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Abstract 
The problem of two-block disjoint decomposition of completely specified Boolean functions 

is considered. Recently a good method in functional decomposition category was proposed. 
This method is based on using the ternary matrix cover approach. Due to investigation and 
analysis of this method and to search for an appropriate partition, a computer program was 
developed. After running the program on thousands of systems of Boolean functions, 
experimental results show that more than 95% of the inspected systems are decomposable. To 
obtain a solution of the task in decomposable systems, an efficient technique is also proposed. 
Using this technique, investigation of one partition was enough to determine decomposability 
of the inspected systems. 
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1. Introduction 

The problem of decomposition of Boolean functions is one of the most important 
problems of logical design that makes it an object of great attention by many 
researchers in this field [4, 9, 11-17]. It is important to find a successful solution for 
this problem because it has a direct influence on the quality and cost of digital devices 
designed. Searching for an appropriate partition is NP-hard problem because it has been 
proved that this problem is equivalent to the well-known set covering problem [4, 9], 
but to be aware of decomposability of a given system of Boolean functions, finding 
only one solution is satisfying. So to find a solution of the task, we used the ternary 
matrix cover approach [1]. Using a compact table one can find rather easily the 
existence of a solution of the problem for a given system of Boolean functions, and if it 
does exist, the corresponding superposition can be easily found. 
 
2. Main Definitions and Setting the Problem 

Let a system of completely specified functions y = f(x), where y = (y1, y2, …, ym), 
x = (x1, x2, …, xn) and f(x) = (f1(x), f2(x), …, fm(x)) be given by  matrices U and V that 
are the matrix representation of the system of disjunctive normal forms (DNFs) of the 
given functions [10]. Matrix U is a ternary matrix of l × n dimension where l is the 
number of terms in the given DNFs. The columns of U are marked with the variables 
x1, x2, … , xn, and the rows represent the terms of the DNFs . The matrix V is a Boolean 
matrix. Its dimension is l × т, and its columns are marked with the variables 



International Journal of Advanced Science and Technology 

Vol. 55, June, 2013 

 

 

34 

y1, y2, … , ym. The ones in this columns point out the terms in the given DNFs. A row u 
in U absorbs a Boolean vector a if a belongs to the interval represented by u. 

The task considered is set as follows. Given a system of completely specified 
Boolean functions y = f(x), the superposition y = ϕ (w, z2), w = g (z1) must be found 
where z1 and z2 are vector variables whose components are Boolean variables in the 
subsets of the set X = {x1, x2, …, xn}, Z1 and Z2 respectively such that X = Z1 ∪ Z2 and 
Z1 ∩ Z2 = ∅. At that, the number of components of the vector variable w must be less 
than that of z1. Such a kind of decomposition is called two-block disjoint decomposition 
[8-10]. The subsets Z1 and Z2 are called bound and free sets respectively. Only a few 
papers deal with the search for the partition {Z1, Z2}, at which this problem has a 
solution [2-8]. The main attention is paid to the search for subsets Z1 and Z2 such that 
the task would have a solution. 
 
3. Introducing Cover Map and Compact Table 

Any family π of different subsets (blocks) of a set L whose union is L, is called a 
cover of L. Let L = {1, 2, ... , l} be the set of numbers of rows of a ternary matrix U. A 
cover π of L is called a cover of the ternary matrix U if for each value x* of the vector 
variable x there exists a block in π containing all the numbers of those and only those 
rows of U, which absorb x*. Block ∅ corresponds to the value x*, which is absorbed by 
no row of U. Other subsets are not in π. 

Let t(x*, U) be the set of numbers of those rows of U, which absorb x*. For every 
block πj of π, we define the Boolean function πj(x) having assumed that πj(x*) = 1 for 
any x* ∈ {0,1}n if t(x*, U) = πj, and πj(x*) = 0 otherwise. Let us define an operation 
∨(πi, V) over the rows of a binary matrix V, the result of which is the vector y* 
(y* = ∨(πi, V)) obtained by component-wise disjunction of rows V whose numbers are 
in the block πi. If πi = ∅, all the components of y* are equal to 0. It is shown that 
f(x*) = y* = ∨(πi, V) if πi(x*) = 1 [1]. 

Let a pair of matrices, U and V, give a system of completely specified Boolean 
functions y = f(x), and let the matrix U1 be composed of the columns of U, marked with 
the variables from the set Z1 and the matrix U2 from the columns marked with the 
variables from Z2. The covers of U1 and U2 are π1 = {π1

1, π1
2, … , π1

r} and 
π2 = {π2

1, π2
2, … , π2

s}. Let us construct a table M. Assign the blocks π1
1, π1

2, … , π1
r 

and the Boolean functions π1
1(z1), π1

2(z1), … , π1
r(z1) to the columns of M, and 

π2
1, π2

2, … , π2
s and π2

1(z2), π2
2(z2), … , π2

s(z2) to the rows of M. At the intersection of 
the i-th column, 1 ≤ i ≤ r and the j-th row, 1 ≤ j ≤ s, of M, we put the value 
y* = ∨(π1

i ∩ π2
j, V). The table M is called compact table. It gives the system of Boolean 

functions y = f(x) in the following way: the value of the vector Boolean function f(x*) 
is ∨(π1

i ∩ π2
j, V) at any set argument values x*, for which π1

i(z1) ∧ π2
j(z2) = 1 [1]. 

Having the compact table for a system of functions y = f(x), it is easy to construct the 
desired systems y = ϕ (w, z2) and w = g (z1). The columns of the compact table are 
encoded with binary codes; equal columns may have the same codes. The length of the 
code is equal to log2r′  where r′ is the number of different columns of the table and 
a is the least integer, which is not less than a. So, the system of functions w = g (z1) is 
defined. The value of the vector variable w at any set of values of the vector variable z1 
turning the function π1

i(z1) into 1 is the code of the i-th column, 1 ≤ i ≤ r. Naturally, 
there is no solution to this task at the given partition {Z1, Z2} of the set X of arguments 
if the length of the code is not less than the length of z1. Otherwise, the compact table 
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whose columns are assigned with the values of the variable w can be considered as a 
form of representation of the other desired system of functions y = ϕ (w, z2). The value 
of y at the value of w assigned to the i-th column, 1 ≤ i ≤ r, and at any value of z2 
turning π2

j(z2) into 1, 1 ≤ j ≤ s, is the vector that is at the intersection of  the i-th column 
and the j-th row. 
 
4. Search for an Appropriate Partition 

To search for an appropriate partition of the set of arguments we use ternary matrix 
covers and compact tables induced by them. Let a few free variables be to find that 
constitute the set Z2 (then the set of bound variables would be Z1 = Х \ Z2). To do this, 
we use the operation of dividing a ternary matrix cover by the cover of a column of the 
matrix. Let us determine the operation to divide the cover π of a ternary matrix U by the 
cover πi of its i-th column as: π / πi = π1 × π2 × … × πi – 1 × πi + 1 × … × πп. This 
operation can be easily fulfilled using the cover map, which, as well as Karnaugh map, 
has the lines of symmetry related to the variables of the Boolean space represented by 
this map [5]. To transform the cover map of a ternary matrix U into that of the matrix 
obtained from U by deleting the i-th column, one should superpose pair-wise the entries 
that are symmetric with regard to the lines relative to xi, and put the unions of the 
superposed entries into the obtained entries. The obtained cover map would represent 
the desired cover. 

Example 1. Let a system of completely specified functions y = f(x) is given by the 
following pair of matrices: 

For the partition of the set of arguments into subsets Z1 = {х1, х3, х5} and 
Z2 = {х2, х4}, we have the following matrices: 
 

51 2 3 4 1 2
1 0 10 0 0 1 1
1 0 20 1 0 0 2
1 0 30 1 0 1 3, .
0 1 40 0 0 4
0 1 50 0 0 1 5
0 1 61 1 0 1 6
0 1 71 1 1 1 7

x x x x x y y

U V

  
  
  
  
  
  
  
  
  
  
     

−
−

−
= =

− −
−

−
−
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0 1 10 0 1
1 0 20 0 2
1 0 30 1 3,1 2 0 40 0 4
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1 1 71 1 7

x x x x x

U U

  
  
  
  
  
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     
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−

−
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−

−
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Figure 1 shows the cover map of the ternary matrix U and the cover of U is π = {∅, 
{1}, {3}, {4}, {5}, {6}, {7}, {2, 4}, {4, 5}, {6, 7}, {2, 3, 4}}. As it can be seen from 
Figure 2 the division of π by the cover of the column х2 will be {∅, {1}, {6}, {7}, {2, 
4}, {3, 5}, {6, 7}, {2, 3, 4, 5}}. Having transformed this map by the described way with 
regard to x4, we obtain {∅, {6}, {7}, {3, 5}, {6, 7}, {1, 2, 4}, {1, 2, 3, 4, 5}} as a result 
of dividing π by the covers of the columns x2 and x4 (see Figure 3). Similarly the result 
of dividing π by the covers of the columns x1, x3 and x5 will be π2 = {{1}, {4, 5}, {6, 7}, 
{2, 3, 4}}. 

         х5 
        х4   
        х3  
 4 ∅ ∅ 1 1 ∅ 5 4,5  
 2,4 ∅ ∅ ∅ ∅ ∅ 3 2,3,4  
 ∅ ∅ ∅ 6 6,7 7 ∅ ∅  
 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅  
    х2 
х1 

         

Figure 1. The Cover Map of Matrix U from Example 1 

         х5 
         х4   
        х3  
 2,4 ∅ ∅ 1 1 ∅ 3,5 2,3,4,5  
 ∅ ∅ ∅ 6 6,7 7 ∅ ∅  
 х1          

Figure 2. The Cover Map obtained by Dividing π by the Cover of the Column x2 

     х5 
     х3  
 1,2,4 ∅ 3,5 1,2,3,4,5  
 6 ∅ 7 6,7  

 х1      

Figure 3. The Cover Map obtained by Dividing π by the Covers of the Columns 
x2 and x4 

The compact table for the covers π1 and π2 is represented by Table 1 that has four 
different columns. To encode these columns, two variables are sufficient. The codes of 
the columns are shown at the bottom of Table 1. To construct the systems of functions 
y = ϕ (w, z2) and w = g (z1) that are the solution of the task, the functions connected with 
the blocks of the covers obtained must be constructed. 

The DNFs of the functions connected with the blocks of π1 can be obtained from the 
cover map in Figure 3: 

π1
1(z1) = х3х5, π1

2(z1) = х1х3х5, π1
3(z1) = х1 х3 х5, π1

4(z1) =х1 х3 х5, π1
5(z1) = х1х3 х5, 

π1
6(z1) =х1х3х5, π1

7(z1) =х1х3 х5. 

Similarly, the DNFs of the functions connected with the blocks of π2 are obtained: 
π2

1(z2) =х2 х4, π2
2(z2) =х2х4, π2

3(z2) = х2 х4, π2
4(z2) = х2х4. 
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Table 1.The Compact Table for the Partition from Example 1 

 ∅ 6 7 3,5 6,7 1,2,4 1,2,3,4,5 
1 00 00 00 00 00 10 10 

4,5 00 00 00 01 00 01 01 
6,7 00 01 01 00 01 00 00 

2,3,4 00 00 00 10 00 11 11 
 00 01 01 10 01 11 11 

As a result of simple minimization we obtain the following matrices representing the 
desired superposition y = ϕ (w, z2), w = g (z1): 

Example 2. Let the system of completely specified Boolean functions from 
Example 1 be given. Consider this variant that Z1 = {x1, x2, x3, x4} and Z2 = {x5}. For this 
variant with the cover map in Figure 1, we obtain the cover maps are shown in Figures 
4, 5, 6 and 7, by dividing π by the cover of the columns x1, x1 and x2, x1, x2 and x3, and 
x1, x2, x3 and x4, respectively. We also obtain the cover map by dividing π by the cover 
of the column x5 in the similar manner, to achieve to the cover π1. 

         х5 
         х4   
        х3  
 4 ∅ ∅ 1 1 ∅ 3,5 4,5  
 2,4 ∅ ∅ 6 6,7 7 ∅ 2,3,4  
 х2          

Figure 4. The Cover Map obtained by Dividing π by the Cover of the Column x1 

         х5 
         х4   
        х3  
 2,4 ∅ ∅ 1,6 1,6,7 7 3,5 2,3,4,5  

Figure 5. The Cover Map Obtained by Dividing π by the Cover of the Columns 
x1 and x2 

     х5 
   х4  
2,4 1,6 1,6,7 2,3,4,5  

Figure 6. The Cover Map Obtained by Dividing π by the Cover of the Columns 
x1, x2 and x3 

1 2 2 4 1 2
1 1 0 1 1 0 51 3 1 2

1 00 1 1 1 0 1 0 0, ; , .
0 11 1 0 1 0 0 0
0 11 0 0 0 1 1 1

1 1 0 0 1

w w x x y y
x x x w w   

   
     
     
     
           

      

−
− −
− −

−
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  х5 
1,2,4,6 1,2,3,4,5,6,7  

Figure 7. The Cover Map Obtained by Dividing π by the Cover of the Columns 
x1, x2, x3 and x4 

So we have the covers π1 = {∅, {1}, {3}, {5}, {7}, {4, 5}, {6, 7}, {2, 3, 4}} and 
π2 = {{1, 2, 4, 6}, {1, 2, 3, 4, 5, 6, 7}}. The compact table for these covers is 
represented by Table 2 that have six different columns. To encode these columns with 
the values of w, three variables are needed that is less than the length of z1. The codes 
of the columns are shown at the bottom of Table 2. To construct the system of functions 
y = ϕ (w, z2) and w = g (z1) that are the solution of the task, anybody can do the same 
steps as Example 1 and we did not calculate them again. 

Table 2. The Compact Table for the Partition from Example 2 
 ∅ 1 3 5 7 4,5 6,7 2,3,4 

1,2,4,6 00 10 00 00 00 01 01 11 
1,2,3,4,5,6,7 00 10 10 01 01 01 01 11 

 000 001 010 011 011 100 100 101 
 
5. Implementation and Results 

We designed and developed a computer program in C++ to find a solution for 
systems of Boolean functions. Our program based on using the ternary matrix cover 
approach and the general scheme of the implemented algorithm summarized in Figure 
9. The experiments run on a Pentium 2.26GHz CPU with 3 GByte of the main memory. 
We generated systems of completely specified Boolean functions using a prepared 
library which has been explained in [18, 19]. We considered three parameters for these 
systems; number of rows of matrix U that indicate number of DNFs, number of columns 
of matrix U and number of columns of matrix V. After generating matrices U and V as 
SOP (Sum-of-Product), we expand matrix U to obtain corresponding matrix without 
don't cares. Those rows that contain don’t cares, will replace with several suitable rows 
and consequently the number of conjunctions will be increased. 

Then we begin to provide cover map; for that we used Gray code encoding system. 
On contrary to Examples 1 and 2 that cover maps are two dimensional tables, due to 
simplicity to store in the computer memory and also for the future calculations of the 
compact table, we implemented it as a one dimensional array. An example of our 
approach with three variables is represented in Figure 8. The order of the replacement 
of the variables on the array is important and this can be extended for any number of 
variables. In the array is stored the values that was explained in the previous section 
and Gray codes in the array at Figure 8 are symbolically shown to represent the 
correctness of the approach. We save the Gray codes in the other list as well. 

        х1 
       х2   
       х3  
000 001 011 010 110 111 101 100  

Figure 8. The Cover Map Model for Three Variables using Gray Code Encoding 
System 
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for Con ← ConDown to ConUp 
  for Arg ← ArgDown to ArgUp 
    for Fun ← FunDown to FunUp 

 Generate new SOP(Con,Arg,Fun) 
(i.e. Matrices U and V) 
 Expand Matrix U 
(i.e. remove don’t cares in Matrix U and 
replace them with suitable ones) 
 Compute Cover Map 
(Generate Gray Codes with Length 2n and fill 
out the Cover Map Array According to the 
Algorithm Rules) 
 for k ← n-1 downto 2 

» for each combination of ( )n
k
 

Check the Current Partition 
1- Divide Cover Map Over Z1 
2- Divide Cover Map over Z2 
3- Compute Compact Table 
4- Compute the Number of Different 
Columns (r) of Compact Table 

5- Encode the Columns of the Compact 
Table 

6- if r ≤ 2k-1 then 
Solution Founded 
(Produce Matrices φ, Y, X and W) 

» if Solution Founded then 
    Declare the System is decomposable 
    and Stop 

 if Solution not Founded then 
    Declare the System is not decomposable 

 
Figure 9. The Implemented Algorithm to Determine Decomposability of 

Systems of Boolean Functions 
In fact, the method of storing information in the mentioned array is as follows. Each 

row in the expanded matrix of U is numbered with the integers according to the row 
numbers of matrix U. We compare the value of each row in this matrix with Gray codes 
list until the equal value is found. Then we add the row number of the compared row in 
the corresponding element of the array. We continue this method until all rows are 
compared and the row numbers are added to the array elements. At the end, we sweep 
the array and put the empty set to the elements with no values added. 

To find a solution of the task anyone should enquire into all possible partitions which 
are constructing Z1 and Z2. The relatively simple method to address the appropriate 
partition can be done by lexicographical enumeration. But this method for those 
systems of Boolean functions which have more arguments is not suitable and in practice 
it is time consuming. We are notice that the main subject of the current work is 
determining decomposability of the given system of Boolean functions. 

In analyzing of all decompositions of the several systems of Boolean functions, we 
understood, if 1Z  is selected the maximum possible size, a solution of the task will be 
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found with high probability. So to specify decomposability of the given system, it is 
better to consider lexicographical order according to the maximum size of Z1. We start 

11Z n= − (n is the number of arguments) and search lexicographically for all possible 

partitions. If the result of the search at this stage is unsuccessful the size of Z1 can be 
decreased and continued. In fact we investigate all possible partitions from the biggest 
size of Z1 to the smallest one. Empirical results confirmed the validation of our idea and 
in all the cases; we perceived the task has a solution in the first turn. For example if 
x = (x1, x2, …, xn), we observed the task has a solution with Z1={x1, x2,…, xn-1} and 
Z2={xn} (See Example 2 from Section 4). The proposed technique is very important, 
because the amount of the necessary calculations will be decreased exponentially and 
consequently the efficiency of computational time will be increased. With consideration 
of our goal which is determining decomposability of a system, finding a solution of the 
task will be satisfying. In Table 3 and in column NQS (Number of Quick Solutions) we 
declare how many systems have a solution according to this approach. 

After computing cover map of the current system of Boolean functions and with 
regarding to the mentioned technique; we used Knuth's algorithm [20] to generate all 
combinations of the arguments and for each partition we check whether it is a solution 
of the task or not. To obtain all k-element subsets of an n-element set, this algorithm is 
one of the fastest ones. Each k-element subsets is used to construct Z1 elements and rest 
of the arguments will be the elements of Z2. If a partition as a solution is found, the 
program will stop and calculate four matrices; matrix Φ, matrix Y, matrix X and matrix 
W. These matrices are the solution of the task. In fact the current system of Boolean 
functions changes to two new systems with fewer arguments. Although we obtain these 
matrices but they have not influence in our results in this paper. This manner is 
repeated for all partitions and if an appropriate partition is not found, the program will 
declare the current system of Boolean functions is not decomposable. 

Now, we report the experimental results for our approach in decomposition of 
Boolean functions, described in the previous sections. Due to space and time 
limitations, the results are shown refer only to the decompositions of systems with few 
arguments and the few functions as well. The results summarized in Table 3, are quite 
promising. They show that more than 95% of generated systems are decomposable and 
all of them have a solution when the size of Z1 is the maximum. 

Table 2. The Experimental Results 
Con Arg Fun NS PD ND NQS From to from to from To 

6 15 4 6 2 4 90 90 81 81 
10 15 5 8 2 6 120 96 116 116 
10 25 6 8 4 8 240 93 224 224 
10 30 5 10 3 8 756 95 725 725 
10 30 6 10 4 12 945 90 851 851 
20 50 8 10 4 8 465 99 461 461 
15 40 5 12 2 6 1040 99 1032 1032 
20 30 8 12 6 9 220 99 218 218 
59 60 10 12 4 8 30 100 30 30 
59 60 10 12 6 10 30 100 30 30 
50 50 10 14 6 8 15 100 15 15 
60 60 12 15 6 12 28 100 28 28 
50 50 14 16 6 10 15 100 15 15 
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The first three columns in Table 3 show intervals of conjunctions (Con), arguments 
(Arg) and functions (Fun) respectively. And as it can be seen from Figure 9, they used 
in nested loops, it means that all combinations of these intervals will inform the 
parameters of a system of Boolean functions. The Number of Systems (NS) in each 
program execution was investigated, the percentage of decomposition (PD) is percent of 
decomposable NSs and the number of decomposable systems (ND) was represented in a 
separate column. As discussed before, the last column indicates the number of quick 
solutions (NQS) that is the solutions according to our approach in finding an 
appropriate partition. 
 
6. Conclusion and Future Works 

We developed a computer program to determine decomposability of systems of 
Boolean functions via ternary matrix cover approach. The ternary matrix cover and the 
representation of a system of Boolean functions in the form of compact table are simple 
to be realized and we implemented thousands of systems. The experimental results were 
interesting and show that more than 95% of the inspected systems are decomposable 
and all of them have a solution when the bound set has the maximum possible size. This 
means that investigation of only one partition among the exponentially growing 
partitions is enough to determine decomposability of a given system. 

As a future work, optimization in encoding of compact table is proposed, because it 
has direct influence on the quality of the obtained solutions. It is also useful to find the 
best solution among the all solutions from the circuit size point of view which is useful 
in practical scenes. 
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