 

 
3.3.5. Analysis: The enhancement of the proposed algorithm is by reducing shift operation, 
which does not necessarily reduce any comparisons. Hence, the time complexity of the 
enhanced insertion sort is exactly same as the classical version, which are O(n), O(n2), and 
O(n2) for the best, average, and the worst case respectively. 

Here, a temporary array of double length of the list to be sorted is used. So the space 
complexity is 2n or O(n). 
 
4. Results and Discussions 

Figure 4 illustrates the comparison of performance of the enhanced and classical version 
along with the cocktail sort or shaker sort or the so-called dual selection sort in terms of the 
time required to sort a list with random data, which represents the average case. The 
comparison with the insertion sort shows the degree of improvement by the enhancement of 
the selection sort. The bingo sort and exact sort are avoided in this discussion as they are 
limited to some special situations and may perform worse than the classical selection sort in 
other contexts. The measurements are taken on a 2.4 GHz Intel Core 2 Duo processor with 2 
GB 1067 MHz DDR3 memory machine with OS X version 10.6.8 platform. It depicts the 
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improved performance in terms of execution time. It shows a performance improvement of 
around 220-230%for random or reversely sorted list of any size to be sorted.  

Similarly, the same strategy of memorizing the locations of the local maximum to reduce 
useless comparisons can be applied to the classical bubble sort algorithm. Consequently, the 
sorting time is roughly halved, as clearly seen in Figure-5. No other algorithm is compared in 
this context as bubble sort is the worst among the discussed trio and only the enhancement 
with respect to the classical algorithm is the main concern. 

Figure 6 represents the performance gain by the claimed improvement. Both the linear 
search and binary search versions are included in the comparison. The binary insertion sort 
uses the least time to find the proper location of the data item to be inserted and spends most 
of the time to shift other data items. Hence, the enhancement effect of the proposed algorithm 
on the binary insertion sort is larger than the linear search version, which is evident from the 
result. Moreover, the enhancement of the linear search version makes it almost equal efficient 
as the binary insertion sort. 

 
Figure 4. Comparison of Performance with Respect to Sorting Time for a 

Random List 

 

Figure 5. Improving the Bubble Sort with the Same Technique 
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Figure 6. Performance of Different Insertion Sort Algorithms 

5. Conclusion 
The proposed enhancements have a significant improvement over the classical algorithms. 

This substantial improvement is achieved by avoiding unnecessary comparisons, which are 
considered the performance bottleneck in searching or sorting and data shifts, which requires 
costly memory writes. It shows that avoiding or minimizing either certain comparisons or 
certain swaps or data movements can enhance typical inefficient algorithms. 

This paper shows advantages of the proposed strategies with the three major simple and 
inefficient algorithms selection sort, bubble sort, and insertion sort, representing three broad 
classes selection, exchange and insertion based sorting algorithms. Other popular sorting 
algorithms such as the quick sort, the heap sort and shell sort from these categories have the 
potentiality to be improved by using the proposed approaches. These methods and the 
mentioned algorithms deserve future research. 
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