
International Journal of Advanced Science and Technology

Vol. 55, June, 2013

33

On Decomposing Systems of Boolean Functions via Ternary Matrix
Cover Approach

Saeid Taghavi Afshord1 and Yuri Pottosin2

1Computer Engineering Department, Shabestar Branch, Islamic Azad University,
Shabestar, Iran

2United Institutes of Engineering Cybernetics, National Academy of Sciences of
Belarus, Minsk, Belarus

taghavi@iaushab.ac.ir, pott@newman.bas-net.by

Abstract
The problem of two-block disjoint decomposition of completely specified Boolean functions

is considered. Recently a good method in functional decomposition category was proposed.
This method is based on using the ternary matrix cover approach. Due to investigation and
analysis of this method and to search for an appropriate partition, a computer program was
developed. After running the program on thousands of systems of Boolean functions,
experimental results show that more than 95% of the inspected systems are decomposable. To
obtain a solution of the task in decomposable systems, an efficient technique is also proposed.
Using this technique, investigation of one partition was enough to determine decomposability
of the inspected systems.

Keywords: Boolean functions; functional decomposition; cover map; compact table; logic
synthesis

1. Introduction

The problem of decomposition of Boolean functions is one of the most important
problems of logical design that makes it an object of great attention by many
researchers in this field [4, 9, 11-17]. It is important to find a successful solution for
this problem because it has a direct influence on the quality and cost of digital devices
designed. Searching for an appropriate partition is NP-hard problem because it has been
proved that this problem is equivalent to the well-known set covering problem [4, 9],
but to be aware of decomposability of a given system of Boolean functions, finding
only one solution is satisfying. So to find a solution of the task, we used the ternary
matrix cover approach [1]. Using a compact table one can find rather easily the
existence of a solution of the problem for a given system of Boolean functions, and if it
does exist, the corresponding superposition can be easily found.

2. Main Definitions and Setting the Problem

Let a system of completely specified functions y = f(x), where y = (y1, y2, …, ym),
x = (x1, x2, …, xn) and f(x) = (f1(x), f2(x), …, fm(x)) be given by matrices U and V that
are the matrix representation of the system of disjunctive normal forms (DNFs) of the
given functions [10]. Matrix U is a ternary matrix of l × n dimension where l is the
number of terms in the given DNFs. The columns of U are marked with the variables
x1, x2, … , xn, and the rows represent the terms of the DNFs . The matrix V is a Boolean
matrix. Its dimension is l × т, and its columns are marked with the variables

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

34

y1, y2, … , ym. The ones in this columns point out the terms in the given DNFs. A row u
in U absorbs a Boolean vector a if a belongs to the interval represented by u.

The task considered is set as follows. Given a system of completely specified
Boolean functions y = f(x), the superposition y = ϕ (w, z2), w = g (z1) must be found
where z1 and z2 are vector variables whose components are Boolean variables in the
subsets of the set X = {x1, x2, …, xn}, Z1 and Z2 respectively such that X = Z1 ∪ Z2 and
Z1 ∩ Z2 = ∅. At that, the number of components of the vector variable w must be less
than that of z1. Such a kind of decomposition is called two-block disjoint decomposition
[8-10]. The subsets Z1 and Z2 are called bound and free sets respectively. Only a few
papers deal with the search for the partition {Z1, Z2}, at which this problem has a
solution [2-8]. The main attention is paid to the search for subsets Z1 and Z2 such that
the task would have a solution.

3. Introducing Cover Map and Compact Table

Any family π of different subsets (blocks) of a set L whose union is L, is called a
cover of L. Let L = {1, 2, ... , l} be the set of numbers of rows of a ternary matrix U. A
cover π of L is called a cover of the ternary matrix U if for each value x* of the vector
variable x there exists a block in π containing all the numbers of those and only those
rows of U, which absorb x*. Block ∅ corresponds to the value x*, which is absorbed by
no row of U. Other subsets are not in π.

Let t(x*, U) be the set of numbers of those rows of U, which absorb x*. For every
block πj of π, we define the Boolean function πj(x) having assumed that πj(x*) = 1 for
any x* ∈ {0,1}n if t(x*, U) = πj, and πj(x*) = 0 otherwise. Let us define an operation
∨(πi, V) over the rows of a binary matrix V, the result of which is the vector y*
(y* = ∨(πi, V)) obtained by component-wise disjunction of rows V whose numbers are
in the block πi. If πi = ∅, all the components of y* are equal to 0. It is shown that
f(x*) = y* = ∨(πi, V) if πi(x*) = 1 [1].

Let a pair of matrices, U and V, give a system of completely specified Boolean
functions y = f(x), and let the matrix U1 be composed of the columns of U, marked with
the variables from the set Z1 and the matrix U2 from the columns marked with the
variables from Z2. The covers of U1 and U2 are π1 = {π1

1, π1
2, … , π1

r} and
π2 = {π2

1, π2
2, … , π2

s}. Let us construct a table M. Assign the blocks π1
1, π1

2, … , π1
r

and the Boolean functions π1
1(z1), π1

2(z1), … , π1
r(z1) to the columns of M, and

π2
1, π2

2, … , π2
s and π2

1(z2), π2
2(z2), … , π2

s(z2) to the rows of M. At the intersection of
the i-th column, 1 ≤ i ≤ r and the j-th row, 1 ≤ j ≤ s, of M, we put the value
y* = ∨(π1

i ∩ π2
j, V). The table M is called compact table. It gives the system of Boolean

functions y = f(x) in the following way: the value of the vector Boolean function f(x*)
is ∨(π1

i ∩ π2
j, V) at any set argument values x*, for which π1

i(z1) ∧ π2
j(z2) = 1 [1].

Having the compact table for a system of functions y = f(x), it is easy to construct the
desired systems y = ϕ (w, z2) and w = g (z1). The columns of the compact table are
encoded with binary codes; equal columns may have the same codes. The length of the
code is equal to log2r′ where r′ is the number of different columns of the table and
a is the least integer, which is not less than a. So, the system of functions w = g (z1) is
defined. The value of the vector variable w at any set of values of the vector variable z1
turning the function π1

i(z1) into 1 is the code of the i-th column, 1 ≤ i ≤ r. Naturally,
there is no solution to this task at the given partition {Z1, Z2} of the set X of arguments
if the length of the code is not less than the length of z1. Otherwise, the compact table

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

35

whose columns are assigned with the values of the variable w can be considered as a
form of representation of the other desired system of functions y = ϕ (w, z2). The value
of y at the value of w assigned to the i-th column, 1 ≤ i ≤ r, and at any value of z2
turning π2

j(z2) into 1, 1 ≤ j ≤ s, is the vector that is at the intersection of the i-th column
and the j-th row.

4. Search for an Appropriate Partition

To search for an appropriate partition of the set of arguments we use ternary matrix
covers and compact tables induced by them. Let a few free variables be to find that
constitute the set Z2 (then the set of bound variables would be Z1 = Х \ Z2). To do this,
we use the operation of dividing a ternary matrix cover by the cover of a column of the
matrix. Let us determine the operation to divide the cover π of a ternary matrix U by the
cover πi of its i-th column as: π / πi = π1 × π2 × … × πi – 1 × πi + 1 × … × πп. This
operation can be easily fulfilled using the cover map, which, as well as Karnaugh map,
has the lines of symmetry related to the variables of the Boolean space represented by
this map [5]. To transform the cover map of a ternary matrix U into that of the matrix
obtained from U by deleting the i-th column, one should superpose pair-wise the entries
that are symmetric with regard to the lines relative to xi, and put the unions of the
superposed entries into the obtained entries. The obtained cover map would represent
the desired cover.

Example 1. Let a system of completely specified functions y = f(x) is given by the
following pair of matrices:

For the partition of the set of arguments into subsets Z1 = {х1, х3, х5} and
Z2 = {х2, х4}, we have the following matrices:

51 2 3 4 1 2
1 0 10 0 0 1 1
1 0 20 1 0 0 2
1 0 30 1 0 1 3, .
0 1 40 0 0 4
0 1 50 0 0 1 5
0 1 61 1 0 1 6
0 1 71 1 1 1 7

x x x x x y y

U V

  
  
  
  
  
  
  
  
  
  
     

−
−

−
= =

− −
−

−
−

51 3 2 4
0 1 10 0 1
1 0 20 0 2
1 0 30 1 3,1 2 0 40 0 4
0 0 50 1 5
1 1 61 0 6
1 1 71 1 7

x x x x x

U U

  
  
  
  
  
  
  
  
  
  
     

−
−

−
= =

−−
−

−
−

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

36

Figure 1 shows the cover map of the ternary matrix U and the cover of U is π = {∅,
{1}, {3}, {4}, {5}, {6}, {7}, {2, 4}, {4, 5}, {6, 7}, {2, 3, 4}}. As it can be seen from
Figure 2 the division of π by the cover of the column х2 will be {∅, {1}, {6}, {7}, {2,
4}, {3, 5}, {6, 7}, {2, 3, 4, 5}}. Having transformed this map by the described way with
regard to x4, we obtain {∅, {6}, {7}, {3, 5}, {6, 7}, {1, 2, 4}, {1, 2, 3, 4, 5}} as a result
of dividing π by the covers of the columns x2 and x4 (see Figure 3). Similarly the result
of dividing π by the covers of the columns x1, x3 and x5 will be π2 = {{1}, {4, 5}, {6, 7},
{2, 3, 4}}.

 х5
 х4
 х3
 4 ∅ ∅ 1 1 ∅ 5 4,5
 2,4 ∅ ∅ ∅ ∅ ∅ 3 2,3,4
 ∅ ∅ ∅ 6 6,7 7 ∅ ∅
 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
 х2
х1

Figure 1. The Cover Map of Matrix U from Example 1

 х5
 х4
 х3
 2,4 ∅ ∅ 1 1 ∅ 3,5 2,3,4,5
 ∅ ∅ ∅ 6 6,7 7 ∅ ∅
 х1

Figure 2. The Cover Map obtained by Dividing π by the Cover of the Column x2

 х5
 х3
 1,2,4 ∅ 3,5 1,2,3,4,5
 6 ∅ 7 6,7

 х1

Figure 3. The Cover Map obtained by Dividing π by the Covers of the Columns
x2 and x4

The compact table for the covers π1 and π2 is represented by Table 1 that has four
different columns. To encode these columns, two variables are sufficient. The codes of
the columns are shown at the bottom of Table 1. To construct the systems of functions
y = ϕ (w, z2) and w = g (z1) that are the solution of the task, the functions connected with
the blocks of the covers obtained must be constructed.

The DNFs of the functions connected with the blocks of π1 can be obtained from the
cover map in Figure 3:

π1
1(z1) = х3х5, π1

2(z1) = х1х3х5, π1
3(z1) = х1 х3 х5, π1

4(z1) =х1 х3 х5, π1
5(z1) = х1х3 х5,

π1
6(z1) =х1х3х5, π1

7(z1) =х1х3 х5.

Similarly, the DNFs of the functions connected with the blocks of π2 are obtained:
π2

1(z2) =х2 х4, π2
2(z2) =х2х4, π2

3(z2) = х2 х4, π2
4(z2) = х2х4.

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

37

Table 1.The Compact Table for the Partition from Example 1

 ∅ 6 7 3,5 6,7 1,2,4 1,2,3,4,5
1 00 00 00 00 00 10 10

4,5 00 00 00 01 00 01 01
6,7 00 01 01 00 01 00 00

2,3,4 00 00 00 10 00 11 11
 00 01 01 10 01 11 11

As a result of simple minimization we obtain the following matrices representing the
desired superposition y = ϕ (w, z2), w = g (z1):

Example 2. Let the system of completely specified Boolean functions from
Example 1 be given. Consider this variant that Z1 = {x1, x2, x3, x4} and Z2 = {x5}. For this
variant with the cover map in Figure 1, we obtain the cover maps are shown in Figures
4, 5, 6 and 7, by dividing π by the cover of the columns x1, x1 and x2, x1, x2 and x3, and
x1, x2, x3 and x4, respectively. We also obtain the cover map by dividing π by the cover
of the column x5 in the similar manner, to achieve to the cover π1.

 х5
 х4
 х3
 4 ∅ ∅ 1 1 ∅ 3,5 4,5
 2,4 ∅ ∅ 6 6,7 7 ∅ 2,3,4
 х2

Figure 4. The Cover Map obtained by Dividing π by the Cover of the Column x1

 х5
 х4
 х3
 2,4 ∅ ∅ 1,6 1,6,7 7 3,5 2,3,4,5

Figure 5. The Cover Map Obtained by Dividing π by the Cover of the Columns
x1 and x2

 х5
 х4
2,4 1,6 1,6,7 2,3,4,5

Figure 6. The Cover Map Obtained by Dividing π by the Cover of the Columns
x1, x2 and x3

1 2 2 4 1 2
1 1 0 1 1 0 51 3 1 2

1 00 1 1 1 0 1 0 0, ; , .
0 11 1 0 1 0 0 0
0 11 0 0 0 1 1 1

1 1 0 0 1

w w x x y y
x x x w w   

   
     
     
     
           

      

−
− −
− −

−

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

38

 х5
1,2,4,6 1,2,3,4,5,6,7

Figure 7. The Cover Map Obtained by Dividing π by the Cover of the Columns
x1, x2, x3 and x4

So we have the covers π1 = {∅, {1}, {3}, {5}, {7}, {4, 5}, {6, 7}, {2, 3, 4}} and
π2 = {{1, 2, 4, 6}, {1, 2, 3, 4, 5, 6, 7}}. The compact table for these covers is
represented by Table 2 that have six different columns. To encode these columns with
the values of w, three variables are needed that is less than the length of z1. The codes
of the columns are shown at the bottom of Table 2. To construct the system of functions
y = ϕ (w, z2) and w = g (z1) that are the solution of the task, anybody can do the same
steps as Example 1 and we did not calculate them again.

Table 2. The Compact Table for the Partition from Example 2
 ∅ 1 3 5 7 4,5 6,7 2,3,4

1,2,4,6 00 10 00 00 00 01 01 11
1,2,3,4,5,6,7 00 10 10 01 01 01 01 11

 000 001 010 011 011 100 100 101

5. Implementation and Results

We designed and developed a computer program in C++ to find a solution for
systems of Boolean functions. Our program based on using the ternary matrix cover
approach and the general scheme of the implemented algorithm summarized in Figure
9. The experiments run on a Pentium 2.26GHz CPU with 3 GByte of the main memory.
We generated systems of completely specified Boolean functions using a prepared
library which has been explained in [18, 19]. We considered three parameters for these
systems; number of rows of matrix U that indicate number of DNFs, number of columns
of matrix U and number of columns of matrix V. After generating matrices U and V as
SOP (Sum-of-Product), we expand matrix U to obtain corresponding matrix without
don't cares. Those rows that contain don’t cares, will replace with several suitable rows
and consequently the number of conjunctions will be increased.

Then we begin to provide cover map; for that we used Gray code encoding system.
On contrary to Examples 1 and 2 that cover maps are two dimensional tables, due to
simplicity to store in the computer memory and also for the future calculations of the
compact table, we implemented it as a one dimensional array. An example of our
approach with three variables is represented in Figure 8. The order of the replacement
of the variables on the array is important and this can be extended for any number of
variables. In the array is stored the values that was explained in the previous section
and Gray codes in the array at Figure 8 are symbolically shown to represent the
correctness of the approach. We save the Gray codes in the other list as well.

 х1
 х2
 х3
000 001 011 010 110 111 101 100

Figure 8. The Cover Map Model for Three Variables using Gray Code Encoding
System

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

39

for Con ← ConDown to ConUp
 for Arg ← ArgDown to ArgUp
 for Fun ← FunDown to FunUp

 Generate new SOP(Con,Arg,Fun)
(i.e. Matrices U and V)
 Expand Matrix U
(i.e. remove don’t cares in Matrix U and
replace them with suitable ones)
 Compute Cover Map
(Generate Gray Codes with Length 2n and fill
out the Cover Map Array According to the
Algorithm Rules)
 for k ← n-1 downto 2

» for each combination of ()n
k

Check the Current Partition
1- Divide Cover Map Over Z1
2- Divide Cover Map over Z2
3- Compute Compact Table
4- Compute the Number of Different
Columns (r) of Compact Table

5- Encode the Columns of the Compact
Table

6- if r ≤ 2k-1 then
Solution Founded
(Produce Matrices φ, Y, X and W)

» if Solution Founded then
 Declare the System is decomposable
 and Stop

 if Solution not Founded then
 Declare the System is not decomposable

Figure 9. The Implemented Algorithm to Determine Decomposability of

Systems of Boolean Functions
In fact, the method of storing information in the mentioned array is as follows. Each

row in the expanded matrix of U is numbered with the integers according to the row
numbers of matrix U. We compare the value of each row in this matrix with Gray codes
list until the equal value is found. Then we add the row number of the compared row in
the corresponding element of the array. We continue this method until all rows are
compared and the row numbers are added to the array elements. At the end, we sweep
the array and put the empty set to the elements with no values added.

To find a solution of the task anyone should enquire into all possible partitions which
are constructing Z1 and Z2. The relatively simple method to address the appropriate
partition can be done by lexicographical enumeration. But this method for those
systems of Boolean functions which have more arguments is not suitable and in practice
it is time consuming. We are notice that the main subject of the current work is
determining decomposability of the given system of Boolean functions.

In analyzing of all decompositions of the several systems of Boolean functions, we
understood, if 1Z is selected the maximum possible size, a solution of the task will be

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

40

found with high probability. So to specify decomposability of the given system, it is
better to consider lexicographical order according to the maximum size of Z1. We start

11Z n= − (n is the number of arguments) and search lexicographically for all possible

partitions. If the result of the search at this stage is unsuccessful the size of Z1 can be
decreased and continued. In fact we investigate all possible partitions from the biggest
size of Z1 to the smallest one. Empirical results confirmed the validation of our idea and
in all the cases; we perceived the task has a solution in the first turn. For example if
x = (x1, x2, …, xn), we observed the task has a solution with Z1={x1, x2,…, xn-1} and
Z2={xn} (See Example 2 from Section 4). The proposed technique is very important,
because the amount of the necessary calculations will be decreased exponentially and
consequently the efficiency of computational time will be increased. With consideration
of our goal which is determining decomposability of a system, finding a solution of the
task will be satisfying. In Table 3 and in column NQS (Number of Quick Solutions) we
declare how many systems have a solution according to this approach.

After computing cover map of the current system of Boolean functions and with
regarding to the mentioned technique; we used Knuth's algorithm [20] to generate all
combinations of the arguments and for each partition we check whether it is a solution
of the task or not. To obtain all k-element subsets of an n-element set, this algorithm is
one of the fastest ones. Each k-element subsets is used to construct Z1 elements and rest
of the arguments will be the elements of Z2. If a partition as a solution is found, the
program will stop and calculate four matrices; matrix Φ, matrix Y, matrix X and matrix
W. These matrices are the solution of the task. In fact the current system of Boolean
functions changes to two new systems with fewer arguments. Although we obtain these
matrices but they have not influence in our results in this paper. This manner is
repeated for all partitions and if an appropriate partition is not found, the program will
declare the current system of Boolean functions is not decomposable.

Now, we report the experimental results for our approach in decomposition of
Boolean functions, described in the previous sections. Due to space and time
limitations, the results are shown refer only to the decompositions of systems with few
arguments and the few functions as well. The results summarized in Table 3, are quite
promising. They show that more than 95% of generated systems are decomposable and
all of them have a solution when the size of Z1 is the maximum.

Table 2. The Experimental Results
Con Arg Fun NS PD ND NQS From to from to from To

6 15 4 6 2 4 90 90 81 81
10 15 5 8 2 6 120 96 116 116
10 25 6 8 4 8 240 93 224 224
10 30 5 10 3 8 756 95 725 725
10 30 6 10 4 12 945 90 851 851
20 50 8 10 4 8 465 99 461 461
15 40 5 12 2 6 1040 99 1032 1032
20 30 8 12 6 9 220 99 218 218
59 60 10 12 4 8 30 100 30 30
59 60 10 12 6 10 30 100 30 30
50 50 10 14 6 8 15 100 15 15
60 60 12 15 6 12 28 100 28 28
50 50 14 16 6 10 15 100 15 15

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

41

The first three columns in Table 3 show intervals of conjunctions (Con), arguments
(Arg) and functions (Fun) respectively. And as it can be seen from Figure 9, they used
in nested loops, it means that all combinations of these intervals will inform the
parameters of a system of Boolean functions. The Number of Systems (NS) in each
program execution was investigated, the percentage of decomposition (PD) is percent of
decomposable NSs and the number of decomposable systems (ND) was represented in a
separate column. As discussed before, the last column indicates the number of quick
solutions (NQS) that is the solutions according to our approach in finding an
appropriate partition.

6. Conclusion and Future Works

We developed a computer program to determine decomposability of systems of
Boolean functions via ternary matrix cover approach. The ternary matrix cover and the
representation of a system of Boolean functions in the form of compact table are simple
to be realized and we implemented thousands of systems. The experimental results were
interesting and show that more than 95% of the inspected systems are decomposable
and all of them have a solution when the bound set has the maximum possible size. This
means that investigation of only one partition among the exponentially growing
partitions is enough to determine decomposability of a given system.

As a future work, optimization in encoding of compact table is proposed, because it
has direct influence on the quality of the obtained solutions. It is also useful to find the
best solution among the all solutions from the circuit size point of view which is useful
in practical scenes.

Acknowledgements

This work was done in the logical design laboratory at the united institute of informatics
problems of the NAS of Belarus. The authors like to thank this laboratory by its support in
providing the benchmark source codes.

References
[1] Y. V. Pottosin and E. Shestakov, “Choice of Free Arguments in Decomposition of Boolean Functions Using

the Ternary Matrix Cover Approach”, Proceeding of the 5th International Conference on Neural Networks
and Artificial Intelligence (ICNNAI), Brest, Belarus, (2010) June, pp. 123-127.

[2] P. N. Bibilo, “Decomposition of Boolean Functions Based on Solving Logical Equations,” Byelaruskaya
Navuka, Minsk, Belarus, (In Russian), (2009).

[3] L. Jóźwiak and A. Chojnacki, “An Effective and Efficient Method for Functional Decomposition of Boolean
Functions Based on Information Relationship Measures”, Proceeding of 3rd Design and Diagnostics of
Electronic Circuits and Systems Workshop (DDECS), Bratislava, Slovakia, (2000) April, pp. 242-249.

[4] M. A. Perkowski and S. Grygiel, “A Survey of Literature on Functional Decomposition Version IV,”
Technical report, Department of Electrical Engineering, Portland State University, Portland, USA, (1995).

[5] A. D. Zakrevskij, “Decomposition of Partial Boolean Functions: Testing for Decomposability According to a
Given Partition”, Informatika Journal, (In Russian), vol. 1, no. 13, (2007), pp. 16-21.

[6] M. Rawski, “Heuristic Algorithm of Bound Set Selection in Functional Decomposition for Heterogeneous
FPGAs,” 21st International Conference on Systems Engineering (ICSEng), Las Vegas, USA, (2011) August,
pp. 465-466.

[7] V. Muthukumar, R. J. Bignall and H. Selvaraj, “An efficient variable partitioning approach for functional
decomposition of circuits,” Journal of Systems Architecture, vol. 53, no. 1, (2007), pp. 53-67.

[8] C. M. Files and M. A. Perkowski, “New Mutivalued functional decomposition algorithms based on MDDs”,
IEEE Transactions on Computer-Aided Design of Integrated Ciruits and Systems, vol. 19, no. 9, (2000), pp.
1081-1086.

International Journal of Advanced Science and Technology

Vol. 55, June, 2013

42

[9] S. Hassoun and T. Sasao, “Logic Synthesis and Verification”, The Springer International Series in
Engineering and Computer Science, Kluwer Academic Publishers, (2001).

[10] A. Zakrevskij, Y. V. Pottosin and L. Cheremisinova, “Optimization in Boolean Space”, Tallinn: TUT Press,
(2009).

[11] T. Bengtsson, A. Martinelli and E. Dubrova, “A BDD-based fast heuristic algorithm for disjoint
decomposition”, Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC03),
Kitakyushu, Japan, (2003) January, pp. 191-196.

[12] Y-T. Lai, K-R. Pan and M. Pedram, “OBDD-based function decomposition: Algorithms and
implementation”, IEEE Transactions on Computer-Aided Design of Integrated Ciruits and Systems, vol. 15,
no. 8, (1996), pp. 977-990.

[13] A. Martinelli, “Advances in Functional Decomposition: Theory and Applications”, Doctoral Dissertation,
Royal Inctitute of Technology (KTH), Stokholm, Sweden, (2006).

[14] M. Rawski, “Evolutionary Algorithms in Decomposition-Based Logic Synthesis, Evolutionary Algorithms”,
Edited Prof. E. Kita (Ed.), InTech Publisher, (2011).

[15] P. Porwik and R. S. Stankovic, “Dedicated Spectral Method of Boolean Function Decomposition”,
International Journal of applied mathematics and computer science (amcs), vol. 16, no. 1, (2006), pp. 271-
278.

[16] P. V. Athira and S. R. Ramesh, “An Approach towards Logic Synthesis by Functional Decomposition”,
International Journal of Engineering Research and Applications (IJERA), vol. 2, no. 3, (2012), pp. 324-330.

[17] F. Yu, L. F. Wang, R. H. Tan and H. Jin, “An improved functional decomposition method based on FAST
and the method of removal and operation”, Proceedings of the International Conference on System Science
and Engineering (ICSSE), Dalian, China, (2012) June, pp. 487-492.

[18] V. I. Romanov, “Tools development for logic designing”, Logic Design, Institute of Engineering Cybernetics
of NASB, Minsk, Belarus, (In Russian), (2001) November, pp. 151-170.

[19] V. I. Romanov, “Tools for programming Boolean calculations”, Abstracts of the XVIII European Conference,
Combinatorics for modern manufacturing, logistics and supply chains, (UIIP-NASB) Minsk, Belarus, (2005)
May, pp. 57-58.

[20] D. E. Knuth, “The Art of Computer Programming”, Vol. 4A, Combinatorial Algorithms, part 1, Addison-
Wesley Professional, (2011).

Authors

Saeid Taghavi Afshord received his BSc degree in applied

mathematics and MSc degree in computer engineering from the Islamic
Azad University, Tabriz and Qazvin branches in 2003 and 2006, Iran
respectively. He joined the Islamic Azad University, Shabestar branch,
Iran, as a faculty member in 2008. Currently he is a PhD student in
computer engineering at the United Institute of Informatics Problems of the
NAS of Belarus, from March 2011. His research areas are Energy Saving
and Topology Control in Ad Hoc and Sensor Networks, and Methods for
Boolean functions Decomposition.

Yuri Vasilievich Pottosin graduated from Tomsk State University
(Russia), department of radio-physics and electronics, in 1960. From the
beginning of 1961 until 1973, he worked at that university as a researcher.
In 1970, he defended his PhD thesis. From 1973 until now, he works at the
Institute of Engineering Cybernetics of National Academy of Sciences of
Belarus. Now he is a leading researcher. His main scientific interest is
logical design. He teaches “Discrete Mathematics” and “Theory of
Designing Digital Devices and Systems” for the students of Byelorussian
State University of Informatics and Radio-Electronics.

	On Decomposing Systems of Boolean Functions via Ternary Matrix Cover Approach
	Abstract
	Acknowledgements

