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Abstract 
Noise power spectral density (PSD) estimation is a crucial part of speech enhancement 

system due to its contributory effect on the quality of the noise reduced speech. A novel 
estimation method for color noise PSD on the basis of an assumption of generalized Gamma 
distribution and maximum a posteriori (MAP) criterion is proposed. In the experiment, 
generalized Gamma PDF which is a natural extension of the Gaussian modeling of a non-
white components distribution is found best fitting in four types of color noises compared 
with Laplace, Rayleigh distributions. After that MAP noise estimators based on the reported 
generalized Gamma PDF models are competed with Minimum Statistics (MS), minimum 
mean square error (MMSE) based PSD estimation and Maximum Likelihood estimation 
(MLE) noise tracking methods in evaluations. The performance of the proposed noise 
estimations are good as demonstrated by log error, segmental SNR and PESQ measures when 
they are integrated with the speech enhancement technique. 
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1. Introduction 

An estimation of the power spectral density (PSD) of noise is a crucial part to retrieve 
speech in a noisy environment. Thus, the performance of the man-machine communication 
system in a noisy environment highly depends on the accurate estimation of the unknown 
noise model. In the recent years, many methods have been proposed and the estimation of 
noise from a noisy speech remains a challenging task, especially due to the wide variety of 
non-stationary and non-white nature of environmental noises. 

The PSD of the most real world noises change rapidly over time due to its non-stationary 
nature, for that, an efficient noise estimation method must have real time update capability 
and estimation accuracy. The worse accuracy of the noise (over or under) estimation might 
lead to a reduced intelligibility of original speech or generate an unnecessary amount of 
residual noise due to an inherent mismatch between the original and the estimated noise. 

The most common approach for the estimation of noise PSD is to exploit speech presence 
by means of a Voice Activity Detector (VAD) [1] and the speech/pause detection plays the 
major role in the performance of the whole system. This approach cannot update the noise 
estimation promptly. However, these systems can perform well for voiced speech and high 
Signal-to-Noise Ratio (SNR), but their performance degrades with unvoiced speech at low 
SNR.  

To improve the estimation of noise PSD, several real time approaches have been proposed 
during the last decade. One of the most famous methods is noise PSD estimation based on 
Minimum Statistics (MS) [2], which can update the noise power spectrum directly from the 
noisy speech, even in a non-stationary noisy environment. The noise PSD estimation using 
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MS is based on the assumption that within the observed time-span, there is a silent part that is 
at least a small fraction of the total time-span. The spectral noise power is then obtained from 
the minimum values of the estimated power spectrum of the noisy signal. But this method 
may attenuate low energy phonemes occasionally, and the minimal search length should be 
set at least to the length of the smoothed speech components to avoid over-estimation, which 
restricts the tracking capability of the noise estimator in case of varying noise spectrum[4]. 

Recently, noise power estimation methods based on minimum mean square error (MMSE) 
[4-5] and Maximum Likelihood estimation (MLE) [8] have been proposed. These methods 
are based on the assumption of noise DFT components following a Gaussian distribution, and 
achieve good online noise-tracking capability for non-stationary noises with low complexity. 
However, the DFT components of color noise hardly follow Gaussian distribution. The 
accuracy of such estimation degrades in color noisy environments.  

To estimate the PSD of unknown noise, a study on the real distribution of speech and 
noise spectrum is essential because the optimal spectral estimator is based on assumed 
appropriate statistical model and criterion. A distribution of speech spectrum is discussed 
by Yariv Ephraim [1]. It concludes real statistical model of speech spectrum seems to be 
inaccessible, the validity of speech model can be judged a posteriori based on the results 
obtained. In his paper, he used a Gaussian model for both of the speech and noise. An 
advanced study is presented by Martin and Lotter [6]. These studies explored speech 
distribution data with 1-hour duration, in which only speech with a high and narrow band-
wide SNR interval (for example 19–21 dB) was selected. The results show the gamma model 
is better to fit the real statistical model in comparison with Laplace and Gaussian model. 
However, since the speech is a non-stationary signal, the distributions of voiced and unvoiced 
sound were found to be quite different. Therefore it is difficult to improve estimation of 
speech using a single distribution theory. Since the distributions of noise spectral amplitudes 
change slightly. Therefore, an improved estimation methods based on noise distribution is 
expected.  

In this paper, we investigate a new noise PSD estimation method for color noise based on a 
generalized gamma model rather than assuming a Gaussian distribution. The estimation of 
noise PSD can be derived by MAP criterions based on the generalized gamma probability 
density function (PDF). In addition, the parameters of the underlying PDF can be optimally 
fitted to the real distribution of four different typical color noise spectral amplitudes at each 
frequency bin. Using this statistical model, an accurate and computationally efficient noise 
estimator can be established. By integrating with the Wiener filter, the proposed algorithm 
shows noticeable efficiency compared with other recently developed speech-enhancement 
methods.  

This paper is organized as follows. In Section 2, we analyze the real distributions of noise 
spectral amplitudes by making a comparison with Rayleigh, the gamma and Laplace CDFs. 
From this comparison, we propose two new noise PSD estimation methods based on the 
generalized gamma PDFs. In Section 3, we test the proposed methods integrated with an 
improved Wiener filter using highly non-stationary noisy speech and compare it with some 
popular noise PSD-tracking algorithms, such as MS [2], MMSE [4], and MLE [8]. The results 
in terms of objective measurements are described in subsection 3.3. Then we give a 
conclusion in Section 4. 
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2. Noise Magnitude Models and Statistical Analysis 
 
2.1. The Distribution of Noise Spectral Amplitude 

We assumed that the mixing noise is additive and that speech s(l) and noise n(l) signals are 
uncorrelated. The noisy speech y(l) becomes  

)()()( lnlsly +=                                                                     (1) 
After discrete Fourier transform (DFT) of the noisy speech, it can be written as 

),(),(),( kNkSkY λλλ +=                                                                    (2) 

where Y(λ,k) denotes the DFT coefficient of noisy speech at the frequency index k  and frame 
index  λ.  

For white noise, both real and imaginary parts of the Fourier coefficients are distributed 
independently and identically and has a Gaussian distribution. This allows for Rayleigh-
distributed noise spectral amplitudes. The PDF with parameter δRay can be written as 

( ) )2exp( 2

2

2
RayRay

Ray
xxxf δδ

−=                                             (3)
 

and δRay=Nmean(k), where Nmean(k) denotes the mean of noise spectral amplitudes of the 
frequency bin k. For non-white noise, the spectral amplitudes are not uniform. Therefore, a 
more accurate PDF is required. The real PDF of noise spectral is near to Rayleigh PDF in 
shape but need proper adjustment to fit different kinds of color noises. Therefore gamma and 
Laplace PDF are taken into account. If we assume that the noise spectrum follows a gamma 
distribution, then the PDF can be written as 

( ) ( ) )exp(
1

gamgam
gamma

xxxf
δδν ν

ν

−
Γ
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−

                                            (4)
 

where δgam=Nmean(k), ν=N2
mean(k)/VN(k), according to the definition of the underlying gamma 

distribution, VN(k) denotes the variance of the noise spectral amplitudes of k-th frequency bin. 
If we assume that the noise spectrum follows Laplace distribution, the PDF can be 
written as 

( ) )exp(
2

1

LapLap
Laplace

x
xf

δδ
−=                                             (5)

 
where δLap=Nmean(k). 

Figure 1 shows an example of the comparison of the analytical CDFs and real CDF of 
noise spectral amplitudes at 1 kHz and the SNR is set as 5dB. It is difficult to determine 
which curve is the best. The Rayleigh and gamma CDFs are close to that of real CDF of noise 
spectral, the Laplace CDF is far away from the real noise CDF.  The Rayleigh CDF is good 
fitted in the fan noise situation, which is close to the white noise. However at other non-white 
noise environments the Rayleigh model show worse matching. This suggests that the 
assumption of the Gaussian distribution model is not suiting for the color noise any more.  

Furthermore, the distribution of the color noise spectral amplitude changes in the 
frequency domain. In order to show the detailed noise spectral distribution in the frequency 
domain, Kolmogorov–Smirnov (KS) statistics is introduced, the KS statistics is defined as 

( )( ) ( )( )kFkNFKS AnaN
−=

<<λ1
max                                              (6)  
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where F(N(k)) and FAna(k) denotes the Cumulative distribution function (CDF) of real 
noise spectral amplitude and analytical distribution, which includes fRay(x), fgamma(x) and 
fLaplace(x). In this experiment, we use 50 second noise signals at a SNR of 5 dB to 
calculate F(N(k)) with a frame length of 16 ms, achieving a 50% overlap between 
adjacent frames. The parameters of the distribution models are computed using VN(k) 
and Nmean(k) as shown in Eqs. (3) (4) and (5).  

Figure 2 shows the KS statistics of four types of noises. The KS statistics of Laplace is the 
largest for all noises. In Figure 2(a) and (c), the KS statistics of Rayleigh model are smaller 
than Laplace but larger than the gamma model. Gamma model is superior for the train, traffic 
and factory noises at most frequency. However, in Figure 2(c) and (d), the KS statistics 
suggest that the Rayleigh model is close even better for the factory and fan noises at some 
frequency. 

 
(a)  train noise 

 
(b)  traffic noise  

 
(c)  factory noise 

 
(d)  fan noise 

Figure 1. The CDFs of the Spectral Amplitudes of 1kHz at SNR of 5dB 
 

 
(a)  train noise 

 
(b)  traffic noise 

 
(c)  factory noise 

 
(d)  fan noise 

Figure 2. The Kolmogorov–Smirnov (KS) Statistics between Real Noise 
Spectral CDF and the Standard CDFs 
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2.2. The Approximate Generalized Gamma PDF 

For the standard Rayleigh or gamma distribution model, it is impossible to fit nonwhite 
noise with frequency bin k. In order to settle this problem, an approximate probability density 
function is introduced. Similar to the speech DFT component estimation in [6] [7], the 
generalized Gamma PDF is also suitable for the noise DFT component distribution. The 
approximating function [6] [7] with shape parameter ν and scale parameter μ is defined as  
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Where δN=Nmean(k) is the training data of the noise PSD, which makes an accurate function 
to approximate the real noise distribution. After choosing suitable μ and ν for the Gamma 
approximate PDF, the generalized gamma approximate PDF will be close to the standard 
gamma distribution when α=1, and close to the Rayleigh distribution when α=2.  
 
2.3. The Parameters of the Normalized Approximate Probability Density Function 

In this subsection, we develop a parameter estimation based on the moment matching 
method, to find out a parameter set (μ, ν) that best approximates the real noise distribution at 
each frequency bin. 

We use a fourth order moment of the spectral amplitudes of observed noisy speech and it 
can be denoted by [7] 

( )( )2cos2224
NSSNNSY ϕϕ −++=                                                                (8) 

where ⋅  denotes expectation. Because the phase difference (φS -φN) is a uniform distribution 
[6], then the Eq. (8) is given by 

224444 NSNSY ++=                                                                           (9) 

where S2(λ,k) and N2(λ,k) are the moments powers of the speech and noise.  

When α=2, according to equation (7) and Gaussian assumption of the speech DFT 
component we can get 

( )( )
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Then the Eq. (8) becomes 
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Finally, we can define   
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where 222 ˆ,ˆ NS NS == δδ , and the normalization condition implies the constraint  

q==νµ .                                                                                                               (13) 
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When α=1, the Eq. (8) becomes 

( )( )
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=                                                                         (14) 

Same as above, we obtain 

qqq 5
2

14
2

14
+

−
+

−
=ν                                                                                          (15) 

and ( )1+= ννµ . 

In the Figure 3, we show the CDFs of noise spectral amplitudes at 1kHz. It is very clear 
that the generalized gamma PDFs with adaptive parameter are fitting much better to the 
real noise CDFs. The KS statistics results are shown in Figure 4. Two generalized 
gamma models have less KS distance with the real noise spectral CDFs. But from 
Figure 3 or Figure 4, it is very difficult to find out which generalized gamma model is 
better. 

 
(a)  train noise 

 
(b)  traffic noise  

 
(c)  factory noise 

 
(d)  fan noise 

Figure 3. The CDFs of the Spectral Amplitudes of 1kHz at SNR of 5dB 
 

 
(a)  train noise 

 
(b)  traffic noise 
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(c)  factory noise 

 
(d)  fan noise 

Figure 4. The Kolmogorov–Smirnov (KS) Statistics between Real Noise 
Spectral CDF and the Generalized Gamma CDFs 

2.5. Noise PSD Estimation based on MAP 
 

2.5.1. MAP Estimation when α=1 

At first, according to the Gaussian assumption, we can define the p(Y|N) as 

( ) 





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Instead of differentiating, the maximization can perform better after applying the natural 
logarithm, because the product of the polynomial and exponential converts into a sum 
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After multiplication with N, one reasonable solution N
^

=GY to the quadratic equation is 
found, because the second solution delivers spectral amplitudes N < 0 at least for ν > 0.The 
second derivative at N is negative, thus a local maximum is guaranteed.  
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2.5.2. MAP Estimation when α=2 

Considering the above calculations, when α=2 the MAP estimation can be written as 
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The weight G will be 
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In Figure 5 the weights G are shown, the slope of MAP-gamma α=1 shows a peak between 
1 and 2 of posteriori SNR ( ) 22, NkY δλγ = . MAP-gamma α=2 makes the fastest delay. The MMSE 
and MLE methods based on Gaussian model show less dynamic range and makes delay 
slowly, which means a worse resolution. 
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Figure 5. The Weight G of the Proposed and Reference Methods 

3. Experiments and Simulated Results 
 
3.1. Modified Wiener Filter 

The traditional Wiener filter can be formulated as 
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=                   (21) 

 
where Ps(λ,k) is the clean speech power spectrum, and Pd(λ,k) is the noise power spectrum. 

Thus, we have 
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where S
^

(λ,k) is the estimation of the Fourier transform of the clean speech. Then the 
modified Wiener Filter [9] can be simplified into  
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The modified Wiener Filter improves the performance of the noise reduction system at a 

satisfactory level depending on the accuracy of the noise spectral estimation, and this method 
produces less musical noise as discussed in [9]. 
 
3.2. Experiment Setup 

The experiment is performed using the 3 male and 3 female speeches. The data used were 
taken from the University of Tsukuba Multilingual Speech Corpus (UT-ML). The speeches 
were degraded by noise sources with input SNRs of 0, 5, 10 and 15dB. The four additive 
acoustic noises were taken from JEIDA-NOISE database. All signals and noises are sampled 
at a frequency of 16 kHz. All the frames have a length of N=256 with an overlap of 50%, and 
are windowed using Hanning window. 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V18-4GP271M-1&_mathId=mml7&_user=959425&_cdi=5668&_rdoc=1&_acct=C000049379&_version=1&_userid=959425&md5=a910ea42e2a68e7c6bf03911385cf758
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3.3. Evaluation Measures 

In order to measure the objective evaluation of the quality, we employed the Perceptual 
Estimation of Speech Quality (PESQ ITU-T P.862) [10], log-error distortion and segmental 
SNR improvement. The symmetric segmental log-error in Figure 6 is defined as  
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and segmental SNR is defined as  
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3.4. Performance Evaluation 

Figure 6 shows the log error results of the noise PSD estimation method. The results show 
MAP gamma α=1 and α=2 have least log errors at high SNRs (10 and 15 dB) and low SNRs 
(0 and 5 dB) respectively.  The MS has less log error than MLE in most of the situations 
except at the SNR of 0 and 5 dBs in factory noise. At the high SNRs the MS shows less log 
error than MAP gamma α=2. The log errors of MMSE are largest in all noise environments. 
The log errors of MLE show similar trend and less than MMSE. 

In Figure 7 the segmental SNRs of the enhanced speech are given. The MLE shows best 
results at 0 and 5 dBs and better results at 10 and 15 dBs. MAP gamma α=1 and α=2 show 
almost same results in this test. That is worst at low SNRs (0 and 5 dBs) but best at high 
SNRs. The results of MS improve slowly and better than MMSE, which has similar trend. 
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Figure 6. The Logerror of Noise PSD Estimation 



International Journal of Advanced Science and Technology 

Vol. 54, May, 2013 

 

 

86 

3

6

9

12

15

18

21

24

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Input SNR (dB)

S
e
gm

e
n
ta

l 
S
N

R
 (
dB

)

MS MMSE MLE

MAP-gamma α=1 MAP-gamma α=2

   train noise     factory noise       traffic noise          fan noise

  
 

Figure 7. The Segmental SNR of Enhanced Speech 
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Figure 8. The PESQ of Enhanced Speech 

The PESQs of enhanced speech are shown in Figure 8. The MAP gamma α=2 shows 
the best speech quality in train and traffic noises and MAP gamma α=1 shows the best 
performance in factory and fan noises. The MLE is better than MMSE and MS. The MS 
shows worst results in all environments except in the fan noise environment. 

According to the Figure 5, the slope of the MAP gamma α=2 has a largest dynamic 
range when posteriori SNR ranges from 1 to 2, which suggests it has better resolution at 
low SNR. However its resolution degrades when posteriori SNR is larger than 2 because 
in this filed the dynamic range of this method is short. In contrast, the slope of the MAP 
gamma α=1 makes fast delay during the posteriori SNR between 2 and 5, which suggests 
better resolution at high SNRs. The MLE makes delay slowly at low posteriori SNRs and 
makes fastest delay at high posteriori SNRs above 6, which indicates that this method 
will show better performance at high SNRs. The MMSE method shows an inverse 
proportionality character, and kept in middle level of the dynamic range in all posteriori 
fields. 
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4. Conclusions 
In this paper we focused on the noise power spectral density estimation of noisy speech for 

speech enhancement system. Two MAP estimators for color noise PSD on the basis of the 
assumption of generalized Gamma distribution are proposed. The parameters of generalized 
Gamma PDFs are estimated based on moment matching method and above assumption. The 
results show those estimators have good online tracking capability. Compared with reference 
methods such as MMSE, MAP and MLE, MAP gamma α=1 has best performance at high 
SNRs, while MAP gamma α=2 has best performance at low SNRS.  

It is confirmed that the adaptive generalized Gamma models are suitable for describing the 
real spectral distribution of color noises. Evaluations show that proposed method has better 
performance compared with Gaussian noise assumption based MMSE and MLE noise PSD 
estimation algorithms. 
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