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Abstract 

Floating Point (FP) addition, subtraction and multiplication are widely used in large set of 

scientific and signal processing computation. A high speed floating point double precision 

adder/subtractor and multiplier are implemented on a Virtex-6 FPGA. In addition, the 

proposed designs are compliant with IEEE-754 format and handles over flow, under flow, 

rounding and various exception conditions. The adder/subtractor and multiplier designs 

achieved the operating frequencies of 363.76 MHz and 414.714 MHz with an area of 660 and 

648 slices respectively.  

 

Keywords: Double precision, floating point, adder/subtractor, multiplier, FPGA, IEEE-

754, Virtex-6 

 

1. Introduction 

The real numbers represented in binary format are known as floating point numbers. Based 

on IEEE-754 standard, floating point formats are classified into binary and decimal 

interchange formats. Floating point multipliers are very important in DSP applications. This 

paper focuses on double precision normalized binary interchange format. Figure 1 shows the 

IEEE-754 double precision binary format representation. Sign (S) is represented with one bit, 

exponent (E) and fraction (M or Mantissa) are represented with eleven and fifty two bits 

respectively. For a number is said to be a normalized number, it must consist of ‘one’ in the 

MSB of the significand and exponent is greater than zero and smaller than 1023. The real 

number is represented by equations (1) and (2). 

  

 

Figure 1. IEEE-754 double precision floating point format 
 

Z = (-1
S
) * 2 

(E - Bias)
 * (1.M)                                        (1) 

 

Value = (-1
Sign bit

) * 2 
(Exponent -1023)

 * (1.Mantissa)        (2) 
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Floating point implementation on FPGAs has been the interest of many researchers. 

Oklobdzija implemented 32-bit and 64-bit leading zero detector (LZD) circuit using CMOS 

and ECL technology [1]. In [2], Pavle Belanovic and Miriam Leeser implemented 

reconfigurable floating point arithmetic unit using VHDL, which is mapped on to Xilinx 

XCV1000 FPGA. K. Scott Hemmert Keith and D. Underwood implemented open source 

library of highly optimized floating point units for Xilinx FPGAs. The units are fully IEEE 

compliant. The double precision add and multiply achieved the operating frequency of 230 

MHz using a 10 stage adder pipeline and a 12 stage multiplier pipeline [3]. In [4], floating 

point adder was implemented using Leading One Predictor (LOP) algorithm instead of 

Leading One Detector (LOD) algorithm. The main function of the LOP is to predict the 

leading number of zeros in the addition result, working in parallel with the 2’s complement 

adder. Dhiraj Sangwan and Mahesh K. Yadav implemented adder/subtractor and 

multiplication units for floating point arithmetic using VHDL. The floating point 

multiplication operation was implemented using sequential architecture based on Booth’s 

Radix-4 recoding algorithm. For floating point addition, the sequential addition could have 

been complex so the combinational architecture has been implemented [5]. In [6], double 

precision floating point adder/subtractor was implemented using dynamic shifter, LOD, 

priority encoder. The design achieved the operating frequency of 353 MHz for a latency of 12 

clock cycles. 

In [7], an IEEE-754 single precision pipelined floating point multiplier is implemented on 

multiple FPGAs (4 Actel A1280). Nabeel Shirazi, Walters, and Peter Athanas implemented 

custom 16/18 bit three stage pipelined floating point multiplier, that doesn’t support rounding 

modes [8]. L.Louca, T.A.Cook, W.H. Johnson [9] implemented a single precision floating 

point multiplier by using a digit-serial multiplier and Altera FLEX 8000. The design achieved 

2.3 MFlops and doesn’t support rounding modes. In [10], a parameterizable floating point 

multiplier is implemented using five stages pipeline, Handel-C software and Xilinx XCV1000 

FPGA. The design achieved the operating frequency of 28MFlops.The floating point unit [11] 

is implemented using the primitives of Xilinx Virtex II FPGA. The design achieved the 

operating frequency of 100 MHz with a latency of 4 clock cycles. Mohamed Al-Ashrafy, 

Ashraf Salem, and Wagdy Anis [12] implemented an efficient IEEE-754 single precision 

floating point multiplier and targeted for Xilinx Virtex-5 FPGA. The multiplier handles the 

overflow and underflow cases but rounding is not implemented. The design achieves 301 

MFLOPs with latency of three clock cycles. The multiplier was verified against Xilinx 

floating point multiplier core. 

The double precision floating point adder/subtractor and multiplier presented here is based 

on IEEE-754 binary floating standard. We have designed a high speed double precision 

floating point adder/subtractor and multiplier using Verilog language and ported on Xilinx 

Vertex-6 FPGA. Adder/subtractor and multiplier operates at very high frequencies of 363.76 

and 414.714 MFlops and occupies 660 and 648 slices respectively. It handles the overflow, 

underflow cases and rounding mode.  

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Oklobdzija,%20V.G..QT.&newsearch=partialPref


International Journal of Advanced Science and Technology 

Vol. 52, March, 2013 

 

 

63 

 

2. Implementation of Double Precision Floating Point Adder/Subtractor 

The black box view and block diagram of double precision floating point adder/subtractor 

is shown in Figures 2 and 3 respectively. The input operands are separated into their sign, 

mantissa and exponent components. This module has inputs opa and opb of 64-bit width and 

clk, enable, rst are of 1-bit width. One of the operands is applied at opa and other operand at 

opb. Larger operand goes into ‘mantissa_large’ and ‘exponent_large’, similarly the smaller 

operand goes into ‘mantissa_small’ and ‘exponent_small’. To determine which operand is 

larger, compare only the exponents of the two operands, so in fact, if the exponents are equal, 

the smaller operand might populate the mantissa_large and exponent_large registers. This is 

not an issue because the reason the operands are compared is to find the operand with the 

larger exponent, so that the mantissa of the operand with the smaller exponent can be right 

shifted before performing the addition.  If the exponents are equal, the mantissas are added 

without shifting. The inter-connection of sub-modules of double precession floating point 

adder/subtractor is shown in Figure 4. Subtraction is similar to addition in that you need to 

calculate the difference in the exponents between the two operands, and then shift the 

mantissa of the smaller exponent to the right before subtracting. The flow chart of double 

precision floating point adder /subtractor is shown in Figure 5. 

 

 

Figure 2. Black box view of double precision floating point adder/subtractor 
 

 

Figure 3. Block diagram of double precision floating point adder/subtractor 
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2.1 Algorithm  

 

1. Compare exponent and mantissa of both numbers. Find the large exponent and 

mantissa and small exponent and mantissa. 

2. If both exponents are equal then put leading 1 and 0 in front of each mantissa for 

overflow, i.e., 52+2 bits. 

3. If overflow occurs the exponent must be increased by one. 54
th
 bit will be shifted out 

of mantissa and this will be saved for rounding purpose. 

4. The leftmost 1 in the result becomes leading 1 of mantissa and next 52 bits are actual 

mantissa. 

5. If there is overflow 1 in result, the exponent of larger operand is increased by one. 

Then add both mantissas. 

6. If one exponent is larger than other then subtract smaller exponent from larger 

exponent, and difference is saved. 

7. Now shift smaller mantissa by that subtracted exponent difference. 

8. If exponents are equal, i.e., larger exponent is equal to smaller exponent after shifting 

then put leading 1 in both mantissas and perform addition for mantissas. 

9. For subtraction if both exponents are equal then put implied 1 in front of mantissa 

and perform subtraction. 

10. Store that result in “diff” register. Count the number of zeros in “diff” before the left 

most 1. 

11. Reduce the large operand exponent by number of zeros in front of least 1. 

12. The left most 1 will be leading 1 in front of mantissa.  

13. Finally rounding and normalization is done.  
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Figure 4. Inter-connection of sub-modules of double precision floating point 

adder/subtractor 
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Figure 5. Flow chart of double precision floating point adder/subtractor 
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3. Implementation of Double Precision Floating Point Multiplier 
 

3.1 Floating Point Multiplication Algorithm 
 

Multiplying two numbers in floating point format is done by  

1. Adding the exponent of the two numbers then subtracting the bias from their result. 

2. Multiplying the significand of the two numbers 

3. Calculating the sign by XORing the sign of the two numbers.  

In order to represent the multiplication result as a normalized number there should be 1 in 

the MSB of the result (leading one).The following steps are necessary to multiply two 

floating point numbers.  

1. Multiplying the significand, i.e., (1.M1*1.M2)  

2. Placing the decimal point in the result  

3. Adding the exponents, i.e., (E1 + E2 – Bias)  

4. Obtaining the sign i.e. s1 xor s2  

5. Normalizing the result, i.e., obtaining 1 at the MSB of the results ‟significand”  

6. Rounding the result to fit in the available bits  

      7. Checking for underflow/overflow occurrence  

 

3.2 Implementation 

In this paper we implemented a double precision floating point multiplier with exceptions 

and rounding. Figure 6 shows the multiplier structure that includes exponents addition, 

significand multiplication, and sign calculation. Figure 7 shows the multiplier, exceptions and 

rounding that are independent and are done in parallel. 

 

 

Figure 6. Multiplier Structure 
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Figure 7. Multiplier structure with rounding and exceptions 
 

3.2.1 Multiplier 

The black box view of the double precision floating point multiplier is shown in figure 

8.The Multiplier receives two 64-bit floating point numbers. First these numbers are 

unpacked by separating the numbers into sign, exponent, and mantissa bits. The sign logic is a 

simple XOR. The exponents of the two numbers are added and then subtracted with a bias 

number i.e., 1023. Mantissa multiplier block performs multiplication operation. After this the 

output of mantissa division is normalized, i.e., if the MSB of the result obtained is not 1, then 

it is left shifted to make the MSB 1. If changes are made by shifting then corresponding 

changes has to be made in exponent also. 

 

 

Figure 8. Black box view of floating point double precision multiplier 
 

The multiplication operation is performed in the module (fpu_mul). The mantissa of 

operand A and the leading ‘1’ (for normalized numbers) are stored in the 53-bit register 

(mul_a). The mantissa of operand B and the leading ‘1’ (for normalized numbers) are stored 

in the 53-bit register (mul_b). Multiplying all 53 bits of mul_a by 53 bits of mul_b would 

result in a 106-bit product. 53 bit by 53 bit multipliers are not available in the most popular 

Xilinx and Altera FPGAs, so the multiply would be broken down into smaller multiplies and 

the results would be added together to give the final 106-bit product. The module (fpu_mul) 

breaks up the multiply into smaller 24-bit by 17-bit multiplies. The Xilinx Virtex-6 device 

contains DSP48E1 slices with 25 by 18 two’s complement multipliers, which can perform a 

24-bit by 17-bit unsigned multiply.  
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The breakdown of the multiply in module (fpu_mul) is done as follows: 

product_a = mul_a[23:0] * mul_b[16:0] 

product_b = mul_a[23:0] * mul_b[33:17] 

product_c = mul_a[23:0] * mul_b[50:34] 

product_d = mul_a[23:0] * mul_b[52:51] 

product_e = mul_a[40:24] * mul_b[16:0] 

product_f = mul_a[40:24] * mul_b[33:17] 

product_g = mul_a[40:24] * mul_b[52:34] 

product_h = mul_a[52:41] * mul_b[16:0] 

product_i = mul_a[52:41] * mul_b[33:17] 

product_j = mul_a[52:41] * mul_b[52:34] 
 

The products (a-j) are added together, with the appropriate offsets based on which part of 

the mul_a and mul_b arrays they are multiplying. In this work the adders in the Virtex-6 

DSP48E slices have been used that follow each 24 by 17 multiply block. The final 106-bit 

product is stored in the register ‘product’. The output will be left-shifted if there is not a ‘1’ in 

the MSB of product. The number of leading zeros in register ‘product’ is counted by signal 

‘product_shift’. The output exponent will also be reduced by ‘product_shift’. The exponent 

fields of operands A and B are added together and then the value (1023) is subtracted from 

the sum of A and B. If the resultant exponent is less than 0, then the ‘product’ register needs 

to be right shifted by the amount. This value is stored in register ‘exponent_under’. The final 

exponent of the output operand will be 0 in this case, and the result will be a denormalized 

number. If exponent_under is greater than 52, then the mantissa will be shifted out of the 

product register, and the output will be 0, and the ‘underflow’ signal will be asserted. The 

mantissa output from the fpu_mul module is in 56-bit register ‘product_7’. The MSB is a 

leading ‘0’ to allow for a potential overflow in the rounding module. The first bit ‘0’ is 

followed by the leading ‘1’ for normalized numbers, or ‘0’ for denormalized numbers. Then 

the 52 bits of the mantissa follow. Two extra bits follow the mantissa and are used for 

rounding purposes. The first extra bit is taken from the next bit after the mantissa in the 106-

bit product result of the multiply. The second extra bit is an OR of the 52 LSB’s of the 106-bit 

product. 
 

4. Rounding and Exceptions 

The IEEE standard specifies four rounding modes round to nearest, round to zero, round to 

positive infinity, and round to negative infinity. Table 1 shows the rounding modes selected 

for various bit combinations of rmode. Based on the rounding changes to the mantissa 

corresponding changes has to be made in the exponent part also. 
 

Table1. Rounding modes selected for various bit combinations of rmode 

Bit combination Rounding Mode 

00 round_nearest_even 

01 round_to_zero 

10 round_up 

11 round_down 
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In the exceptions module, all of the special cases are checked for, and if they are found, the 

appropriate output is created, and the individual output signals of underflow, overflow, 

inexact, exception, and invalid will be asserted if the conditions for each case exist.  
 

5. Results 

The double precision floating point adder/subtractor and multiplier designs were simulated 

in Modelsim 6.6c and synthesized using Xilinx ISE 12.2i which are mapped on to Virtex-6 

FPGA. The simulation results of 64-bit floating point double precision adder /subtractor and 

multiplier are shown in Figure 9 and 10 respectively. The ‘opa’ and ‘opb’ are the inputs and 

‘out’ is the output. Table 2 gives the device utilization for implementing the circuits on 

Virtex-6 FPGA. Table 3 shows the timing summary of double precision floating point 

adder/subtractor and multiplier. 

The area and operating frequency of double precision floating point adder/subtractor, [6] 

and Xilinx core are given in Table 4.  Manish Kumar Jaiswal and Ray C.C. Cheung  [6] 

implemented double  precision floating point adder /subtractor and it occupies an area of 1397 

slices and its operating frequency is 353 MHz, where as in case of Xilinx core, these are 1266 

slices and 284 MHz respectively. Hence the present design provides high operating frequency. 

The area and operating frequency of double precision floating point multiplier, single 

precision floating point multiplier [12] and Xilinx core are given in Table 5.  M. Al-Ashrafy, 

A. Salem and W. Anis [12] implemented single precision floating point multiplier and it 

occupies an area of 604 slices and its operating frequency is 301.114 MHz, where as in case 

of Xilinx core, these are 266 slices and 221.484 MHz respectively. Hence the present design 

provides high operating frequency with more accuracy. 

 

 

Figure 9. Simulation results of double precision floating point 
adder/subtractor 
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Figure 10. Simulation results of double precision floating point multiplier 
 

 

Table 2. Device utilization summary (6vlx75tff484-3) of double precision 
floating point adder/subtractor and multiplier 

Slice Logic Utilization Adder/subtractor Used Multiplier Used 

Number of  Slice Registers 

(Flip-Flops) 

2423 1,998 

Number of Slice LUTs 2049 2,181 

Number of Occupied Slices 660 648 

 

 

Table 3.Timing summary of double precision floating point adder/subtractor 
and multiplier 

Parameter 

 

Adder/subtractor 

 

Multiplier 

 

Minimum Period (ns) 2.749 2.411 

Maximum Frequency (MHz) 363.769 414.714 

 



International Journal of Advanced Science and Technology 

Vol. 52, March, 2013 

 

 

72 

 

Table 4. Area and operating frequency of double precision floating point 
adder/subtractor, [6] and Xilinx core [6] 

Parameter Present Work Manish Kumar 

Jaiswal and Ray C.C. 

Cheung   [6] 

 

 

Xilinx Core [6] 

 

 

 No. of  Slices 

Required 

 

660 

 

1397 

 

1266 

Frequency 

(MHz) 

 

363.76 

 

353 

 

284 

 

Table 5. Area and operating frequency of double precision floating point 
multiplier, single precision floating point multiplier [12] and Xilinx core [12] 

 Device 

Parameters  

Present Work  M.Al-Ashrafy, 

A.Salem and W.Anis  

[12] 

Xilinx 

Core[12] 

Precision Double Single Single 

No. of Slices 648 604 266 

Maximum 

Frequency (MHz) 

414.714 301.114 221.484 

 

6. Conclusion 

The double precision floating point adder/subtractor and multiplier supports the IEEE-754 

binary interchange format, targeted on a Xilinx Virtex-6 xc6vlx75t-3ff484 FPGA. The 

designs achieved the operating frequencies of 363.76 MHz and 414.714 MFLOPs with an 

area of 660 and 648 slices respectively. The adder/subtractor design operates at a frequency 

which is 3% and 28%   more compared to [6] and Xilinx core respectively. As compared to 

the single precision floating point multiplier [12] and Xilinx core, the multiplier design 

supports double precision, provides high speed and gives more accuracy. These designs 

handles the overflow, underflow, rounding mode and various exception conditions. 
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