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Abstract 
This paper addresses the method of multiple cracks detection in moving parts or beams by 

monitoring the natural frequency and prediction of crack location and depth using Artificial 
Neural Networks (ANN). Determination of crack properties like depth and location is vital in 
the fault diagnosis of rotating machine equipments. For the theoretical analysis, Finite 
Element Method (FEM) is used wherein the natural frequency of beam is calculated whereas 
the experimentation is performed using Fast Fourier Transform (FFT) analyzer. In 
experimentation, simply supported beam with single crack and cantilever beam with two 
cracks are considered. The experimental results are validated with the results of FEM 
(ANSYSTM) software. This formulation can be extended for various boundary conditions as 
well as varying cross sectional areas. The database obtained by FEM is used for prediction of 
crack location and depth using Artificial Neural Network (ANN). To investigate the validity of 
the proposed method, some predictions by ANN are compared with the results given by FEM. 
It is found that the method is capable of predicting the crack location and depth for single as 
well as two cracks. This work may be useful for improving online conditioning and 
monitoring of machine components and integrity assessment of the structures. 
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1. Introduction 

The presence of crack in structure changes its dynamic characteristics. The change is 
characterized by change in modal parameters like modal frequencies, modal value and 
mode shapes associated with each modal frequency. It also alters the structural 
parameters like mass, damping matrix, stiffness matrix and flexibility matrix of 
structure. The vibration technique utilizes one or more of these parameters for crack 
detection [1-2]. The frequency reduction in cracked beam is not due to removal of mass 
from beam, indeed the reduction in mass would increase natural frequency. But 
reduction in natural frequency is observed due to removal of material which carries 
significant stresses when defect is a narrow crack or notch [3]. It reduces the stiffness 
of structure and natural frequency [4-7]. Due to presence of crack there is local 
influence which results from reduction and second moment of area of cross section 
where it is located [8-9]. The system becomes non linear due to crack [10]. This 
reduction is equivalent to lowering the local bending stiffness of beam and therefore it 
behaves as two beams connected by means of torsion spring [11-12]. Finite Element 
Analysis is powerful tool which gives the reasonably accurate results for complicated 
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on line working assemblies in dynamic analysis [13-14]. Non destructive error detection 
suggests that the variation in monitored signatures is indication of error and it can be 
located [15]. Beam forming of lamb waves can also be used for structural health 
monitoring and the results are also promising [16]. To incorporate the non linearity, the 
crack is simulated by an equivalent linear spring for longitudinal vibration and the 
torsion spring for transverse vibrations connecting the two segments of beam [17]. The 
equivalent stiffness may be computed from the crack strain energy function [18]. The 
expression for the spring stiffness representing a crack depth ratio is presented [19]. As 
such correct numerical formula is not available hence the use of 2D element in Finite 
Element Analysis is equally valuable. Till now the effect of crack along the width is 
considered. It is observed that the crack along the length does not affect the natural 
frequency up to the considerable mark [20]. This method can be implemented for 
assessment of multiple cracks also [21-23]. The present study is based on observation 
of changes in natural frequency. In theoretical analysis, the crack is simulated by a 
spring connecting the two segments of the beam in the work carried out. For the 
theoretical analysis, Finite Element Method (FEM) is used wherein the natural 
frequency of beam is calculated by modal analysis using ANSYSTM whereas for 
experimentation purpose, Fast Fourier Transform (FFT) analyzer is used. In 
experimentation, simply supported beam with single crack and cantilever beam with 
two cracks are considered.  
 
2. Analysis of Reduction in Natural Frequencies 

A theoretical model based on the receptance technique is presented for analysis. It can be 
treated as one-dimensional analysis. The crack divides the beam in two sections having 
receptances β and γ respectively. If Kx is the stiffness of the bar, then the natural frequencies 
of the cracked bar satisfy the following equation 
 
𝛽𝑥 + 𝛾𝑥 + 1

𝐾𝑥
= 0                            (2.1) 

 
Decrease in Kx is indication of increase in damage. For a bar with uniform cross section a 

relationship between the crack stiffness, crack location and natural frequency is given by,  
 
𝐸𝐴/𝐾𝑥 = 1/𝜆[𝐶𝑜𝑡𝜆𝑥 + 𝐶𝑜𝑡𝜆(1 − 𝑥)]                   (2.2) 

 
Where E, A, and I are the modulus of elasticity, cross-sectional area and length of the 

beam respectively. λ = ω √1/x is the frequency parameter where ω is natural frequency of an 
axial vibrations. For torsion springs the relationship is in terms of ratios of two determinants. 
 
𝐾 = −𝜆∆2/∆1                      (2.3) 
 

Where ∆ is frequency parameter while ∆1 and ∆2 are obtained from the characteristic 
equation of the system [1] Minimum three modes are required for an efficient prediction. For 
the cantilever beam with multiple cracks (2 cracks), five modes are extracted. Consider Euler 
Bernoulli beam. To derive the differential equation of motion for the bending vibration of 
beam, consider an element of beam of length dx where V and M are shear and bending 
moments. P(x) represents the loading per unit length of beam. Summing the forces in Y 
direction, 
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(𝒱 + 𝑑𝑣 )–𝒱 − 𝑃(𝑥)𝑑𝑥 = 0, 𝑑𝑣 + 𝑑𝑥 = 𝑝(𝑥)                  (2.4) 
 

By assuming moments about any point on right face of elements in limiting case becomes  
 
𝑑𝑚
𝑑𝑥 

= 𝑉                      (2.5) 
 

The equation (2.4) state that rate of change of shear along the length of the beam is equal 
to the loading per unit length. Equation (2.5) state that rate of change of the moment along the 
beam is equal to the shear. From equation (2.4) and equation (2.5) 
 
∂2M
∂x2 = ∂V

∂x
= p(x)                     (2.6) 

 
Substituting bending moment 𝑀 = 𝐸𝐼 𝜕

2𝑦
𝜕𝑥2

 in equation (2.6),  
 

𝜕2

𝜕𝑥2    �𝐸𝐼𝜕
2𝑦

𝜕𝑥2
�

=  p(x)                     (2.7) 

 
For the beam having transverse vibrations, the load per unit length of the beam is the 

inertia force i.e., mass and acceleration, where M = mass of beam per unit length hence 
equation (2.7) becomes, 
 
𝜕2

𝜕𝑥2  �𝐸𝐼
𝜕2𝑦
𝜕𝑥2

� = M 
∂2y
∂t2

   

𝐸𝐼 𝜕
4𝑦

𝜕𝑥4
= −𝜌𝐴 𝜕

2𝑦
𝜕𝑡2

= 0                    (2.8) 
 

The equation (2.8) is called governing equation of motion of Euler – Bernoulli. The 
general solution of the equation (2.8) is obtained by method of separation of variable Y (x,t) = 
Y(x), T(t), Substituting y = Y.T in equation (2.8), 
 
𝐸𝐼𝑇 𝜕

2𝑌
𝜕𝑥  4 + 𝜌𝐴 𝜕2𝑇

𝜕𝑡  4 =0 

1
𝑇� �

𝜕2𝑇
𝜕𝑡  2 � = �

𝐸𝐼
𝜌𝐴
�

1
𝑌

(
𝜕4𝑌
𝜕𝑥  4 ) 

 
The left hand side of the above equation is function of ‘T’ while the right hand side is 

function of ‘Y’ alone. It is possible if each side of this equation is equal to negative constant 
say - ω2 where ω is a real number. 

 
1
𝑇� �

𝜕2𝑇
𝜕𝑡  2 � = �

𝐸𝐼
𝜌𝐴
�

1
𝑌
�
𝜕4𝑌
𝜕𝑥  4 � = −ω2  

�
𝐸𝐼
𝜌𝐴
�

1
𝑌
�
𝜕4𝑌
𝜕𝑥  4 � = −ω2 

𝜕4𝑌
𝜕𝑥  4  −�

𝜌𝐴ω2

𝐸𝐼
� 𝑌 = 0 

𝜕4𝑌
𝜕𝑥  4  −𝜆4𝑌 = 0 
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Where𝜆4 = �𝜌𝐴ω
2

𝐸𝐼
� , from theory of linear differential equation, the solution for above 

equation is, 
 
𝑌(𝑥) = a1 sin λx + a2 cos λx + a3 sinh λx + a4 cosh λx                (2.9) 

 
This equation represents harmonic motion of the beam. Where a1, a2, a3 and a4 are 

constants and can be found by substituting this solution in the boundary condition. Hence, we 
get different values of y for the range of x = 0 to 1 for each modes and mode shapes are found 
out.  
 
3. Determination of Crack Location 

The equation (2.8) of the motion of Euler-Bernoulli does not satisfy near the crack due to 
abrupt change in the cross-section. The beam can be treated as two uniform beams connected 
by a torsional spring at the crack location. The equation (2.8) is then valid for each segment 
of the beam separately. This kind of modeling for the cracked beam has the advantage of 
using the exact solution throughout the beam except for a narrow region near the crack where 
the true stress-strain field is approximated by spring. For two beam segments, we get set of 
equations from equation (2.9) 
 
𝑌1(𝑥) = a1 sin λx + a2 cos λx + a3 sinh λx + a4 cosh λx            (2.10 a) 

 
𝑌2(𝑥) = a5 sin λx + a6 cos λx + a7 sinh λx + a8 cosh λx                                               (2.10 b) 

 
Where the origin of x for both segments is at the support and λ4= ρA ω2/EI. The 

coefficients a1 can be found by substituting this solution in boundary conditions. In case of 
stepped beams or shafts, four constants for each step get added. The boundary conditions for 
simply supported beam are as follows. For the free vibrations of the beam, Y1A= Y2C = 0 and 
Y”1A = Y”2C = 0. The continuity conditions at the crack position the displacement, moments 
and shear forces are Y1B = Y2B, Y”1B = Y”2B, Y”1B = Y” 2B, with the non-dimensional crack 
section flexibility denoted by 0, the angular displacement between the two beam segments 
can be related to the moment at this section by, Y’2B + ΘL Y"2B = Y'1B. Substituting equation 
(2.5) in above boundary conditions, a set of eight homogeneous linear algebraic equations for 
the eight unknown coefficients is formed [24]. 
 
1   0    1   0 
1   0   -1   0 
cosheβ   sinheβ   coseβ   sineβ 
sinheβ   cosheβ   sineβ   -coseβ 
cosheβ   sinheβ   -coseβ   -sineβ 
0   0   0   0 
0   0   0   0 
(sineβ/θβ)+cosheβ (cosheβ)/(θβ)+sinheβ   -(sineβ)/(θβ)-coseβ (coseβ)/(θB)-sineβ 
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0   0   0   0 
0   0   0   0 
-cosheβ        -sinheβ   -coseβ   -sineβ 
-sinheβ       -cosheβ                -sineβ   -coseβ     = 0 
-cosheβ        -sinheβ   coseβ   sineβ 
coshβ            sinhβ   cosβ   sinβ 
coshβ            sinhβ   -cosβ   -sinβ 
-(sineβ/0β)  -(cosheβ)/(0β)   (sineβ)/(0β)  -(coseβ)/(0B) 

 
Where θ - non dimensional flexibility (EI / KfL), β = λL - non dimensional frequency 

parameter and e = [(L1 – L/2) / (L/2)] - non dimensional crack location. After solving the 
above matrix using MATLAB, the set of equation reduces to, 
 
4 sin β sinh β + βθ[sinhβ(cosβ− cosecβ)] + sinβ(coshβ − cosheβ) = 0   
 

For crack location, a partial differentiation with respect to 0 yields, 
 

4(𝑐𝑜𝑠βsinhβ + sinβcoshβ) �
𝜕β
∂θ
� + β[sinhβ(cosβ− coshβ) + sinβ(coseβ − cosheβ)] = 0 

𝜕
𝜕β

{𝐵𝑠𝑖𝑛ℎβ(cosβ− coseβ) + sinhβ(coshβ − cosheβ)]}
𝜕β
∂θ

= 0 

 
For uncracked beam with equivalent flexibility, the nominal values of 0 in above equation 

become zero. Substituting 0 = 0 and  β = nπ. By definition of the non-dimensional frequency 
parameter, 2 ∆β/β = ∆f/f. Substituting in above equation and rewriting for the ith mode, 
 

2𝑐𝑜𝑠βi �
∆f
fi
� = [cosecβi − cosβi]∆θ 

 
For the first natural mode βi = 1π, above equation yields 

 
−2 �∆f1

fi
� = (cos2eπ + 1)∆θ                  (2.11) 

 
And for the second mode β2 = 2 π, Above equation yields, 

 
2 �∆f2

f2
� = (cos2eπ − 1)∆θ                  (2.12) 

 
Dividing equation (2.11) by equation (2.12), 

 

�
∆𝑓2
𝑓2

� �
∆𝑓1
𝑓1

� =
(1 − cos 2eπ)
(1 + cos 2eπ)

 

 
Solving above equation for crack location e, 

 

𝑒 = 1
π

cos−1
[1−�∆𝑓2𝑓2 �/�∆𝑓1𝑓1 �]

2
                   (2.13) 
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Where ∆fn = fn – fn, fn and fn are the natural frequencies of uncracked and cracked beam. 
This relation suggests that the ratio of the relative vibrations of two modes depends solely on 
the location of the crack and is independent on crack geometry or beam properties.  
 
4. Determination of Crack Size 

Consider a beam with a discrete crack. Considering the characteristic equations, the 
frequency change ratio ∆fn/fn and the dimensionless stiffness K is given as, 
 
∆𝑓𝑛
𝑓𝑛

= 2𝑔𝑛(𝑥)(1
𝐾

)                     (3.1) 
 

Where, x is non dimensional crack location L1/L or (e+1)/2 and K = (K1L) / EI                 (3.2) 
 
∆fn is difference between uncracked and cracked beam = fn – fn, fn and fn are the natural 
frequencies of uncracked and cracked beam. The gn(x) function for a simply supported beam 
can be evaluated as, 
 
𝑔𝑛(𝑥) = 1

4
{ �𝜑𝑛�𝑥

2��
∫[𝜑𝑛(𝑥2)]𝑑𝑥}                    (3.3) 

 
From elementary beam theory, for simply supported beam the mode shape is ϕn = sin (n 

πx). The relationship between the changes in eigen frequencies and the crack location and 
stiffness of crack based on equation (3.1), (3.2) and (3.3) can be expressed as, 
 
∆𝑓𝑛 𝑓𝑛 =⁄ 𝑠𝑖𝑛2(𝑛𝜋𝑥)𝐸𝐼/K1L                    (3.4) 

 
The spring stiffness Kr decreases in the vicinity of the cracked section of a beam having 

width b, height h and crack depth a. From the crack strain energy function, 
 
𝐾𝑟 = 𝐸𝐼 [(5.346ℎ)𝑓(𝑎 ℎ⁄ )⁄ ] 

 
Substituting the above relation in equation (3.4) 
 
∆𝑓𝑛 𝑓𝑛 =⁄ 𝑠𝑖𝑛2(𝑛𝜋𝑥){[(5.346ℎ)𝑓(𝑎 ℎ⁄ )] 𝐿}⁄   
 ∆𝑓𝑛 𝑓𝑛 =⁄ 𝑠𝑖𝑛2[𝑛𝜋(𝑒 + 1)/2] h

L
 𝑓(𝑎 ℎ⁄ )                     (3.5) 

 
Where, f(a/h) = 1.8624 (a/h)2 – 3.95 (a/h)3 +16.375 (a/h)4 – 37.226 (a/h)5   + 78.81 (a/h)6 – 

126.9 (a/h)7 + 172 (a/h)8 – 143.97 (a/h)9 + 66.56 (a/h)10. [25]    
Substituting above value in equation (3.5) and neglecting higher order values, the equation 

becomes, 
 
(𝑎 ℎ⁄ )2 = (∆𝑓𝑛 𝑓𝑛⁄ ) {9.9563𝑠𝑖𝑛2[𝑛π(e + 1) 2⁄ ] ℎ}⁄                  (3.6) 

 
Using equation (3.6) crack depth ratio (a/h) can be found out if the natural frequency of 

beam is known. 
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5. Experimental Analysis 
The instruments used for experimental analysis i.e., measurement of natural frequencies 

are Fast Fourier Transform (FFT) analyzer, accelerometer, impact hammer and related 
accessories. The FFT analyzer used is 4 channel B&K make with measuring range 10-200 
dB, amplitude stability + 0.1 dB, impedance 10 G Ω, frequency limit 1 Hz to 20 KHz. RT-
PROTM software, compatible with the FFT analyzer is used. The piezoelectric, miniature type 
unidirectional accelerometer is used to capture the frequency response functions. The 
accelerometer is mounted on the beam using mounting clips. The accelerometer is mounted 
near the crack to capture the correct signal. The impact hammer is used to excite the beam 
whose frequency response function has to be captured. For every test, the location of impact 
of impact hammer is kept constant. Impact hammer has the range of excitation 1-4000 Hz. 
The beam is tapped gently with the impact hammer. The experiments are performed on mild 
steel beams with simply supported boundary conditions having single crack and cantilever 
boundary conditions with two cracks of different depths at different locations. The properties 
of mild steel are, Young’s modulus (E) 2.0 e11 N/m2, density (ρ) 7950 N/m3 and Poisson’s 
ratio 0.3. Specimen beams under consideration have rectangular cross section area. For 
simply supported beam the cross sectional area is 0.025 x 0.010 m, L = 0.3m and for 
cantilever beam the cross sectional area is 0.05 x 0.01m, L = 0.5 m. The geometry of beams is 
as shown in Figure 1. Crack depth is represented in terms of (a/h) ratio where a = depth of 
crack and h = height of beam and crack location is represented in terms of (e) where e is ratio 
of location of crack at distance L1 or L2 from the support to the length of the beam L. The 
experimental setup is as shown in Figure 2. The aim of experimental analysis is to verify the 
practical applicability of the theoretical method developed. For the beam with single or 
double cracks, transverse and open cracks are considered. Two cracks are parallel to each 
other as two cracks of same depth with different orientation do not have any effect on natural 
frequency values [26]. Initially, the natural frequency of uncracked beam is found out. 
Hairline crack is generated to simulate the actual crack in the working components. 
Thereafter, the severity i.e., depth of crack is increased. The change in natural frequency due 
to the crack is monitored. Table 1 shows the natural frequencies of simply supported beam 
with single crack. 
 

                
Figure 1. Geometry of Beam with Single Crack and Two Cracks 

                  
Figure 2. Experimental set-up (Simply Supported and Cantilever Beam) 
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Table 1. Natural Frequencies and Frequency Ratio for Simply Supported Beam 
with Single Crack 

Sr. 
No 

Crack 
location & 
size (mm) 

Natural 
Frequency 

by FEM (Hz) 

Natural 
Frequency by 

Experiments (Hz) 

Theoretical 
frequency 

ratio 

Expt. 
frequency 

ratio e a/h ω1 ω2 ω1 ω2 
1 0 0 624.7 2420.3 581.25 2371.2 - - 
2 0.2 0.1 623.52 2419.0 562.25 2362.5 0.3705 0.3203 
3 0.4 0.1 627.85 2416.4 568.75 2325.00 1.2966 1.2172 
4 0.6 0.1 624.27 2416.4 568.75 2250.00 2.5565 2.7215 
5 0.8 0.1 624.59 2419.1 575.00 2306.00 3.4812 3.1746 
6 0.2 0.2 620.96 2415.4 566.75 2356.00 0.3597 0.4036 
7 0.4 0.2 620.96 2415.4 568.25 2300.00 1.2343 1.1361 
8 0.6 0.2 621.96 2406.7 568.75 2250.00 2.4113 2.678 
9 0.8 0.2 624.31 2415.3 575.00 2300.00 3.444 3.4083 

10 0.2 0.3 616.93 2409.7 525.00 2331.25 0.347 0.2434 
11 0.4 0.3 615.12 2392.6 531.25 2187.5 1.1633 0.9738 
12 0.6 0.3 621.74 2392.0 556.25 2181.25 2.2616 2.0085 
13 0.8 0.3 623.89 2409.8 562.50 2168.75 3.3976 2.7955 
14 0.2 0.4 611.59 2420.3 475.00 2331.25 0.3347 0.358 
15 0.4 0.4 615.06 2373.1 493.75 2143.75 1.0626 0.8781 
16 0.6 0.4 619.62 2372.6 543.75 2068.75 2.0787 2.0693 
17 0.8 0.4 623.27 2401.5 556.25 2087.5 3.3447 2.9214 

 
6. Finite Element Analysis 

Finite Element Analysis is performed using ANSYSTM. The model of beam is generated and 
used for Finite Element Analysis. The modal analysis is used to determine the natural 
frequencies and mode shapes of a structure. The element used in Finite Element Analysis is 
PLANE 82: 2-D8-Node Structural Solid. PLANE82 is a higher order version of the two-
dimensional, four-node element (PLANE42). It provides more accurate results for mixed 
(quadrilateral-triangular) automatic meshes and can tolerate irregular shapes without loss of 
accuracy [27]. The properties of the material are as mentioned Section 5. Table 1 shows the 
natural frequencies of simply supported beam with single crack and Table 2 shows the natural 
frequencies of cantilever beam with two cracks of different depths at different locations 
determined using ANSYSTM. The crack location and crack depth of first crack with reference 
to left support is fixed and the other crack is varied [21]. 

Table 2. Natural Frequencies of Cantilever Beam with Two Cracks by FEM 

Crack location & size (mm) Natural Frequency (Hz) 
e1 a1/h e 2 a2/h ω1 ω2 ω3 ω4 ω5 
0 0 0 0 143.03 901.83 2143.6 2435.4 4478 

0.1 0.1 0.2 0.1 139.07 896.52 2116.9 2417.1 4431.7 
0.1 0.1 0.2 0.2 134.78 893.08 2090.7 2381.9 4352.6 
0.1 0.1 0.2 0.3 130.25 894.71 2048.2 2350.6 4260 
0.1 0.1 0.2 0.4 121.99 890.88 1954.4 2316.9 4156 

http://www.oulu.fi/atkk/tkpalv/unix/ansys-6.1/content/Hlp_E_PLANE42.html
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0.1 0.1 0.2 0.5 111.41 887.6 1802.7 2313.7 4077.5 
0.1 0.1 0.3 0.1 145.54 915.35 2210.8 2450 4518.4 
0.1 0.1 0.3 0.2 142.85 907.01 2189 2402.7 4503.3 
0.1 0.1 0.3 0.3 138.4 893.47 2138.1 2350.3 4481 
0.1 0.1 0.3 0.4 132.3 875.37 2021.1 2333.7 4455.7 
0.1 0.1 0.3 0.5 123.37 850.35 1876.6 2329.1 4427.8 
0.1 0.1 0.4 0.1 1389.7 8865.2 2111.1 2419.2 4442.8 
0.1 0.1 0.4 0.2 138.34 868.51 2103.8 2404.7 4404.1 
0.1 0.1 0.4 0.3 135.87 836.35 2073.8 2382.9 4341.1 
0.1 0.1 0.4 0.4 132.19 793.25 2024.2 2362 4267.6 
0.1 0.1 0.4 0.5 126.35 737.48 1945.8 2347 4185.9 
0.1 0.1 0.5 0.1 139.11 884.19 2111.2 2425.8 4422 
0.1 0.1 0.5 0.2 139.14 861.06 2107.5 2426.5 4333.4 
0.1 0.1 0.5 0.3 145.76 847.93 2179 2474.6 4264.6 
0.1 0.1 0.5 0.4 141.95 788.23 2122 2463.2 4113.9 
0.1 0.1 0.5 0.5 137.36 717.17 2071.7 2458.6 3969.3 
0.1 0.1 0.6 0.1 145.95 908.74 2210.2 2456 4518.1 
0.1 0.1 0.6 0.2 147.86 891.48 2199.2 2427.2 4505 
0.1 0.1 0.6 0.3 147.86 855.95 2173.7 2396.3 4489.5 
0.1 0.1 0.6 0.4 143.76 795.21 2099.6 2360.3 4458.2 
0.1 0.1 0.6 0.5 144.03 727.79 2015.9 2347.7 4410.6 
0.1 0.1 0.7 0.1 146.51 913.31 2212 2445.3 4504 
0.1 0.1 0.7 0.2 146.4 899.65 2199 2384.7 4456.2 
0.1 0.1 0.7 0.3 145.74 874.61 2148 2321.5 4383.9 
0.1 0.1 0.7 0.4 147.96 842.68 2047.6 2288.5 4306.3 
0.1 0.1 0.7 0.5 144.72 779.05 1891 2267 4213.9 
0.1 0.1 0.8 0.1 146.4 916.34 2213.4 2453.4 4474.9 
0.1 0.1 0.8 0.2 146.04 910.82 2206.5 2411 4348.5 
0.1 0.1 0.8 0.3 145.96 902.24 2184.2 2343.8 4166.2 
0.1 0.1 0.8 0.4 146.2 888.81 2105.2 2291.2 3948.2 
0.1 0.1 0.8 0.5 146.1 863.26 1935.4 2261.4 3727.5 
0.1 0.1 0.9 0.1 146.5 918.08 2214.3 2468.7 4510.7 
0.1 0.1 0.9 0.2 146.52 917.77 2214.5 2461.5 4472 
0.1 0.1 0.9 0.3 146.25 916.2 2211.5 2449.2 4389.8 
0.1 0.1 0.9 0.4 146.16 914.36 2204.1 2426.2 4229 
0.1 0.1 0.9 0.5 146.16 911.85 2185.5 2384.7 3920.5 
0.1 0.2 0.2 0.1 137.49 903.06 2154 2441.9 4457.4 
0.1 0.2 0.2 0.2 134.33 902.56 2135.7 2411.7 4386.5 
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0.1 0.2 0.2 0.3 128.49 899.85 2080.8 2376.5 4291.1 
0.1 0.2 0.2 0.4 121.73 900.98 2004.8 2348.5 4194.3 
0.1 0.2 0.2 0.5 111.01 897.2 1854.1 2339.4 4113.1 
0.1 0.2 0.3 0.1 137.53 898.69 2150.4 2431.2 4480.3 
0.1 0.2 0.3 0.2 135.98 891.83 2139.7 2386.9 4473.1 
0.1 0.2 0.3 0.3 132.24 877.05 2092 2333.1 4454.4 
0.1 0.2 0.3 0.4 126.55 855.55 1991.1 2302.4 4431.6 
0.1 0.2 0.3 0.5 122.04 862.53 1869.9 2357.7 4389.4 
0.1 0.2 0.4 0.1 145.89 910.72 2211.1 2462.7 4508.8 
0.1 0.2 0.4 0.2 136.96 875.44 2142 2427.2 4430.6 
0.1 0.2 0.4 0.3 134.17 842.01 2107.6 2402.2 4366.5 
0.1 0.2 0.4 0.4 130.62 798.28 2054.7 2381.4 4292.2 
0.1 0.2 0.4 0.5 125.44 743.66 1976.4 2363.6 4222.2 
0.1 0.2 0.5 0.1 138.56 893.69 2156.3 2454.4 4450.8 
0.1 0.2 0.5 0.2 145.14 882.26 2196.9 2467.6 4392.8 
0.1 0.2 0.5 0.3 145.76 847.93 2179 2474.6 4264.6 
0.1 0.2 0.5 0.4 134.34 771.94 2083.3 2445.8 4074.8 
0.1 0.2 0.5 0.5 131.03 701.94 2026.8 2440.7 3923 
0.1 0.2 0.6 0.1 138.63 894.67 2155.3 2439 4482.4 
0.1 0.2 0.6 0.2 138.32 871.9 2144 2404 4471.7 
0.1 0.2 0.6 0.3 137.4 834.31 2116 2357.7 4451.8 
0.1 0.2 0.6 0.4 135.97 780.42 2060.7 2313.4 4417.5 
0.1 0.2 0.6 0.5 135.14 711.28 1977.4 2305.9 4380.1 
0.1 0.2 0.7 0.1 138.89 898.95 2158.8 2428.9 4468.7 
0.1 0.2 0.7 0.2 138.14 883.51 2143.5 2358.3 4417.2 
0.1 0.2 0.7 0.3 138.05 860.55 2110.2 2281.4 4350.2 
0.1 0.2 0.7 0.4 138.95 825.55 2012.2 2224 4263.7 
0.1 0.2 0.7 0.5 136.96 767.14 1867.4 2215.9 4182.2 
0.1 0.2 0.8 0.1 138.84 901.73 2157.9 2437.6 4440.2 
0.1 0.2 0.8 0.2 138.13 895.6 2149.5 2388.3 4319.9 
0.1 0.2 0.8 0.3 138.36 888.57 2137.5 2321.8 4141.9 
0.1 0.2 0.8 0.4 138.55 874.85 2075.1 2246.3 3925.2 
0.1 0.2 0.8 0.5 138.05 849.33 1916.7 2205.3 3705.7 
0.1 0.2 0.9 0.1 138.86 903.4 2159.7 2452.2 4475.1 
0.1 0.2 0.9 0.2 138.23 901.25 2153.5 2441.4 4434.9 
0.1 0.2 0.9 0.3 138.93 902.66 2158 2431.9 4362.2 
0.1 0.2 0.9 0.4 138.99 901.08 2153 2407.8 4209 
0.1 0.2 0.9 0.5 139 898.51 2138.1 2363.1 3905.8 
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7. Prediction of Crack Properties by Artificial Neural Networks (ANN) 
The inverse problem can be converted into forward technique using tools of Artificial 

Intelligence like Genetic algorithm, Fuzzy Logics, Artificial Neural Network (ANN). These 
techniques can be used for prediction of life of components or even optimization to minimize 
the errors in frequencies determined by numerical simulation and experimental measurement. 
Genetic algorithms are stochastic search algorithms which are based on the mechanics of 
nature selection and natural genetics. These are designed to search large, non-linear, discrete 
and poorly understood search space where expert knowledge is difficult to model and 
traditional optimization techniques may not give accurate results. In the genetic algorithm, 
this error is used to evaluate the fitness of each individual in the population. Genetic 
algorithms have been frequently accepted as optimization methods in various fields and have 
also been proved as an excellent in solving complicated optimization problem. Thus, Genetic 
Algorithm can be used to solve inverse problem for the crack detection in a shaft [28]. The 
Artificial Neural Networks (ANN) in a wide sense belongs to the class of evolutionary 
computing algorithms that try to simulate natural evolution of information handling [29]. The 
present paper checks the applicability of this tool to predict the crack location and depth 
depending upon the input. The input to the ANN is the natural frequency of three or more 
number of modes and output is crack location and crack depth. In case of single crack the 
output will be prediction of crack location and crack depth i.e., two parameters whereas for 
two cracks the output will be prediction of four parameters i.e., two predictions for crack 
depths and two predictions for crack locations. Amongst the available data, 90% data is used 
to train the network in ANN whereas 10% of the data is used for validation. The back 
propagation algorithm is used [30]. The network is trained using the data obtained by FEM 
i.e., Table 1 for simply supported beam with single crack and Table 2 for cantilever beam 
with two cracks. Thereafter, the network predicts the location and depth of crack. The 
network can predict the crack location and depth for any intermediate input values of natural 
frequencies. The network decides the predominant input parameter on its own. The iterations 
are conducted till the average training error and average validating error is minimized [31].  
For simply supported beam with single crack, single layer serves the purpose whereas for 
cantilever beam with two cracks, three layers give close predictions. For cantilever beam with 
two cracks, three layers are chosen as average training error and average prediction error is 
minimum in case of three layers. Less error in both is indication of precise prediction of 
output. During the routine assessment of the health of component or online conditioning and 
monitoring, if decrease in natural frequency is observed, these frequency values can be given 
as input in the form of new query to the network. The network predicts the properties of 
crack. Any number of queries can be run.  
 
8. Results and Discussions 

The crack of known severity is generated at known location in mild steel beam. In case of 
simply supported beam single crack is generated whereas in case of cantilever beam, two 
cracks are generated. The changes in natural frequencies for the uncracked and cracked beams 
are measured. The predicted values are determined by theoretical and experimental technique. 
Table 1 shows the natural frequency values extracted for simply supported beam with single 
crack determined by using FEM and experimentation. Non dimensional frequency ratio is also 
calculated using these values. By the inverse method i.e., by using equation 2.13 and 3.6 the 
results for crack location (e), crack size (a/h) are computed. Table 3 shows the comparison for 
crack location (e), crack size (a/h) between actual and determined values for simply supported 
beam with single crack. It compares between theoretical and experimental frequency ratio 
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(∆f1/ f1) with respect to crack size (a/h). The theoretical results i.e., results obtained by FEM 
are compared with the experimental results and Figure 3 shows graphical comparison 
between the theoretical (FEM) and experimental non dimensional frequency ratio. It is 
observed that experimental results have some deviation from the results obtained by FEM as 
model of structure generated by Finite Element Analysis differs from actual structure. Hence 
the response of structure in practice differs. The results are close to the actual for finding the 
crack locations. These results approach to the actual results found by FEM as compared to the 
experimental findings. The variation in the results obtained is in the range of 0.2 to 15%. The 
variation might be the effect of structure prone vibrations. The results of crack depth findings 
are close to the actual depth for large (a/h) ratio as compared to small (a/h) ratio. It is observed 
because for small (a/h) ratio, the reduction in the stiffness of beam is less as compared to large 
(a/h) ratio. Due to the high stiffness, the vibrations are damped and natural frequency does not 
reduce. The readings obtained are used as database for Neural Networks. ANN can predict the 
crack location and crack depth by adding new query to ANN grid. The predicted crack 
location and depth by ANN are verified by using FEM. Table 4 shows the comparison of 
crack properties like crack depth and crack location predicted by ANN with the results 
obtained by FEM with the actual. The results are in close agreement. Similar procedure is 
extended for two cracks at different locations with varying severity in case of cantilever 
beam. The accuracy in prediction of crack properties is more for single crack than two cracks. 

 

       
 

       
 

Figure 3. Comparison of Theoretical and Practical Results 

 
 
 



International Journal of Advanced Science and Technology 

Vol. 54, May, 2013 

 

 

35 

Table 3. Comparison of Crack Location and Size Determined for Single Crack 
(Experimental method and FEA) 

Actual (mm) FEA (mm) Experimental (mm) % Error  
a/h e a/h e a/h e a/h e 
0.1 0.2 0.1101 0.1968 0.1206 0.1826 8.7065 -7.7766 
0.1 0.4 0.1057 0.3856 0.1093 0.372 3.2937 -3.6559 
0.1 0.6 0.1079 0.5897 0.1282 0.6175 15.835 4.50202 
0.1 0.8 0.1096 0.7654 0.1205 0.6998 8.9876 -9.3741 
0.2 0.2 0.2055 0.1939 0.2093 0.2057 1.8156 5.73651 
0.2 0.4 0.1984 0.3749 0.2033 0.3778 2.4102 0.7676 
0.2 0.6 0.1945 0.5659 0.2118 0.6107 8.1681 7.33584 
0.2 0.8 0.1774 0.7568 0.1629 0.7487 -8.901 -1.0819 
0.3 0.2 0.3049 0.1903 0.3124 0.1587 2.4008 -19.912 
0.3 0.4 0.3004 0.3626 0.307 0.3285 2.1498 -10.381 
0.3 0.6 0.2837 0.5417 0.3226 0.5013 12.058 -8.059 
0.3 0.8 0.259 0.7463 0.2361 0.638 -9.699 -16.975 
0.4 0.2 0.4064 0.1868 0.4191 0.1934 3.0303 3.41262 
0.4 0.4 0.397 0.3447 0.3424 0.3701 -15.95 6.86301 
0.4 0.6 0.3732 0.5125 0.3413 0.511 -9.347 -0.2935 
0.4 0.8 0.3475 0.7347 0.3465 0.6632 -0.289 -10.781 

 
 
 

Table 4. Comparison of Crack Properties Predicted by ANN with FEM for Single 
Crack in Simply Supported Beam 

Actual 
(mm) 

FEM Results 
(mm) 

ANN Results 
(mm) 

% Error in 
prediction 

a/h e a/h e a/h e a/h e 
0.1 0.2 0.1101 0.1968 0.1206 0.1826 8.7065 -7.7766 
0.1 0.4 0.1057 0.3856 0.1093 0.372 3.2937 -3.6559 
0.1 0.6 0.1079 0.5897 0.1282 0.6175 15.835 4.50202 
0.1 0.8 0.1096 0.7654 0.1205 0.6998 8.9876 -9.3741 
0.2 0.2 0.2055 0.1939 0.2093 0.2057 1.8156 5.73651 
0.2 0.4 0.1984 0.3749 0.2033 0.3778 2.4102 0.7676 
0.2 0.6 0.1945 0.5659 0.2118 0.6107 8.1681 7.33584 
0.2 0.8 0.1774 0.7568 0.1629 0.7487 -8.901 -1.0819 
0.3 0.4 0.3004 0.3626 0.307 0.3285 2.1498 -10.381 
0.3 0.6 0.2837 0.5417 0.3226 0.5013 12.058 -8.059 
0.3 0.8 0.259 0.7463 0.2361 0.638 -9.699 -16.975 
0.4 0.2 0.4064 0.1868 0.4191 0.1934 3.0303 3.41262 
0.4 0.4 0.397 0.3447 0.3424 0.3701 -15.95 6.86301 
0.4 0.6 0.3732 0.5125 0.3413 0.511 -9.347 -0.2935 
0.4 0.8 0.3475 0.7347 0.3465 0.6632 -0.289 -10.781 
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9. Conclusion 
This work attempts to establish a systematic method of prediction of crack characteristics 

from measurement of natural frequencies using ANN. From the numerical and experimental 
study, following conclusions can be drawn 

i. Variation in natural frequencies of first two to five modes is observed as they are 
predominant in crack properties.  

ii. The results of Finite Element Analysis and experimental analysis are compared and they 
are in good agreement. 

iii. For the same severity of crack, the frequency reduction is more for location of crack 
away from the support because of the stiffness of the structure; vibrations get 
suppressed near the supports. 

iv. The error in prediction of crack location by theoretical analysis is in the range of 3% to 
15% where as in case of experimental analysis; it is in the range of 5% to 20%. The 
variation in the experimental results is due to structure prone vibrations and vibrations 
getting transmitted through foundation.  

v. The database obtained is used to as input to train the Neural Network. Appropriately 
trained Network can predict crack characteristics like depth and location by giving the 
natural frequency as input.  

vi. The predictions of crack location and depth by ANN are verified with the results of 
FEM. The results are in good agreement with error of 1% to 5% for single crack 
whereas up to 15% for multiple cracks. 

vii. In the present study, the beams under consideration have uniform cross section but this 
method can be extended to components with varying cross section, different geometry 
and any boundary condition. 

viii. The proposed method can be extended for fault diagnosis in beams, shafts or rotating 
machine element. 
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