
International Journal of Advanced Science and Technology

Vol. 56, July, 2013

1

CAP Theorem between Claims and Misunderstandings: What is to
be Sacrificed?

Balla Wade Diack1, Samba Ndiaye1 and Yahya Slimani2

1 Department of Mathematics and Informatics
Cheikh Anta Diop University of Dakar

2 Department of Informatics, El Manar University of Tunis
balla.diack@ucad.edu.sn, samba.ndiaye@ucad.edu.sn

yayha.slimani@fst.rnu.tn

Abstract
Modern large distributed Systems at wide scale have adopted new types of databases that

are not subject to the features which ensure strong Consistency. In this paper, we discuss the
CAP theorem, its evolution and its influence on these systems. After, we talk about the
misunderstandings and problems aroused by this theorem. Finally, we give the updates on
CAP brought by some researchers.

Keywords: CAP; PACELC; liveness; safety; replication; latency

1. Introduction

Commercial relational database management systems from vendors such as Oracle, IBM,
Sybase and Microsoft have been the default home for computational data. However, with the
phenomenal growth of web-generated data, this conventional way of storing data has
encountered a formidable challenge. Because the traditional way of handling petabytes of
data with a relational database in the back-end does not scale well, managing this
phenomenon referred to as the Bigdata challenge has become problematic. [6].

To achieve these goals, many people are convinced that they must harm - temporarily - the
consistency of the Data on a single-copy to ensure high Availability of Data. They are all
based on the CAP theorem to justify their conviction. What is it about? In this work, we first
talk about the CAP theorem and his proof. After we expose the criticisms on CAP, the
misunderstandings and also some claims not always verified. After we point on Brewers
update on his theorem and various opinions and thoughts about CAP contributed by several
researchers.

2. The CAP Theorem

In 1997, Fox and al. released a paper in which they show the need to reconsider the ACID
constraints (Atomicity, Consistency, Isolation, and Durability) for building cluster-based
scalable network services that encapsulates the following requirements: incremental
scalability and overflow growth provisioning 24x7 availability through fault masking, and
cost-effectiveness. Thus, they suggested BASE properties: Basically Available, Soft State
and Eventual Consistency. BASE semantics allow us to handle partial failure in clusters
with less complexity and cost. For example, where ACID requires durable and
consistent state across partial failures, BASE semantics often allows us to avoid
communication and disk activity or to postpone it until a more convenient time. BASE
semantics greatly simplify the implementation of fault tolerance and availability and

mailto:balla.diack@ucad.edu.sn
mailto:samba.ndiaye@ucad.edu.sn
mailto:yayha.slimani@fst.rnu.tn

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

2

permit performance optimizations within our framework that would be precluded by
ACID [8].

- Basically Available: Replication premise to reduce the likelihood of data unavailability
and sharding, or partitioning allows the data among many different storage servers, to
make any remaining failures partial. The result is a system that is always available,
even if subsets of the data become unavailable for short periods of time.

- Soft state: While ACID systems assume that data consistency is a hard requirement,
here systems allow data to be inconsistent and relegate designing around such
inconsistencies to application developers.

- Eventually consistent: Although applications must deal with instantaneous consistency,
these systems ensure that at some future point in time the data assumes a consistent
state. In contrast to ACID systems that enforce consistency at transaction commit,
consistency is guaranteed only at some undefined future time.

The strong CAP Principle (strong Consistency, high Availability and Partition resilience)
first appeared in a paper written by researchers of Berkeley University that established
cluster-based wide area systems. The CAP formulation makes explicit the trade-offs in
designing distributed infrastructure applications.

- CA without P: Databases that provide distributed transactional semantics can only do
so in the absence of a network partition separating server peers.

- CP without A: In the event of a partition, further transactions to an ACID database
may be blocked until the partition heals, to avoid the risk of introducing merge
conflicts (and thus inconsistency).

- AP without C: HTTP Web caching provides client/server partition resilience by
replicating documents, but a client-server partition prevents verification of the
freshness of an expired replica [9].

2.1. Yield and Harvest [2, 9]

There’s two metrics for improving availability: yield and harvest. Yield is the probability
of completing a request. It is typically measured in ‘nines’ (i.e. ‘four nines availability’ means
a completion probability of 0.9999). Harvest measures the fraction of the data reflected in the
response, i.e. the completeness of the answer to the query. In the presence of faults there is a
tradeoff between providing no answer (reducing yield) and providing an imperfect answer
(maintaining yield, but reducing harvest). Some applications do not tolerate harvest
degradation because any deviation from the single well defined correct behavior renders the
result useless. Other applications tolerate graceful degradation of harvest [2, 9].

2.1.1. Yield: The traditional metric for availability is uptime, which is the fraction of time a
site is handling traffic, uptime is typically measured in nines.

uptime = (MTBF – MTTR)/MTBF [2]

MTBF: meantime-between-failure and MTTR: meantime-to repair

yield = queries completed/queries offered [2]

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

3

Numerically, this is typically very close to uptime, but it is more useful in practice because
it directly maps to user experience and because it correctly reflects that not all seconds have
equal value. Being down for a second when there are no queries has no impact on users or
yield, but reduces uptime. Similarly, being down for one second at peak and off-peak times
generates the same uptime, but vastly different yields because there might be an order-of-
magnitude difference in load between the peak second and the minimum-load second. Thus
we focus on yield rather than uptime.

2.1.2. Harvest: Query completeness can be measured: how much of the database is reflected
in the answer. Following fraction is defined as the harvest of the query:

harvest = data available/complete data [2]

A perfect system would have 100 percent yield and 100 percent harvest. That is, every

query would complete and would reflect the entire database. The key insight is that we can
influence whether faults impact yield, harvest, or both.

Replicated systems tend to map faults to reduced capacity (and to yield at high
utilizations), while partitioned systems tend to map faults to reduced harvest, as parts of the
database temporarily disappear, but the capacity in queries per second remains the same [2].

2.2. Brewer’s Conjecture

2.2.1. PODC keynote: One year later; when presenting a keynote at PODC Symposium, E.
Brewer, one of researchers mentioned above, made the following conjecture: “It is impossible
for a web service to provide the three following guarantees : Consistency, Availability and
Partition-tolerance”.[1] Two years later, Gilbert and Lynch gave a more formal definition to
Brewer’s Conjecture in [4].

Consistency: With atomic or linearizable consistency there must exist a total order on all
operations such that each operation looks as if it were completed at a single instant. This is
equivalent to requiring requests of the distributed shared memory to act as if they were
executing on a single node, responding to operations one at a time.

Availability: Every request received by a non-failing node in the system must result in a
response. That is, any algorithm used by the service must eventually terminate. When
qualified by the need for partition tolerance, this can be seen as a strong definition of
availability: even when severe network failures occur, every request must terminate.

Partition tolerance: The network will be allowed to lose arbitrarily many messages sent
from one node to another. No set of failures less than total network failure is allowed to cause
the system to respond incorrectly [4].

2.2.2. Proof: CAP was proved four years after his enunciation by Gilbert and Lynch. Their
proof was illustrated by J. Browne as in Figures 1 to 3.

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

4

Figure 1. Two Nodes Sharing a Piece of Data V [24]

Figure 2. Consistency and Availability in System in which there’s No Partitions
[24]

Figure 3. Lack of Consistency in System in which there’s Partitions [24]

The diagram above shows two nodes in a network, N1 and N2. They both share a piece of
data V, which has a value V0. Running on N1 is an algorithm called A which we can consider
to be safe, bug free, predictable and reliable. Running on N2 is a similar algorithm called B. A
writes new values of V and B reads values of V (Figure 1).

Whether there’s no partition: first A writes a new value of V, which we'll call V1. (2) Then
a message (M) is passed from N1 to N2 which updates the copy of V there. (3) Now any read
by B of V will return V1 (Figure 2).

If the network partitions (that is messages from N1 to N2 are not delivered) then N2
contains an inconsistent value of V when step (3) occurs (Figure 3).

Scale this is up to even a few hundred transactions and it becomes a major issue. If M is an
asynchronous message then N1 has no way of knowing whether N2 gets the message. Even
with guaranteed delivery of M, N1 has no way of knowing if a message is delayed by a
partition event or something failing in N2. Making M synchronous doesn't help because that
treats the write by A on N1 and the update event from N1 to N2 as an atomic operation, which
gives us the same latency issues we have already talked about (or worse). Gilbert and Lynch
also prove that even in a partially-synchronous model (with ordered clocks on each node)
atomicity cannot be guaranteed.

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

5

So CAP tells us that if we want A and B to be highly available and we want our nodes N1
to Nk (where k could be hundreds or even thousands) to remain tolerant of network partitions
(lost messages, undeliverable messages, hardware outages, process failures) then sometimes
we are going to get cases where some nodes think that V is V0 and other nodes will think that
V is V1 [4, 24].

3. Problems, Misleadings and Claims on the CAP Theorem

The CAP theorem was not subject of discussion for over a decade, but since four years, he
started arouse controversy. This is due to the fact that the NoSQL Community has used it as
justification for giving up consistency. In early April 2010, some aware researchers drew
attention to this simplistic conception of the CAP theorem. Thus, Abadi D., Stonebreaker M.
and Hale C. have reported confusion about the CAP theorem [17, 18, 19, 20]. And they were
preceded by Julian Browne in 2009, in a blog post; he was the first to report what is behind all
the fuss about CAP [24].

3.1. Errors on the Conception of Eventual Consistency

The tradeoff in a Distributed System on the web depends on what caused a break in the
network. In fact, a typical hardware model is a collection of local processing and storage
nodes assembled into a cluster using LAN networking. The clusters, in turn, are wired
together using WAN networking. CAP theorem does not apply at all in the following cases:

- The application performed one or more incorrect updates. The database must be
backed up to a point before the offending transaction(s), and subsequent activity
redone.

- The DBMS crashed at a processing node. Executing the same transaction on a
processing node with a replica will cause the backup to crash (Bohr bugs).

- There’s a disaster. The local cluster is wiped out by a flood, earthquake, etc. The
cluster no longer exists.

In the first two scenarios, availability is impossible to achieve. Also, replica consistency is
meaningless; the current DBMS state is simply wrong. For the latter scenario error will be
recoverable if a local transaction is only committed after the assurance that the transaction has
been received by another WAN-connected cluster. Hence, eventual consistency cannot be
guaranteed, because a transaction may be completely lost if a disaster occurs at a local cluster
before the transaction has been successfully forwarded elsewhere.

The fall of a node within a cluster (OS failure, mechanical failure local network
outage - very rare) is easily manageable now with failover.

A network failure in the WAN connecting clusters together. The WAN failed and
clusters can no longer all communicate with each other. There is enough redundancy
engineered into today’s WANs that a partition is quite rare. Moreover, the most likely
WAN failure is to separate a small portion of the network from the majority. In this
case, the majority can continue with straightforward algorithms, and only the small
portion must block. Hence, it seems unwise to give up consistency all the time in
exchange for availability of a small subset of the nodes in a fairly rare scenario. In
summary, one should not throw out the C so quickly, since there are real error scenarios
where CAP does not apply and it seems like a bad tradeoff in many of the other
situations [18].

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

6

3.2. PACELC instead of CAP [10]

D. Abadi drew attention to the error associated with trilogy implied by the CAP
theorem. CAP implies that there are three types of distributed systems: CA (consistent
and available, but not tolerant of partitions), CP (consistent and tolerant of network
partitions, but not available), and AP (available and tolerant of network partitions, but
not consistent).

The definition of CP looks incoherent: “consistent and tolerant of network partitions,
but not available”; the way that this is written makes it look like such as system is
never available - a clearly useless system. Obviously this is not really the case; rather,
availability is only sacrificed when there is a network partition. In practice, this means
that the roles of the A and C in CAP are asymmetric. Systems that sacrifice consistency
(AP systems) tend to do so all the time, not just when there is a network partition. So,
the asymmetry of A and C make problem.

The second problem in CAP is that, there is no practical difference between CA
systems and CP systems. CP systems give up availability only when there is a network
partition whether CA systems are “not tolerant of network partitions” in other words
they lose availability if there is a partition. Hence CP and CA are essentially identical.
So in reality, there are only two types of systems: CP/CA and AP. Having three letters
in CAP and saying you can pick any two does nothing but confuse this point.

Even more serious than the above, the main problem with CAP is that it focuses
everyone on a consistency/availability tradeoff, resulting in a perception that the reason
why NoSQL systems give up consistency is to get availability. But this is far from the
case (see Yahoo’s NoSQL system called PNUTS) [16, 20].

PNUTS give up both consistency and availability while CAP says you only have to
give up just one! It relaxes consistency by only guaranteeing “timeline consistency”
where replicas may not be consistent with each other but updates are guaranteed to be
applied in the same order at all replicas. However, they also give up availability - if the
master replica for a particular data item is unreachable, that item becomes unavailable
for updates (when focusing on the default system described in the original PNUTS
paper).

The reason is that CAP is missing latency (L). Yahoo’s PNUTS gives up consistency
not for the goal of improving availability, but it is to lower latency. Keeping replicas
consistent over a wide area network requires at least one message to be sent over the
WAN in the critical path to perform the write. Unfortunately, a message over a WAN
significantly increases the latency of a transaction (on the order of hundreds of
milliseconds), a cost too large for many Web applications that businesses like Amazon
and Yahoo need to implement. Consequently, in order to reduce latency, replication
must be performed asynchronously. This reduces consistency (by definition). In
Yahoo’s case, their method of reducing consistency (timeline consistency) enables an
application developer to rely on some guarantees when reasoning about how this
consistency is reduced, but consistency is nonetheless reduced.

So, CAP should really be PACELC. Thus, if there is a partition (P) how does the
system tradeoff between availability and consistency (A and C); else (E) when the
system is running as normal in the absence of partitions, how does the system tradeoff
between latency (L) and consistency (C)?

Systems that tend to give up consistency for availability when there is a partition
give up also consistency for latency when there is no partition. This is the source of the
asymmetry of the C and A in CAP and this confusion is not present in PACELC. For
example, Amazon’s Dynamo (and related systems like Cassandra and SimpleDB) are

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

7

PA/EL in PACELC - upon a partition, they give up consistency for availability; and
under normal operation they give up consistency for lower latency. Giving up C in both
parts of PACELC makes the design simpler - once the application is configured to be
able to handle inconsistencies, it makes sense to give up consistency for both
availability and lower latency. Fully ACID systems (VoltDB/H-Store and Megastore)
are PC/EC in PACELC. They refuse to give up consistency, and will pay the
availability and latency costs to achieve it.

However, there are some interesting counterexamples where the C’s of PACELC are
not correlated. One such example is PNUTS, which is PC/EL in PACELC. In normal
operation they give up consistency for latency; however, upon a partition they don’t
give up any additional consistency (rather they give up availability) [13, 16].

In conclusion, rewriting CAP as PACELC removes some confusing asymmetry in
CAP, and comes closer to explaining the design of NoSQL systems [10, 16, 20].

3.3. You Can’t Sacrifice Partition Tolerance [19]

Developers of systems which claim to be CA do not understand the CAP theorem and
its implications. Partition tolerance seems to be the part that most people
misunderstand.

For a distributed system to not require partition-tolerance it would have to run on a
network which is guaranteed to never drop messages (or even deliver them late) and
whose nodes are guaranteed to never die (what doesn’t exist).

Partitions (failures) do happen, and the chance that any one of your nodes will fail jumps
exponentially as the number of nodes increases:

P(any fail.) = 1 – P(individual node not failing)number of nodes

If a single node has a 99.9% chance of not failing in a particular time period, a cluster of
100 has a 90.5% chance not failing. In other words, you’ve got around a 10% chance that
something will go wrong. Therefore, the question you should be asking yourself is: “In the
event of failures, which will this system sacrifice, consistency or availability? ”

3.3.1. Choosing Consistency over Availability: Here system will preserve the guarantees of
its atomic reads and writes by refusing to respond to some requests. It may decide to shut
down entirely (like the clients of a single-node data store), refuse writes (like Two-Phase
Commit), or only respond to reads and writes for pieces of data whose “master” node is inside
the partition component (like Membase). There are plenty of things (atomic counters, for one)
which are made much easier (or even possible) by strongly consistent systems. They are a
perfectly valid type of tool for satisfying a particular set of business requirements.

3.3.2. Choosing Availability over Consistency: The system will respond to all requests,
potentially returning stale reads and accepting conflicting writes. These inconsistencies are
often resolved via causal ordering mechanisms like vector clocks and application-specific
conflict resolution procedures. There are plenty of data models which are amenable to conflict
resolution and for which stale reads are acceptable and for which unavailability results in
massive bottom-line losses. (Amazon’s shopping cart system is the canonical example of a
Dynamo model).

3.3.3. Proof that you cannot have Consistency and Availability simultaneously: Given a
distributed system using three nodes: A, B, and C, and which claims to be both consistent and
available in the face of network partitions; a misfortune partition the system into two

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

8

components: {A,B} and {C}. In this state, a write request arrives at node C to update the
single piece of data. That node only has two options: (1) Accept the write, knowing that
neither A nor B will know about this new data until the partition heals. (2) Refuse the write,
knowing that the client might not be able to contact A or B until the partition heals. You
cannot choose both. To claim to do so is claiming either that the system operates on a single
node (and is therefore not distributed) or that an update applied to a node in one component of
a network partition will also be applied to another node in a different partition component
magically.

3.3.4. Conclusion: Unavoidably, your system will experience enough faults that it will have
to make a choice between reducing yield (i.e., stop answering requests) and reducing harvest
(i.e., giving answers based on incomplete data). This decision should be based on business
requirements. Instead of CAP, you should think about your availability in terms of yield
(percent of requests answered successfully) and harvest (percent of required data actually
included in the responses) and which of these two your system will sacrifice when failures
happen [19].

4. The CAP Theorem Fifty Years Later

IEEE Computer magazine came out with an issue largely devoted to a 12-year
retrospective (or exactly 15 years) of the CAP theorem and contains several articles (about
six) from distributed systems researchers that contribute about CAP [20]. The most important
item of this issue is that of the author, after his theorem has begun to raise the controversy.

4.1. How Rules have changed [3]

Designers and researchers have used (and sometimes abused) the CAP theorem as a reason
to explore a wide variety of novel distributed systems. Brewer noticed particularly that
NoSQL movement has applied it as an argument against traditional databases and explained
how the CAP theorem was misunderstood. The modern CAP goal should be to maximize
combinations of consistency and availability that make sense for the specific application,
according to him.

The “2 of 3” view is misleading on several fronts:

• First, because partitions are rare, there is little reason to forfeit C or A when the
system is not partitioned.

• Second, the choice between C and A can occur many times within the same system at
very fine granularity; not only can subsystems make different choices, but the choice can
change according to the operation or even the specific data or user involved.

• Third, all three properties are more continuous than binary. Availability is obviously
continuous from 0 to 100 percent, but there are also many levels of consistency, and even
partitions have nuances, including disagreement within the system about whether a partition
exists.

Because partitions are rare, CAP should allow perfect C and A most of the time, but when
partitions are present or perceived, the strategy which have three steps should be used: detect
partitions, enter an explicit partition mode that can limit some operations, and initiate a
recovery process to restore consistency and compensate for mistakes made during a partition.

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

9

It’s to manage partitions very explicitly, including not only detection, but also a specific
recovery process and a plan for all of the invariants that might be violated during a partition.
This management approach has three steps:

- detect the start of a partition,

- enter an explicit partition mode that may limit some operations,

- initiate partition recovery when communication is restored which aims to restore
consistency and compensate for mistakes the program made while the system was
partitioned.

Figure 4. A Partition’s Evolution [3]

Normal operation is a sequence of atomic operations, thus partitions always start between
operations. Once the system times out, it detects a partition, and the detecting side enters
partition mode. Thus, the other side communicates as needed and either this side responds
correctly or no communication was required; either way, operations remain consistent.
However, because the detecting side could have inconsistent operations, it must enter
partition mode. Once the system enters partition mode, two strategies are possible. The first is
to limit some operations, thereby reducing availability. The second is to record extra
information about the operations that will be helpful during partition recovery.

We should decide what operations we are going to limit while maintaining the invariants of
the system. The best way to track the history of operations on both sides is to use version
vectors, which capture the causal dependencies among operations. The vector’s elements are
a pair (node, logical time), with one entry for every node that has updated the object and the
time of its last update. Given the version vector history of both sides, the system can easily
tell which operations are already in a known order and which executed concurrently. [21]
proved that this kind of causal consistency is the best possible outcome in general if the
designer chooses to focus on availability.

The designer must solve two hard problems during recovery: (1) the state on both sides
must become consistent, and (2) there must be compensation for the mistakes made during
partition mode. Although the general problem of conflict resolution is not solvable, in
practice, designers can choose to constrain the use of certain operations during partitioning so
that the system can automatically merge state during recovery. Delaying risky operations is
one relatively easy implementation of this strategy. Using commutative operations is the
closest approach to a general framework for automatic state convergence, Marc Shapiro and
colleagues at INRIA has improved the use of commutative operations for state convergence
by developing commutative replicated data types (CRDTs), a class of data structures that

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

10

provably converge after a partition, and describe how to use these structures to: (1) ensure
that all operations during a partition are com-mutative, or (2) represent values on a lattice and
ensure that all operations during a partition are monotonically increasing with respect to that
lattice [22, 23].

Conclusion: System designers should not blindly sacrifice consistency or availability when
partitions exist. They can optimize both properties through careful management of invariants
during partitions. As newer techniques, such as version vectors and CRDTs, move into
frameworks that simplify their use, this kind of optimization should become more wide-
spread. However, unlike ACID transactions, this approach requires more thoughtful
deployment relative to past strategies, and the best solutions will depend heavily on details
about the service’s invariants and operations [3, 7].

4.2. Other New Issues

S. Gilbert and N. Lynch reviewed the Cap theorem and stated it as follows: “In a network
subject to communication failures, it is impossible for any web service to implement an
atomic read/write shared memory that guarantees a response to every request”. They
conceptualized CAP tradeoff between safety (nothing bad ever happens) and liveness
eventually (something good happens) i.e. it is impossible of guaranteeing the safety and
liveness consensus in an unreliable distributed system. They explained how practically
systems tradeoff between Availability and Consistency maximizing the goal for each of the
two features. They concluded by discussing on CAP influence on Future Systems, and
explained that we need new theoretical insights to address new challenges as Scalability,
Tolerating attacks, Mobile wireless Network [5].

In “CAP and Cloud Data Management,” R. Ramakrishnan points out that coordinating all
updates through a master may have obvious performance and availability implications.
PNUTS alleviates these issues by automatically migrating the master to be close to the
writers. As this makes the practical impact on performance and availability insignificant for
Yahoo’s applications because of localized user access patterns.

Finally, in “Overcoming CAP with Consistent Soft-State Replication,” Kenneth P. Birman
and his coauthors advocate for even stronger consistency inside the datacenter, where
partitions are rare. They show that in this setting, it is possible to achieve low latency and
scalability without sacrificing consistency [6, 14].

5. Conclusion

The Brewer conjecture better known under the designation of the CAP theorem has
experienced a resurgence of interest with the affluence of new types of databases that use it to
justify the relaxation of the strong consistency. Awakened mind notified showed that release
consistency in a widely distributed environment does not necessarily guarantee a high
availability. In this paper we shown that there’s not a binary about CAP and that people want
all these properties together, but it is the reality that prevents them from getting it.

The networked world has changed significantly in the last ten years, creating new
challenges for system designers, and new areas in which these same inherent tradeoffs can be
explored. So, new techniques for coping with the problem in real-world systems are needed.

• Scalability: A system is scalable if it can grow efficiently, using new resources efficiently
to handle more load. There appear to be inherent trade-offs between scalability and
consistency. For example, in order to efficiently use new resources, there must be

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

11

coordination among those resources; the consistency required for this coordination appears
subject to the CAP theorem trade-offs. Studying this question may help to explain why even
within a datacenter, where there are rarely partitions, it seems difficult to efficiently scale
strongly consistent protocols?

• Tolerating attacks: The CAP Theorem focuses on network partitions: sometimes, some
servers cannot communicate reliably. Increasingly, however, we are seeing more severe
attacks on networks. For example, denial-of-service attacks are becoming a near continuous
threat to everyday network operations. A denial-of-service attack, however, cannot simply be
modeled as a network partition. Similarly, we are seeing problems with malicious users
hacking servers and otherwise disrupting major internet services. Tolerating these more
problematic forms of disruption requires a somewhat different understanding of the
fundamental consistency/availability trade-offs.

• Mobile wireless networks: The CAP Theorem initially focused on wide-area internet
services. Today, however, a significant percentage of internet traffic is initiated by mobile
devices. Many of the same trade-offs explored in the context of the CAP Theorem also hold
in mobile networks – and many of the problems are even harder to resolve. Notably, wireless
communication is notoriously unreliable. The key problem that motivated the CAP Theorem
was the frequency of semi-stable partitions that change every few minutes. In a wireless
networks, partitions are less common. However, unpredictable message loss is very common,
and message latencies can vary significantly. In addition, the types of applications being
deployed in wireless networks may be somewhat different. The CAP Theorem was motivated
by internet search engines and e-commerce web sites. There is a new generation of wireless
applications, however, that tend to focus on different priorities: geography and proximity are
critical; social interactions are primary; and privacy has a somewhat more immediate
meaning. For example, consider foursquare, an application in which users check-in to
locations, and initiate comments and discussion based on where they are. By re-examining the
CAP Theorem in the context of wireless networks, we may hope to better understand the
unique trade-offs that occur in these types of scenarios [5].

Acknowledgements

We thank the Database and Datamining group members of the Doctoral School of
Mathematics and Computer Science at UCAD for their contribution to our research.

References
[1] E. Brewer, “Towards Robust Distributed Systems”, Portland, Oregon, Keynote at the ACM Symposium on

Principles of Distributed Computing (PODC) on (2000) July 19.
[2] E. Brewer, “Lessons from Giant-Scale Services”, IEEE Internet Computing, (2001) July-August, pp.46-55.
[3] E. Brewer, “Pushing the CAP: Strategies for Consistency and Availability”, Computer, (2012) February, pp.

23-29.
[4] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-

Tolerant Web Services”, ACM SIGACT News, (2002) June, pp. 51-59.
[5] S. Gilbert and N. Lynch, “Perspectives on the CAP theorem”, IEEE Computer Society, vol. 45, no. 2, (2012)

February, pp. 30-36.
[6] S. S. Y. Shim, “CAP theorem’s growing impact”, IEEE Computer Society, vol. 45, no. 2, pp. 20-21, (2012)

February.
[7] K. Birman, Q. Huang and D. Freedman, “Overcoming the ‘D’ in CAP: Using Isis2 to Build Locally

Responsive Cloud Services,” Computer, (2011) February, pp. 50-58.
[8] A. Fox, “Cluster-Based Scalable Network Services”, Proc. 16th ACM Symposium. Operating Systems

Principles (SOSP 97), ACM, (1997), pp. 78-91.

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

12

[9] A. Fox and E. A. Brewer, “Harvest, Yield and Scalable Tolerant Systems”, Proc. 7th Workshop Hot Topics
in Operating Systems (HotOS99), IEEE CS, (1999), pp. 174-178.

[10] D. J. Abadi, “Consistency Tradeoffs in Modern Distributed Database System Design”, IEEE Computer
Society, vol. 45, no. 2, (2012) February, pp. 37-42.

[11] W. Vogels, “Eventually Consistent”, ACM Queue, vol. 6, no.6, (2008), pp. 14-19.
[12] D. Pritchett, “BASE: An Acid Alternative,” ACM Queue, May/June 2008, pp. 48-55.
[13] R. Ramakrishnan, “CAP and Cloud Data Management”, IEEE Computer Society, vol. 45, Issue: 2 pp. 43-

49, Feb. 2012.
[14] K. Birman and al., “Overcoming CAP with Consistent Soft-State Replication”, IEEE Computer Society, vol.

45, Issue: 2 pp. 50- 58, Feb. 2012.
[15] Oracle Corporation, “Oracle NoSQL Database”, Oracle Corporation World Headquarters, (2011).
[16] B. F. Cooper, “PNUTS: Yahoo!’s Hosted Data Serving Plat form”, Proc. VLDB Endowment (VLDB 08),

ACM, 2008, pp. 1277-1288.
[17] M. Stonebraker, “Errors in Database Systems, Eventual Consistency, and the CAP Theorem”, blog, Comm.

ACM, (2010) April 5, http://cacm.acm.org/blogs/blog-cacm/83396-errors-in-database-systems-
eventualconsistency-and-the-cap-theorem.

[18] M. Stonebraker, “Clarifications on the CAP Theorem and Data-Related Errors”, VoltDB blog, (2010)
October 21, http://blog.voltdb.com/clarifications-cap-theorem-and-data-related-errors/.

[19] C. Hale, “You Can’t Sacrifice Partition Tolerance”, (2010) October 7, http://codahale.com/you-cant-
sacrifice-partition-tolerance.

[20] D. Abadi, “IEEE Computer issue on the CAP Theorem”, DBMS Musings blog, (2012) October 29,
http://dbmsmusings.blogspot.com/2012_10_01_archive.html.

[21] P. Mahajan, L. Alvisi and M. Dahlin, “Consistency, Availability, and Convergence”, tech. report UTCS TR-
11-22, Univ. of Texas at Austin, (2011).

[22] M. Shapiro, “Conflict-Free Replicated Data Types”, Proc. 13th Int’l Conf. Stabilization, Safety, and Security
of Distributed Systems (SSS 11), ACM, (2011), pp. 386-400.

[23] M. Shapiro, “Convergent and Commutative Replicated Data Types”, Bulletin of the EATCS, no. 104, (2011)
June, pp. 67-88.

[24] J. Browne, “Brewer’s CAP theorem”, J. Browne blog, (2009) January 11,
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem.

Authors

Balla Wade DIACK7, after his Phil. M. at Cheikh Anta Diop University (UCAD) in 2010,

he is preparing a PhD on Distributed Databases in the Cloud Computing. Presently he is a
member of Databases and Datamining Group at Graduate School of Mathematic and
informatics in UCAD.

Samba NDIAYE is an Assistant Professor at the Faculty of Science and Technology
of UCAD. He’s the Coordinator of the group of Database

Yahya SLIMANI, a Professor at Faculty of Sciences of Tunis and Chief of the
Department of Computer Science. He’s also a Professor Visitor at University USTO of
Oran, Algeria.

	CAP Theorem between Claims and Misunderstandings: What is to be Sacrificed?
	Abstract
	Acknowledgements

