
International Journal of Advanced Science and Technology

Vol. 52, March, 2013

61

An FPGA Based High Speed IEEE - 754 Double Precision Floating

Point Adder/Subtractor and Multiplier Using Verilog

Purna Ramesh Addanki
 1

, Venkata Nagaratna Tilak Alapati
2

and Mallikarjuna Prasad Avana
3

1
Department of ECE, Sri Vasavi Engineering College,

Pedatadepalli, Tadepalligudem, India
2
 Professor of ECE, V.R.Siddhartha Engineering College, Kanuru, Vijayawada, India

3
Professor of ECE, JNTUK, Kakinada, India

purnarameshaddanki@gmail.com, avntilak@yahoo.com, a_malli65@yahoo.com

Abstract

Floating Point (FP) addition, subtraction and multiplication are widely used in large set of

scientific and signal processing computation. A high speed floating point double precision

adder/subtractor and multiplier are implemented on a Virtex-6 FPGA. In addition, the

proposed designs are compliant with IEEE-754 format and handles over flow, under flow,

rounding and various exception conditions. The adder/subtractor and multiplier designs

achieved the operating frequencies of 363.76 MHz and 414.714 MHz with an area of 660 and

648 slices respectively.

Keywords: Double precision, floating point, adder/subtractor, multiplier, FPGA, IEEE-

754, Virtex-6

1. Introduction

The real numbers represented in binary format are known as floating point numbers. Based

on IEEE-754 standard, floating point formats are classified into binary and decimal

interchange formats. Floating point multipliers are very important in DSP applications. This

paper focuses on double precision normalized binary interchange format. Figure 1 shows the

IEEE-754 double precision binary format representation. Sign (S) is represented with one bit,

exponent (E) and fraction (M or Mantissa) are represented with eleven and fifty two bits

respectively. For a number is said to be a normalized number, it must consist of ‘one’ in the

MSB of the significand and exponent is greater than zero and smaller than 1023. The real

number is represented by equations (1) and (2).

Figure 1. IEEE-754 double precision floating point format

Z = (-1
S
) * 2

(E - Bias)
 * (1.M) (1)

Value = (-1
Sign bit

) * 2
(Exponent -1023)

 * (1.Mantissa) (2)

mailto:a_malli65@yahoo.com

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

62

Floating point implementation on FPGAs has been the interest of many researchers.

Oklobdzija implemented 32-bit and 64-bit leading zero detector (LZD) circuit using CMOS

and ECL technology [1]. In [2], Pavle Belanovic and Miriam Leeser implemented

reconfigurable floating point arithmetic unit using VHDL, which is mapped on to Xilinx

XCV1000 FPGA. K. Scott Hemmert Keith and D. Underwood implemented open source

library of highly optimized floating point units for Xilinx FPGAs. The units are fully IEEE

compliant. The double precision add and multiply achieved the operating frequency of 230

MHz using a 10 stage adder pipeline and a 12 stage multiplier pipeline [3]. In [4], floating

point adder was implemented using Leading One Predictor (LOP) algorithm instead of

Leading One Detector (LOD) algorithm. The main function of the LOP is to predict the

leading number of zeros in the addition result, working in parallel with the 2’s complement

adder. Dhiraj Sangwan and Mahesh K. Yadav implemented adder/subtractor and

multiplication units for floating point arithmetic using VHDL. The floating point

multiplication operation was implemented using sequential architecture based on Booth’s

Radix-4 recoding algorithm. For floating point addition, the sequential addition could have

been complex so the combinational architecture has been implemented [5]. In [6], double

precision floating point adder/subtractor was implemented using dynamic shifter, LOD,

priority encoder. The design achieved the operating frequency of 353 MHz for a latency of 12

clock cycles.

In [7], an IEEE-754 single precision pipelined floating point multiplier is implemented on

multiple FPGAs (4 Actel A1280). Nabeel Shirazi, Walters, and Peter Athanas implemented

custom 16/18 bit three stage pipelined floating point multiplier, that doesn’t support rounding

modes [8]. L.Louca, T.A.Cook, W.H. Johnson [9] implemented a single precision floating

point multiplier by using a digit-serial multiplier and Altera FLEX 8000. The design achieved

2.3 MFlops and doesn’t support rounding modes. In [10], a parameterizable floating point

multiplier is implemented using five stages pipeline, Handel-C software and Xilinx XCV1000

FPGA. The design achieved the operating frequency of 28MFlops.The floating point unit [11]

is implemented using the primitives of Xilinx Virtex II FPGA. The design achieved the

operating frequency of 100 MHz with a latency of 4 clock cycles. Mohamed Al-Ashrafy,

Ashraf Salem, and Wagdy Anis [12] implemented an efficient IEEE-754 single precision

floating point multiplier and targeted for Xilinx Virtex-5 FPGA. The multiplier handles the

overflow and underflow cases but rounding is not implemented. The design achieves 301

MFLOPs with latency of three clock cycles. The multiplier was verified against Xilinx

floating point multiplier core.

The double precision floating point adder/subtractor and multiplier presented here is based

on IEEE-754 binary floating standard. We have designed a high speed double precision

floating point adder/subtractor and multiplier using Verilog language and ported on Xilinx

Vertex-6 FPGA. Adder/subtractor and multiplier operates at very high frequencies of 363.76

and 414.714 MFlops and occupies 660 and 648 slices respectively. It handles the overflow,

underflow cases and rounding mode.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Oklobdzija,%20V.G..QT.&newsearch=partialPref

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

63

2. Implementation of Double Precision Floating Point Adder/Subtractor

The black box view and block diagram of double precision floating point adder/subtractor

is shown in Figures 2 and 3 respectively. The input operands are separated into their sign,

mantissa and exponent components. This module has inputs opa and opb of 64-bit width and

clk, enable, rst are of 1-bit width. One of the operands is applied at opa and other operand at

opb. Larger operand goes into ‘mantissa_large’ and ‘exponent_large’, similarly the smaller

operand goes into ‘mantissa_small’ and ‘exponent_small’. To determine which operand is

larger, compare only the exponents of the two operands, so in fact, if the exponents are equal,

the smaller operand might populate the mantissa_large and exponent_large registers. This is

not an issue because the reason the operands are compared is to find the operand with the

larger exponent, so that the mantissa of the operand with the smaller exponent can be right

shifted before performing the addition. If the exponents are equal, the mantissas are added

without shifting. The inter-connection of sub-modules of double precession floating point

adder/subtractor is shown in Figure 4. Subtraction is similar to addition in that you need to

calculate the difference in the exponents between the two operands, and then shift the

mantissa of the smaller exponent to the right before subtracting. The flow chart of double

precision floating point adder /subtractor is shown in Figure 5.

Figure 2. Black box view of double precision floating point adder/subtractor

Figure 3. Block diagram of double precision floating point adder/subtractor

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

64

2.1 Algorithm

1. Compare exponent and mantissa of both numbers. Find the large exponent and

mantissa and small exponent and mantissa.

2. If both exponents are equal then put leading 1 and 0 in front of each mantissa for

overflow, i.e., 52+2 bits.

3. If overflow occurs the exponent must be increased by one. 54
th
 bit will be shifted out

of mantissa and this will be saved for rounding purpose.

4. The leftmost 1 in the result becomes leading 1 of mantissa and next 52 bits are actual

mantissa.

5. If there is overflow 1 in result, the exponent of larger operand is increased by one.

Then add both mantissas.

6. If one exponent is larger than other then subtract smaller exponent from larger

exponent, and difference is saved.

7. Now shift smaller mantissa by that subtracted exponent difference.

8. If exponents are equal, i.e., larger exponent is equal to smaller exponent after shifting

then put leading 1 in both mantissas and perform addition for mantissas.

9. For subtraction if both exponents are equal then put implied 1 in front of mantissa

and perform subtraction.

10. Store that result in “diff” register. Count the number of zeros in “diff” before the left

most 1.

11. Reduce the large operand exponent by number of zeros in front of least 1.

12. The left most 1 will be leading 1 in front of mantissa.

13. Finally rounding and normalization is done.

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

65

Opa(63:0)

Opb(63:0)

Rmode(1:0)

clk

enable

rst

FP_addsub(2:0)

underflow

exception

inexact

invalid

Fp_add_int

Fp_sub_int

Fp_round

Fp_exception

Opa(63:0)

Opb(63:0)

clk

enable

rst

Exponent_2(10:0)

Sum_2(55:0)

sign

FP_addsub(2:0)

Opa(63:0)

Opb(63:0)

clk

enable

rst

Diff_2(55:0)

Exponent_2(10:0)

sign

Exponent_term(10:0)

Mantissa_term(55:0)

Round_mode(1:0)

clk

enable

rst

Sign_term

Round_out(63:0)

Exponent_final(11:0)

Exponent_in(11:0)

FP_addsub(2:0)

In_except(63:0)

Mantissa_in(1:0)

Opa(63:0)

 Opb(63:0)

Rmode(1:0)

clk

enable

rst
underflow

overflow

invalid

inexact

ready

exception

Out(63:0)

Out(63:0)

 ready

 overflow

Fp_double_addsub

Figure 4. Inter-connection of sub-modules of double precision floating point

adder/subtractor

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

66

start

Read

S1,E1,M1&

S2,E2,M2

If S1=S2

Compare

exponents E1 &

E2

Compare

exponents E1 &

E2

Put leading 1 & 0

in front of each

mantissa

If overflows then

increase exponent

by one

Exp_diff = E1- E2

Right shift small

mantissa by

exp_diff

If E1=E2

A B

Yes(addition) No(subtractor)

Yes No(E1>E2) Put implied 1 in

front of mantissas

and subtract

Store result in

“diff” reg

Count no. of zeros

in front of leading

“1” in diff reg

c

A B

54th bit is shifted

out from mantissa

Leftmost 1 is

leading one and

52-bits mantissa

If result overflows

then increase

exponent by one

If exponents are

equal i.e. E1= E2

Put leading 1 in

front of both

mantissas

Add both

mantissas M1 &

M2

c

Reduce large operand

exponent by no.of 0’s

infront of least 1

Leftmost 1 will be

leading 1 in front

of mantissa

Add both

mantissas M1 &

M2

Output

Normalization

Round resultant

mantissa

End

Figure 5. Flow chart of double precision floating point adder/subtractor

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

67

3. Implementation of Double Precision Floating Point Multiplier

3.1 Floating Point Multiplication Algorithm

Multiplying two numbers in floating point format is done by

1. Adding the exponent of the two numbers then subtracting the bias from their result.

2. Multiplying the significand of the two numbers

3. Calculating the sign by XORing the sign of the two numbers.

In order to represent the multiplication result as a normalized number there should be 1 in

the MSB of the result (leading one).The following steps are necessary to multiply two

floating point numbers.

1. Multiplying the significand, i.e., (1.M1*1.M2)

2. Placing the decimal point in the result

3. Adding the exponents, i.e., (E1 + E2 – Bias)

4. Obtaining the sign i.e. s1 xor s2

5. Normalizing the result, i.e., obtaining 1 at the MSB of the results ‟significand”

6. Rounding the result to fit in the available bits

 7. Checking for underflow/overflow occurrence

3.2 Implementation

In this paper we implemented a double precision floating point multiplier with exceptions

and rounding. Figure 6 shows the multiplier structure that includes exponents addition,

significand multiplication, and sign calculation. Figure 7 shows the multiplier, exceptions and

rounding that are independent and are done in parallel.

Figure 6. Multiplier Structure

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

68

Figure 7. Multiplier structure with rounding and exceptions

3.2.1 Multiplier

The black box view of the double precision floating point multiplier is shown in figure

8.The Multiplier receives two 64-bit floating point numbers. First these numbers are

unpacked by separating the numbers into sign, exponent, and mantissa bits. The sign logic is a

simple XOR. The exponents of the two numbers are added and then subtracted with a bias

number i.e., 1023. Mantissa multiplier block performs multiplication operation. After this the

output of mantissa division is normalized, i.e., if the MSB of the result obtained is not 1, then

it is left shifted to make the MSB 1. If changes are made by shifting then corresponding

changes has to be made in exponent also.

Figure 8. Black box view of floating point double precision multiplier

The multiplication operation is performed in the module (fpu_mul). The mantissa of

operand A and the leading ‘1’ (for normalized numbers) are stored in the 53-bit register

(mul_a). The mantissa of operand B and the leading ‘1’ (for normalized numbers) are stored

in the 53-bit register (mul_b). Multiplying all 53 bits of mul_a by 53 bits of mul_b would

result in a 106-bit product. 53 bit by 53 bit multipliers are not available in the most popular

Xilinx and Altera FPGAs, so the multiply would be broken down into smaller multiplies and

the results would be added together to give the final 106-bit product. The module (fpu_mul)

breaks up the multiply into smaller 24-bit by 17-bit multiplies. The Xilinx Virtex-6 device

contains DSP48E1 slices with 25 by 18 two’s complement multipliers, which can perform a

24-bit by 17-bit unsigned multiply.

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

69

The breakdown of the multiply in module (fpu_mul) is done as follows:

product_a = mul_a[23:0] * mul_b[16:0]

product_b = mul_a[23:0] * mul_b[33:17]

product_c = mul_a[23:0] * mul_b[50:34]

product_d = mul_a[23:0] * mul_b[52:51]

product_e = mul_a[40:24] * mul_b[16:0]

product_f = mul_a[40:24] * mul_b[33:17]

product_g = mul_a[40:24] * mul_b[52:34]

product_h = mul_a[52:41] * mul_b[16:0]

product_i = mul_a[52:41] * mul_b[33:17]

product_j = mul_a[52:41] * mul_b[52:34]

The products (a-j) are added together, with the appropriate offsets based on which part of

the mul_a and mul_b arrays they are multiplying. In this work the adders in the Virtex-6

DSP48E slices have been used that follow each 24 by 17 multiply block. The final 106-bit

product is stored in the register ‘product’. The output will be left-shifted if there is not a ‘1’ in

the MSB of product. The number of leading zeros in register ‘product’ is counted by signal

‘product_shift’. The output exponent will also be reduced by ‘product_shift’. The exponent

fields of operands A and B are added together and then the value (1023) is subtracted from

the sum of A and B. If the resultant exponent is less than 0, then the ‘product’ register needs

to be right shifted by the amount. This value is stored in register ‘exponent_under’. The final

exponent of the output operand will be 0 in this case, and the result will be a denormalized

number. If exponent_under is greater than 52, then the mantissa will be shifted out of the

product register, and the output will be 0, and the ‘underflow’ signal will be asserted. The

mantissa output from the fpu_mul module is in 56-bit register ‘product_7’. The MSB is a

leading ‘0’ to allow for a potential overflow in the rounding module. The first bit ‘0’ is

followed by the leading ‘1’ for normalized numbers, or ‘0’ for denormalized numbers. Then

the 52 bits of the mantissa follow. Two extra bits follow the mantissa and are used for

rounding purposes. The first extra bit is taken from the next bit after the mantissa in the 106-

bit product result of the multiply. The second extra bit is an OR of the 52 LSB’s of the 106-bit

product.

4. Rounding and Exceptions

The IEEE standard specifies four rounding modes round to nearest, round to zero, round to

positive infinity, and round to negative infinity. Table 1 shows the rounding modes selected

for various bit combinations of rmode. Based on the rounding changes to the mantissa

corresponding changes has to be made in the exponent part also.

Table1. Rounding modes selected for various bit combinations of rmode

Bit combination Rounding Mode

00 round_nearest_even

01 round_to_zero

10 round_up

11 round_down

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

70

In the exceptions module, all of the special cases are checked for, and if they are found, the

appropriate output is created, and the individual output signals of underflow, overflow,

inexact, exception, and invalid will be asserted if the conditions for each case exist.

5. Results

The double precision floating point adder/subtractor and multiplier designs were simulated

in Modelsim 6.6c and synthesized using Xilinx ISE 12.2i which are mapped on to Virtex-6

FPGA. The simulation results of 64-bit floating point double precision adder /subtractor and

multiplier are shown in Figure 9 and 10 respectively. The ‘opa’ and ‘opb’ are the inputs and

‘out’ is the output. Table 2 gives the device utilization for implementing the circuits on

Virtex-6 FPGA. Table 3 shows the timing summary of double precision floating point

adder/subtractor and multiplier.

The area and operating frequency of double precision floating point adder/subtractor, [6]

and Xilinx core are given in Table 4. Manish Kumar Jaiswal and Ray C.C. Cheung [6]

implemented double precision floating point adder /subtractor and it occupies an area of 1397

slices and its operating frequency is 353 MHz, where as in case of Xilinx core, these are 1266

slices and 284 MHz respectively. Hence the present design provides high operating frequency.

The area and operating frequency of double precision floating point multiplier, single

precision floating point multiplier [12] and Xilinx core are given in Table 5. M. Al-Ashrafy,

A. Salem and W. Anis [12] implemented single precision floating point multiplier and it

occupies an area of 604 slices and its operating frequency is 301.114 MHz, where as in case

of Xilinx core, these are 266 slices and 221.484 MHz respectively. Hence the present design

provides high operating frequency with more accuracy.

Figure 9. Simulation results of double precision floating point
adder/subtractor

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

71

Figure 10. Simulation results of double precision floating point multiplier

Table 2. Device utilization summary (6vlx75tff484-3) of double precision
floating point adder/subtractor and multiplier

Slice Logic Utilization Adder/subtractor Used Multiplier Used

Number of Slice Registers

(Flip-Flops)

2423 1,998

Number of Slice LUTs 2049 2,181

Number of Occupied Slices 660 648

Table 3.Timing summary of double precision floating point adder/subtractor
and multiplier

Parameter

Adder/subtractor

Multiplier

Minimum Period (ns) 2.749 2.411

Maximum Frequency (MHz) 363.769 414.714

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

72

Table 4. Area and operating frequency of double precision floating point
adder/subtractor, [6] and Xilinx core [6]

Parameter Present Work Manish Kumar

Jaiswal and Ray C.C.

Cheung [6]

Xilinx Core [6]

 No. of Slices

Required

660

1397

1266

Frequency

(MHz)

363.76

353

284

Table 5. Area and operating frequency of double precision floating point
multiplier, single precision floating point multiplier [12] and Xilinx core [12]

 Device

Parameters

Present Work M.Al-Ashrafy,

A.Salem and W.Anis

[12]

Xilinx

Core[12]

Precision Double Single Single

No. of Slices 648 604 266

Maximum

Frequency (MHz)

414.714 301.114 221.484

6. Conclusion

The double precision floating point adder/subtractor and multiplier supports the IEEE-754

binary interchange format, targeted on a Xilinx Virtex-6 xc6vlx75t-3ff484 FPGA. The

designs achieved the operating frequencies of 363.76 MHz and 414.714 MFLOPs with an

area of 660 and 648 slices respectively. The adder/subtractor design operates at a frequency

which is 3% and 28% more compared to [6] and Xilinx core respectively. As compared to

the single precision floating point multiplier [12] and Xilinx core, the multiplier design

supports double precision, provides high speed and gives more accuracy. These designs

handles the overflow, underflow, rounding mode and various exception conditions.

References

[1] V. Oklobdzija, “An algorithmic and novel design of a leading zero detector circuit: comparison with logic

synthesis”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 1, (1994) March,

pp. 124–128.

[2] P. Belanovic and M. Leeser, “A Library of Parameterized Floating-Point Modules and Their Use”, in 12th

International Conference on Field-Programmable Logic and Applications (FPL-02). London, UK: Springer-

Verlag, (2002) September, pp. 657–666.

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

73

[3] K. Hemmert and K. Underwood, “Open Source High Performance Floating-Point Modules”, in 14th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM-06), (2006) April, pp. 349–

350.

[4] A. Malik and S. -B. Ko, “A Study on the Floating-Point Adder in FPGAs”, in Canadian Conference on

Electrical and Computer Engineering (CCECE-06), (2006) May, pp. 86–89.

[5] D. Sangwan and M. K. Yadav, “Design and Implementation of Adder/Subtractor and Multiplication Units for

Floating-Point Arithmetic”, in International Journal of Electronics Engineering, (2010), pp. 197-203.

[6] M. K. Jaiswal and R. C. C. Cheung, “High Performance FPGA Implementation of Double Precision Floating

Point Adder/Subtractor”, in International Journal of Hybrid Information Technology, vol. 4, no. 4, (2011)

October.

[7] B. Fagin and C. Renard, “Field Programmable Gate Arrays and Floating Point Arithmetic”, IEEE

Transactions on VLSI, vol. 2, no. 3, (1994), pp. 365–367.

[8] N. Shirazi, A. Walters and P. Athanas, “Quantitative Analysis of Floating Point Arithmetic on FPGA Based

Custom Computing Machines”, Proceedings of the IEEE Symposium on FPGAs for Custom Computing

Machines (FCCM‟95), (1995), pp. 155–162.

[9] L. Louca, T. A. Cook and W. H. Johnson, “Implementation of IEEE Single Precision Floating Point Addition

and Multiplication on FPGAs”, Proceedings of 83rd IEEE Symposium on FPGAs for Custom Computing

Machines (FCCM‟96), (1996), pp. 107–116.

[10] A. Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs", Proc. of IEEE ICASSP, vol.

2, (2001), pp. 897-900.

[11] B. Lee and N. Burgess, “Parameterisable Floating-point Operations on FPGA”, Conference Record of the

Thirty-Sixth Asilomar Conference on Signals, Systems, and Computers, (2002).

[12] M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient Implementation of Floating Point Multiplier”, Saudi

International Electronics, Communications and Photonics Conference (SIECPC), (2011) April 24-26, pp. 1-5.

Authors

Addanki Purna Ramesh has more than 14 years of experience in

teaching. He is presently working as Associate professor of

Electronics and Communication Engineering at Sri Vasavi

Engineering College, Tadepalligudem. He is Life Member of MIETE,

Associate Member in Institute of Engineers (India).

Alapati Venkata Nagaratna Tilak has more than 25 years of

teaching and research experience. He obtained his Master’s degree

from Indian Institute of Technology, Kanpur and Ph.D. from Indian

Institute of Technology, Madras during 1984 and 1997 respectively.

He is presently working as a professor of Electronics and

Communication Engineering at V.R.Siddhartha Engineering College,

Vijayawada. He is a Member of IEEE, Fellow of Institution of

Electronics and Telecommunication Engineers (IETE), Fellow of

Institution of Engineers (India). He is also life member of Indian

Society for Technical Education (ISTE).

International Journal of Advanced Science and Technology

Vol. 52, March, 2013

74

Avana Mallikarjuna Prasad has more than 22 years of experience in

teaching. He is presently working as a professor of Electronics and

Communication Engineering at JNTUK, Kakinada. He is Life Member

of ISTE, IETE, ISI, and Society of EMC. He won best teacher award

by student evaluation of 2008 batch outgoing students. He has guided

about 40 students in M.Tech Instrumentation Engineering and

presently guiding 8 research students for their PhD works. His areas of

interest are Antennas and Process control Instrumentation. He has 25

publications in various International and National Journals and

conferences. He has conducted a “National Workshop on

Electromagnetic field applications” in the year 2004.

