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Abstract 

Synchrotron radiation (SR) sources provide very high photon flux light in a very narrow 

opening angle with wavelength ranging from visible to hard X-rays for use in experiments 

related to material science, physics, chemistry and biology. In the beam lines (BL) the SR 

position is highly dependent on the electron beam position and angle at the source point. The 

tuning of accelerator for getting the desired electron beam position and angle at the source 

point is a time consuming and regular job done during commissioning of new BL or when 

accelerator is operated at new operating point. This paper presents a novel intelligent agent 

based operator support and beam orbit control scheme for accelerator control. The 

proposed multi-agent based scheme is well suited for the multilayer control system 

architectures of synchrotron radiation sources. The scheme successfully distributes the orbit 

control job to multiple low complexity reactive agents that work simultaneously and control 

the local orbit for individual BL and insertion devices (ID) in an optimized manner. The 

proposed scheme of beam orbit control in particular is very useful for machines like INDUS-

2, where new BL are in the process of commissioning as this scheme reduces the operator 

efforts and accelerator tuning time for providing beam to new BL. It also extends the beam 

availability to other BL (already installed and in use) as the agent tunes the accelerator in 

systematic way and under constraints on local orbit bump leakage thereby enabling the use 

of other BL for routine experiments which otherwise was not possible. The effectiveness of 

the scheme is shown through simulation results obtained by applying the stated scheme on 

INDUS-2 storage ring model. 

 

Keywords: intelligent agent, synchrotron radiation sources, accelerator control system, 

local orbit control 
 

1. Introduction 

Synchrotron radiation sources provide light of very high intensity. Photon flux of order of 

10
13

 photons/s/0.1% bandwidth light is a common figure for SR source facilities [1]. This 

light is of wide bandwidth ranging from visible to hard X-rays. Also the light is emitted in a 

very narrow angle in the forward direction. Due to these appealing features the SR user 

community is growing day by day expanding the new areas of SR utilization. In electron 

storage rings the SR is emitted by the relativistic electrons (electron energy from hundreds of 

MeV to few GeV is common) when they pass through dipoles or through ID such as 

wigglers [2] and undulators [2] that are part of electron storage rings. For using the SR in 

experiments there are BL connected to the storage ring that transport the SR from electron 
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orbit to the experimental stations. The experiment stations are the part of the BL, designed 

specifically to perform the particular type of experiment on the sample. In the BL the SR 

position is highly dependent on the electron beam position and angle at the source point. At 

the time of commissioning of a new BL, it is first coarsely aligned independently as per the 

design and then the alignment is fine-tuned by tuning it along with the source point (electron 

beam position in storage ring). The physical alignment restrictions on the BL side necessitate 

the residual misalignment to be compensated by correcting the electron beam position and 

angle at the source point. The electron beam position and angle are corrected by applying the 

local orbit bump at source point. In normal practice two methods are used for generating the 

local orbit bump. One is three corrector based closed orbit bump and the other is four 

corrector based closed orbit bump [4]. Further the four corrector based scheme can be 

represented by superposition of two distinct three corrector bumps [5]. In the process of 

manual tuning of accelerator by operators to obtain the desired beam position and angle at 

source point the operator first calculates the initial corrector values using three/four corrector 

based scheme and then applies it to the machine. Due to difference in the theoretically 

calculated values of machine parameters and the actual machine parameters at given 

operating point, the applied orbit bump does not closes properly and leaks out to the entire 

electron beam orbit thus producing disturbance throughout the ring. Operator now tries to 

close the bump to the required level by perturbing the different correctors used for 

generating the bump in an iterative manner. This task of finding the suitable corrector 

strength that satisfies the BL alignment and also closes the bump to within limits is a time 

consuming and routine job done during commissioning of new BL or when accelerator is 

operated at new operating point. 

Intelligent agent is an autonomous software entity situated in an environment. It is capable 

of observing its environment (partially or fully) through sensors and can proactively or 

reactively act upon the environment through actuators. It autonomously directs its activities 

towards achieving its goals. Different agent architectures are proposed for implementing 

intelligent agents by researchers. The simple reactive architectures like subsumption [5, 6 

and 7] architecture are the most popular architectures used in applications demanding the fast 

reactive behaviors in real time, like robotics. The Logic based [8], model based and goal 

based [9 and 10] architectures are some other architectures used for applications demanding 

complex behavior implementations. The multi-agent system is the system that solves the 

problem through work division among multiple agents of relatively low complexity and 

limited actuator / sensor coverage over environment. The multi-agent based control approach 

has been successfully applied for control of large distributed plants such as power plant 

control [11], secondary voltage control in power systems [12], shipboard automation [13] 

and many more.     

Inspired by the distributed multilayer control architecture of synchrotron radiation sources 

this paper presents a novel intelligent agent based operator support and beam orbit control 

framework. The proposed framework distributes the orbit control job among five different 

types of agents. To take the advantage of layered control system architecture these different 

types of agents can be implemented at different layers with varying computation power, 

memory and communication resources. The beam line control agents and insertion device 

control agents are designed with the simple subsumption architecture suited for 

implementation at the lower layer controllers demanding very less computation power. 

These agents augment the basic behaviors for optimally controlling the local beam 

parameters in a reactive manner. Being simple and localized in environment these agents 

exhibit a fast reactive control cycle for attain position/angle and maintain position/angle 

type of goals. Since these lower level agents acquire only the local information available to 
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them to attain their local goals and as the global goal of controlling the orbit is attained by 

the combined efforts of these low level agents, the performance degradation of any one agent 

can affect the overall global goal. For this the performance of the BL control agents and ID 

control agents are evaluated on periodic basis by monitoring agent situated at the higher 

level of control architecture layer. The monitoring agents periodically acquire the data from 

multiple lower layer agents, evaluate their performance and provide this feedback to them. A 

low level agent with average or poor performance takes assistance from trainer agents that 

are again at higher level in hierarchy and implements the complex behavior for gradient 

based constrained reinforcement learning plans. These trainer agents coordinate the student 

agents training for skill development and actually refine\correct those beliefs whose 

knowledge content has degraded due to the dynamics of changing environment.  The trainer 

agent forms the team of low level agents comprising of student agent (the agent who is 

trained to generate the close bump using correctors) and the cooperating agents which 

provide the information about the actions of student agents on the global beam orbit. The 

trainer agent in a coordinated fashion suggests the actions to be performed by the student 

agent to generate the closed bump. It then evaluates the utility of the suggested action by 

gathering the information from the other cooperating agents taking part in training process 

and decides the next action to be suggested to the student agent. This iterative process 

continues till the learning goal is completed. In case the agent finds that the performance is 

altogether not in accordance with the expected it can seek fault assistance from fault 

assistance agents. The fault assistance agent finds the faulty sensor and actuators by logic 

equation evaluation. At the highest hierarchy there is the model based goal based orbit 

control agent that interacts with the user and database to generate the lower layer agents and 

control their activities in a synchronized and systematic manner. Also at the same hierarchy 

there is the closed orbit minimization agent which intermittently checks the corrector 

strength and the beam positions and decides the optimized orbit for orbit maintain goal. 

The contribution of this paper to the multi-agent research field and to accelerator controls 

is that this paper extends the use of multi-agent based control to the field of local beam orbit 

control in synchrotron radiation sources thereby improving the overall reliability and beam 

availability to the users. It further improves the available beam quality to users through 

prioritized optimization in case the multiple BL demand the beam correction simultaneously. 

Further to this the paper presents a novel gradient based cooperative multi-agent learning 

scheme. The gradient based reinforcement learning schemes have been proposed in past by 

many researchers [14, 15, 16 and 17]. The scheme presented in this paper differs from all of 

these as all the previously proposed schemes are focused on identifying the suitable agents 

actions through their interaction with environment which transforms the system from current 

state to the desired state but they have not considered the cases where the agents actions 

performed for learning may lead the environment / system to a state such that the system can 

no longer be used further. For example if the learning activity by a BL control agent disturbs 

the beam at nearby or other high priority BL such that the experiment data gets affected then 

the purpose of the orbit control is defeated or if the perturbation introduced by the learning 

agent disturbs the overall beam to an extent that the complete beam gets killed then there is 

no beam in orbit to control. Therefore for such cases this paper presents the new scheme of 

agent’s skill learning under constrained condition for improving the system reliability. The 

presented accelerator control scheme further reduces the operator efforts towards accelerator 

tuning by automatically performing the beam line tuning based on the learned tuning 

patterns from the past and present operator feedback about the operation quality.  

The agents are being developed according to the presented multi-agent scheme and the 

results obtained by applying the early implementation of this scheme on INDUS-2 
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synchrotron radiation source model are presented. The rest of the paper is organized as 

follows. Section 2 introduces the subsumption agent architecture, Section 3 discusses the 

close orbit bump concept, Section 4 presents the overall organization of different agents in 

the multi-agent environment for beam orbit control and Section 5 discusses the design and 

implementation for different agents. Section 6 discusses the constraint gradient based 

reinforcement skill learning. In Section 7 the simulation results are presented and discussed 

followed by conclusion and future work.     
 

2. Subsumption Agent Architecture 

The subsumption architecture was first proposed by Brooks [5] for implementing the 

reactive agents.  The architecture decomposes the complicated intelligent behavior into many 

simple behavior modules, which are in turn organized into layers. Each layer implements a 

particular goal of the agent, and higher layers are increasingly abstract. Each layer's goal 

subsumes that of the underlying layers by means of methods provided for inhabiting or 

invoking the lower layer goals by the upper layer behaviors if required. There are several 

modifications to this basic primitive architecture proposed by Brooks. The Figure 1 shows 

the basic linkages between different modules in one such subsumption architecture, here the 

modules are organized in vertical layers. The modules operate in parallel, with those higher 

up in the organization having dominance over those lower down [7]. This means that the 

higher modules can inhibit the behavior of lower level modules. As with the modular 

architecture, the designer defines the connections between modules and the dominance 

relationships that exist between them in the form of inhibit rules. Usually the 

implementations of inhibiting relationship are implemented by means of priority assignment 

for individual behaviors. Here the agent's decision-making is realized through a set of task 

accomplishing behaviors. Each behavior is like an individual action function, continually 

taking perceptual input and mapping it onto an action to perform.   

 

 

Figure 1. The Subsumption Agent Architecture 

No complex symbolic representations and no symbolic reasoning is utilized at all. It 

mainly implements the rules to map situation  action relationship. The percepts block 

accepts input from sensors and produces a set of percepts P. The action is realized through a 

set of behavior rules R, together with an inhibition relation ( ), over time. 
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Where c is a set of percepts called condition and a is an action. A behavior will fire in state s 

if some function see(s)    (if the condition is satisfied by the percepts). The inhibition 

relation is a total ordering on the behavior rules. If r1 inhibits r2, then the inhibit rule can be 

written as r1 r2, i.e., r1 is lower in the hierarchy than r2 and hence will get priority over r2. 

Where r1, r2, … are the rules (elements of R).The subsumption reactive architecture is well 

suited for implementing the lower level control agents like BL and ID control agents in our 

work as this provides a fast reactive control cycle as well as can run on low computation 

power controller in the field where the required sensors and actuators are directly connected 

to the controller.  As the accelerator control systems are generally comprised of multi layered 

architecture [18, 19 and 20] with low computation power controllers at the lower most layer 

and increasingly high computational power controllers at higher layers. The choice of 

reactive agent architecture for BL control agents and ID control agents also favors the 

scheme from actual deployment and debugging as one can implement and test the behaviors 

one by one  on controller basis in an incremental way till all the behaviors are implemented 

at all the controllers. The section 5 discusses the necessary goals implemented and their 

priority for exercising the BL control agents and the ID control agents. 
 

3. Closed Orbit Bump and Accelerator Environment  

In synchrotron radiation sources the highly energetic electrons are made to follow a nearly 

circular path through magnetic optics comprising of dipoles for bending of electron beam 

and quadrupoles for focusing/ defocusing of beam [21]. The electron beam position along 

the beam path in transverse plane (i.e., the plane perpendicular to the beam motion) is 

controlled using corrector magnets. Depending upon the direction in which the corrector 

magnet gives kick to the beam they are categorized into vertical corrector magnets and 

horizontal corrector magnets. Electron beam position Indicators (BPI) are used for 

measuring the beam position at different locations in the ring. For successful storage of the 

electrons in the ring, only some specific set of dipole and quadrupole magnet settings are 

allowed which are governed by the accelerator beam dynamics [21] and specifies the 

accelerator operating point. In normal practice due to presence of different types of errors 

(alignment error, field error, manufacturing tolerances etc.) in components the electron beam 

deviates from its ideal design trajectory (normally called as golden orbit). The corrector 

magnets are used to control the orbit in order to bring it near to the golden orbit (ideally if 

possible it should match with the golden orbit). This is known as closed orbit distortion 

(COD) correction. After the beam is corrected for COD if one wants to purposefully change 

the orbit at desired location then the kicks to the beam are required to be applied using group 

of correctors. Different schemes for this are adopted in normal practice like two corrector 

closed bump, three corrector closed bump and four corrector closed bump [22]. Choice of 

using the particular scheme is normally dependent on the machine operating parameters (ѱ 

and β) and machine design (location of correctors and BPI’s). For simplicity we will restrict 

to three corrector bumps and four corrector bumps only    
 

3.1. Three Corrector Bump  

In this scheme three correctors are used to generate the local bump where the first 

corrector opens the orbit, i.e., deflects the beam away from the orbit the second corrector 

deflects the beam towards the orbit and the third corrector closes the bump by 

correcting the angle as shown in Figure 2. In figure 2 let θ1, θ2, θ3  be the kick angles 

generated by three corrector magnets CV1, CV2, CV3, then for closed bump condition 
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the θ1, θ2, θ3  must satisfy the Eq. 2 [3] where βi is the β-function at the i
th

 corrector 

magnet, ѱij= ѱi - ѱj is the phase advance from the i
th

  to j
th

 corrector magnet.  

 

  √  

       
 

   √  

       
 

  √  

       
      (2) 

 

 
Figure 2. Three Kicker Bump Scheme 

 

 

 

Figure 3. Four Corrector Bump Scheme 
 

 

 

Figure 4. Organization of agents for multi-agent based beam orbit control 
system 
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3.2. Four Corrector Bump  

The four corrector bump can be considered as the combination of two independent three 

corrector bumps a and b as shown in Figure 3. Let θa, θb be the strengths of three 

corrector bump a and bump b individually, then the corrector strengths θ1, θ2, θ3, θ4 

will be given by Eq. 3 [4]. For the bump to be closed the matrix coefficients K1a, K2a, 

K3a and K1b, K2b, K3b, must satisfy the Eq. 2. The beam positions [x1, x2] are then 

related to the bump strengths [θa, θb] through a 2×2 local response matrix Rl given by 

Eq. 4.The elements of response matrix Rl can be measured experimentally or calculated 

from the lattice function β and ѱ at the BPI and corrector locations using Eq. 5 [4], 

where ν is the tune and ki and kcj are the coefficient of sensitivity for BPMs and 

correctors, respectively. 
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4. Organization of Agents in Multi-agent Beam Orbit Control 

Environment 

The work in this paper implements electron orbit control system for synchrotron radiation 

sources by means of cooperative working of multiple agents simultaneously to achieve the 

overall global goal of orbit control. The different types of agents are arranged in the form of 

layers as shown in the Figure 4. The lower layer agents are the one that are directly 

interfaced with the accelerator machine components. There are two types of lower layer 

agents namely BL control agents (depicted by DP-1 agents, DP-2 agent and DP-4 agent in 

Figure 4) and ID control agents (depicted by ID-1 agent in Figure 4). The lower layer agents 

encapsulate the behaviors necessary for controlling the beam position and angle for BL 

generated from dipoles and that from ID. The behaviors are implemented through 

subsumption architecture to exhibit fast reactive cycle where in each execution cycle the 

agent reads the BPI’s connected to it and according to the current state and desired state it 

calculates the corrector strengths using their skill and apply it to the correctors. Additional 

behavior are incorporated at different priority levels to work in synchronization, seek help 

from trainer agents, assist trainer agents, seek help from fault assistance agents and to assist 

fault assistance agents. The lower layer agents are simpler in nature and can sense only the 

environment local to them i.e. they can only sense the beam position at the BPI’s which 

are interfaced with the particular agent and similarly they can only take action on the 

environment through the actuators interfaced to them. Further the lower layer agents 

do not possess the capability to communicate and self collaborate with other similar 

lower layer agents. Thus the lower layer agents can only communicate with the middl e 

layer or higher layer agents and that too with a slower rate than the rate of their 

execution cycle. In fact the lower layer agent exhibits a high degree of autonomy, 

performing actions in its environment based on information (sensors, feedback) 

received from the environment. The trainer agents and the fault assistance agents are 

situated at middle layer and are capable of gathering information from lower layer 

agents thereby observing the relatively larger environment (but at a lower rate than 

what the lower layer agents can do) as compared to the individual lower layer agents. 
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These agents implement the higher level of abstraction in their behavior and are 

formulated to implement the system requirements that needs data collected from 

multiple lower layer agents such as training of lower layer agents for skill learning 

towards close bump generation and faulty device (sensor and actuator) identification. 

Middle layer agents are created on demand by orbit control agent whenever there is a 

request from lower layer agents for skill development and fault finding assistance. 

These agents, on becoming active, take control of overall beam orbit control activity 

and issue command to all lower layer agents to stop their ongoing activity and prepare 

them to participate in activities for higher level goal achievement. It then issues 

command to different participating agents according to their role in the team to interact 

with the environment in a coordinated manner and provide the necessary information 

required by middle layer agents in their decision making. These agents are 

implemented with modified subsumption architecture where the behavior selection is 

done in a manner similar to the subsumption architecture explained in Section 2 but 

here the behavior functions are of much complex nature and implementation of some 

behaviors also utilizes the data storage between iterations.  At the highest level there 

are three agents namely monitoring agent, closed orbit distortion minimization agent 

and orbit control agent. All of these agents are the main agents in this proposed multi -

agent based electron orbit control system and always remain active. These are at the 

highest level of abstraction and control the overall orbit control job.  The monitoring 

agent periodically (or when demanded) collects sensory data from lower layer agents 

and evaluates the individual agents performance. In case of performance degradation it 

informs the corresponding lower layer agent about its performance (good, average, 

poor and bad). The closed orbit distortion minimization agent contains the rough 

system model (previously measured system’s response matrix) and on request it 

provides the optimized corrector strengths using the singular value decomposition 

(SVD) [22] method for achieving the desired golden orbit. This information is used for 

initialization at the time of starting of the overall orbit control system or intermittently 

if the overall organization of the agents is reinitiated. It also provides the tentative 

beam orbit for orbit maintain goal of different lower layer agents.   The orbit control 

agent is responsible for creation of different lower layer and middle layer agents when 

required. It is implemented with a model based goal based modular architecture. It 

implements the graphical user interface for interaction with the operator. It reactively 

interacts with the operator to modify the beliefs in case of doubt, for example if fault 

assistance agent has executed all the related plans but still the faulty device is not 

found, or a timeout has occurred before a faulty device could be identified.  It 

proactively interacts with the operator to seek suggestions about the present system 

performance to update the beliefs about the good beam quality at respective BL. It 

further accepts operator commands in the form of attain position and attain angle 

goals for the respective BL and send these goals to the respective BL control agents / 

ID control agents.  It also provides the updated beliefs to lower layer agents whenever 

the beliefs are updated or agents are created.  For example whenever a belief about the 

BL operation ([good: P, θ], [average: P, θ], [poor: P, θ]) changes, the same is 

provided to the lower layer BL control agent so that it can decide the optimum position 

and angle to be attained and maintained when the BL is put to use by opening the 

safety shutter of that BL. The graphical user interface served by this agent presents the 

pictorial representation of all the agents present in the multi -agent organization at any 

instant of time. The different execution states of agents are represented with the 

different colors in the mimic. The association of accelerator devices with the agent is 
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shown with the lines connecting devices to the corresponding agents and the 

interconnection between different agents are represented with the colored linkages 

between them where the line color shows the direction of message passing between 

collaborating agents. This live mimic of the overall system is very useful for 

debugging purpose.  
 

5. Agent Design and Implementation  

This section present the abstract implementation for each distinct type of agent that is 

needed for implementing the proposed multi-agent based orbit control system. Table 1 gives 

the percepts, beliefs, constraints and behaviors for implementation of BL control agent. 

Table 2 gives the percepts, beliefs, constraints and behavior for implementation of ID 

control agent, where “percepts” are the signals that are interfaced with the agent. In 

each execution cycle the agent reads data from beam position indicators (BPI1 and 

BPI2), correctors (CV1, CV2 and CV3) and safety shutter (SS1 and SS2). It then checks 

for the firing condition of each behavior and lists the behaviors triggered as per the 

current percepts. It then selects the highest priority behavior according to the inhibition 

relation and executes the associated plan. The “beliefs” store the system information 

needed by the actions in the plans for calculation of parameters such as the optimized 

angle deviation (δθ) to be applied to the electron orbit and the calculated optimized 

corrector ([∆cv1, ∆cv2, ∆cv3]) values (using Eq. 3 and 4) to be applied to the 

correctors to achieve the desired orbit deviation. The “constraints” mainly store the 

parameter limits needed for assisting in action selection or needed for some parameter 

calculations like the minimum and maximum limiting values for correctors under 

different operating modes (free running mode, restricted mode). The Skill stores the 

information about the effect on local environment that agent’s action produces. This 

information is used by the agent in calculating the suitable corrector current values 

needed for correcting the local beam orbit. The quality of agent skill is calculated 

using the Eq. 8 where HBump and PerValue given by Eq. 6 and Eq. 7 represent the 

generated hump height in the local region and the performance value calculated from 

percepts of the assisting team member agents. Skill level is an important parameter for 

correct operation of this scheme. It represents the agent’s ability towards correcting the 

electron orbit in region local to it while at the same time isolating the effect of this 

applied local correction from rest of the orbit.  The degradation of the skill level causes 

the leakage of corrective action applied to the local orbit (orbit region which is in the 

direct influence of an agent) to the entire orbit. This will cause the interference 

between the simultaneously occurring actions of different agent on the electron beam 

orbit.      

 

                                   (6) 

                                                   (7) 

            
(
     

        
⁄ )

(
   

     
⁄ )

            (8) 

The behaviors b0 to b7 broadly provides the agent ability to correct the beam angle 

(±∆θ) at the beam line in beam line control agent and beam angle and position (±∆θ, 

±∆P) in the insertion device control agent case, maintain the beam position and angle 

at BL and ID, help other agents in training and fault finding activities and handling the 
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cases when agent’s performance degrades due to degraded agent skill level under 

system dynamics.  

Table 3 gives the design of trainer agent (for BL control agent type student agent). At 

the time of trainer agent creation, the orbit control agent associates the variables in 

percepts, beliefs, skill and constraints according to the student agent designated to it 

for imparting the training. At the time of starting, the trainer agent informs all the 

lower level agents about its intention to conduct the training for its student agent. It 

then distributes the role to each participating agents that they have to play as team 

members in training. It then waits till all the participating agents come to a predefined 

state before proceeding for the start of training activity. The behavior b0 to b4 

implement the constraint gradient based reinforcement skill learning activity discussed 

in detail in section 6 by systematically coordinating the activities of distributed lower 

layer agents through sequential instruction issuing to individual agents such that the 

actions of all the participating agents become synchronized towards training. Under 

such team formed condition the complete team can be viewed as a single unit 

performing the learning activity. After the completion of learning (when either the skill 

to sufficient level is learned or the activity is stopped due to high priority goals) the 

trainer agent updates the learned skill along and performance value to student agent 

and releases all the participating agents to work independently.  

Table 4 gives the design of fault assistant agent. Similar to the trainer agent case this type 

of agents are also created by orbit control agent and variables in percepts, beliefs, skill 

and constraints are initialized according to the suspected faulty agent designated to it 

for fault finding. Similar to the trainer agent case at start time fault assistance agent 

informs all the participating agents about the intended fault finding activity and 

prepares them for assistance by designating their role in the activity. Based on the 

historical data, system believes and systems state it then prepares the suspected device 

list. Using this suspected device list it than prepares the fault finding plan list for all 

the suspected devices. Behaviors b0 and b1 deal with the cases of stopping of fault 

assistance activity either due to the stopping request from a high priority goal or if the 

faulty device has been found or if the entire selected fault finding plans have been tried 

and agent could not associate the fault with any of the suspected devices. Behavior  b2 

performs the function of coordinating the activities of participating lower level agents 

so that the fault finding team of agents can be thought of as a single unit. This behavior 

selects one fault finding plan from the list. It then directs the plan actions to actuating 

agent to perform the perturbation to environment through actuator and collect s the 

changed environment information supplied from assisting team member agents. It then 

generates the Boolean variables from the measured parameters. The Boolean variables 

are then put in the predefined logical equations to conclude that the device is fa ulty or 

ok.  

Table 5 gives the design for monitoring agent. The monitoring agent through its 

behavior b0 performs the job of evaluating the performance of the lower level agents. 

It does so by coordinating the team of agents where one agent performs the demo 

action on environment and all other distributed team members supply the information 

about the effect of this demo action on the environment. This is used to evaluate the 

performance of the agent. The performance of the agent is evaluated in four fuzzy 

levels; good, average, poor and bad. The behaviors b1 and b2 provide the mechanism 

of engaging into performance monitoring activity through reactive mechanism ( i.e., 

when orbit control agent requests for performance evaluation of some lower level 
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agent) or through proactive mechanism (i.e. the policy based performance evaluation, 

both routinely evaluation as well as history based evaluation can be used).   

Table 6 gives the COD agent design. This agent uses the system model in its beliefs 

and exhibits the complex capabilities C0 and C1 that provide this agent the 

functionalities to generate the optimized golden orbit and the optimized corrector 

settings using the global orbit correction schemes like SVD, sliding bump or both 

depending upon the policy selected. These values are used by the orbit control agent to 

initialize the lower level agents at the time of their creation.   

Table 7 gives the design for orbit control agent. This agent is a higher level agent and 

mainly controls the overall local beam orbit control job. It provides the man-machine 

interface for operators to interact with machine in normal operation when operator 

directly interacts with the system to start/stop the system, increase/decrease beam 

angle and position at particular beam lines, declares the particular devices such as 

BPI’s or correctors as faulty devices (i.e., the devices that are not to be used in normal 

operation), declares the sensitivity of experiment being performed at the beam lines 

( [angle:: high, medium, low], [position:: high, medium, low]),  declares the upcoming 

beam lines, declares the present orbit to be used as the golden orbit for the system. 

This agent contains the complete system model in its beliefs. The knowledge base is 

divided into two parts- machine specific knowledge base and accelerator physic 

specific knowledge base. The machine specific knowledge base is further divided into 

static knowledge base and dynamic knowledge base. The static knowledge base 

contains the machine specific information which does not change according to the 

system’s state of operation like the sequence of components, location of components, 

coefficients of different components etc. The dynamic data base contains the 

information that is dependent on the system’s state of operation like power supply 

on/off status, BPI enabled/disabled state etc. The capabilities C0 to C5 implement the 

functionalities for generating the beam line control agent, insertion device control 

agent, trainer agent, fault assistance agent and handling of proactive events, user 

generated events and machine generated events. Figure 5 shows the detailed 

architecture for this agent.  

 

 

Figure 5.  Architecture of Orbit Control Agent  
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Table 1.  Beam Line Control Agent Design 
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Table 2.  Insertion Device Control Agent Design 
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Table 3. Trainer agent for (beam line control type student agent) design 
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Table 4.  Fault assistance agent design 
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Table 5.  Monitoring Agent Design 

 
 
 

Table 6.  COD agent design 
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Table 7. Orbit Control Agent Design 

 
 

6. Constraint Gradient based Reinforcement Learning  

The reinforcement learning (RL) is the common learning scheme used by the agent based 

systems. In this scheme an agent selects and engages in behavior with respect to sensory 

inputs obtained from sensors. As a result the learning is performed by repeating a cycle 

in which a reward from the environment and sensory input for the next state is given. 

The Q-learning and Temporal-Difference (TD) Learning are two common RL methods; 

the former learns the utility of performing actions in states, while the latter usually 

learns the utility of being in the states themselves. But apart from learning the system 

states and the action relationships in some situations like the local orbit control in 

accelerators discussed in this paper, there is also a need to identify the local 

environment’s behavioral representation that is independent of the action selection by 

the agent. This can be thought of as the local environment representation (local 
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environment model) in agent beliefs that does not affect the agent’s action selection 

decision but directly affects the outcome of the agent’s actions on the environment. For 

example if one of the “beam line control agent” decides to correct the beam angle at 

the respective beam line and engages in behavior “serve attain goal (event: suggested 

±∆θ to BL)” to attain the suggested ±∆θ value. Apart from action sequences and all 

other relevant things the outcome of this behavior also depends on the correctness of 

the calculated corrector strengths and this calculated corrector strength depends on 

how well the local environment is modeled by the agents skill. For beam line control 

agents, the skill is represented by the set [Skill::CV1:CV2:CV3:BPM1:BPM2] where 

the CV1,CV2,CV3 are the corrector magnet set values and BPM1, BPM2 are the beam 

position monitor values for the stated corrector values. Now for the case of agent with 

a good skill level the skill variables (CV1, CV2 and CV3) will be having a definite ratio 

that satisfies the Eq. 2 to generate the non-leaky closed bump.  Thus for changed 

accelerator environment this skill will not be able to generate the close bump and the 

amount of bump leakage will directly depend on the amount by which the system 

dynamics have changed the environment. Thus in such cases the relearning of the skill 

is required by the agent. As in this case the agent learning is not concerned with the 

action selection but is linked to the local system identification, we are referring this as 

the agent’s skill learning and as in the highly distributed environment the agent itself 

does not contain the sufficient resources to carry out this learning on its own. The 

coordinated training of the student agent is carried out by the trainer agent who 

suggests the moves (actions) to the student agent, evaluates the outcome of thi s move 

and depending upon this outcome decides the next move and new skill level. The next 

move is decided, based on the gradient of the cost value (reward value). For simplicity 

we will view the distributed multiple agents performing the coordinated learn ing 

activity as a single unit.  

Some systems like the accelerator orbit control in SR sources, demand that during 

the training the agent’s action performed towards learning activity should not perturb 

the electron beam at nearby or other high priority beam lines to a level such that the 

experiment data gets affected or the complete beam gets killed. To overcome this 

problem the constraint based skill learning algorithm is proposed here.  Complete skill 

learning by the agent in the presence of noise requires that the system should be 

perturbed such that at least a minimum level of bump height at the desired position is 

generated while keeping the disturbance in the beam at all other locations confined 

within the limits. Contrary to this in actual system such desired bump can only be 

generated while fulfilling the constraint requirements only if the correct model of 

nearby environment is available (i.e., the fully trained skill set is available). So in 

order to solve this paradox the proposed algorithm in the beginning (when skill set is 

initialized to all zero or some pre-known skill set) starts the system identification with 

very small perturbation done to the environment through first corrector (CV1) such that 

the beam positions at constraint locations (Pervalue) remains within the constraints limit 

(∆const) i.e., the Eq. 9 is satisfied. It then keeps on increasing the CV1 values in steps 

till the Pervalue just crosses the start limit band (∆start) (i.e., the Eq. 10 is satisfied). It 

then tries various combinations for CV2 and CV3 and selects the one based on the 

steepest gradient method that reduces the Pervalue the most. 

 

                          (9)                                                                (10) 

 

                          (11)                                                               (12) 
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It then updates the skill level according to the best action performed in the iteration 

cycle. This process of refining the skill continues till the Pervalue reduces below start 

limit (∆start). It then uses this partially learned skill and calculates new values for CV1, 

CV2, CV3 such that it satisfies the Eq. 10. It then again starts the skill refining process 

using gradient based method. This multi-step alternate bump height increasing and 

partial skill learning process continues till the desired bump height (HBump) is achieved. 

Finally after the desired bump height is reached the skill refining process ends when 

the disturbance in beam orbit in the constraint region (Pervalue) reduces below stop 

limit (∆stop). This overall process for the proposed algorithm is shown by flowchart in 

Figure 6.  

 

7. Early Implementation Simulation Results on INDUS-2 Model  

The agents are developed according to the proposed scheme and the simulation trials are 

done for training of different beam line control agents and insertion device control agents so 

that they learn the sufficient skills for controlling the beam lines. Figure 7 shows the 

different beam positions at different BPM’s throughout the INDUS-2 ring during one 

of the lower level agent (“DP3 agent”) training using the proposed constrained 

gradient based reinforcement method. Figure 8 shows the different beam positions at 

different BPM’s throughout the INDUS-2 ring for training of same agent using the 

general gradient based reinforcement method. Figure 9 shows the different skill states 

acquired by the agent during the training cycles for which the beam positions are 

shown in Figure 7 and 8. Figure 10 shows the skill states acquired by the agent (“DP3 

agent”) for the case of agent imparted with different initial skill levels. Figure 11 

shows the skill learning by the agent (“DP3 agent”) for the case of machine operating 

point changes due to different error introduced in the defocusing quadrupole (QD) 

family. 

From Figure 7 one can clearly see that for the agent skill learning process using the 

proposed constraint gradient based reinforcement learning method is well capable of 

imparting the same skill level to the agent as general gradient based learning method 

while traversing almost the same path through skill set. Further it can be seen from 

Figure 7 that the proposed skill learning method is successful in limiting the beam 

perturbation in the constraint region (BPM0 toBPM6 and BPM10 to BPM55) within 

the constraint limits (±70µm) whereas the general gradient based method perturbs the 

beam to very large values (≈ ±2.5 mm) for similar skill set learning thereby making the 

beam lines unusable in this region at the time of training. From Figure 10 one can see 

that for the case when agent has acquired some skill (i.e., the agent is having some 

initial skill learned according to some previously occurring state) and then in run time 

if the system changes to some other operating state then the agent’s skill learning using 

the proposed method is well capable of converging to desired new skill from different 

initial skill sets. Further from Figure 11 one can see that the training iteration cycles 

required by the agent to acquire this new skill set (from the previously trained state) is 

limited to less than 30 cycles for the worst case considered of the parameter variations 

up to 0.75%. Thus for the practical case if the agent decides to go for training to 

improve the performance, only the related beam line will be affected for the period of 

less than a minute.  
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Figure 10. Skill states acquired by the agent (“DP3 agent”) for the case of 
agent imparted with different initial skill levels   

 

  

Figure 11.  Skill learning by the agent (“DP3 agent”) for the case of 
machine operating point changes due to different error introduced in the 

defocusing quadrupole (QD) family  

 

8. Conclusion 

Electron beam position and angle are controlled in SR sources for obtaining and 

maintaining the maximum photon flux at desired sample location in experimental SR 

beam lines. Towards this a novel multi-agent based operator support and beam orbit 

control scheme is presented in this paper for improving the overall reliability and beam 

availability to the SR users. The design of different types of constituting individual 

agents is presented. This scheme is also helpful in improving the available beam 

quality to users through prioritized optimization for the cases when multiple beam 

lines demand the beam correction simultaneously. A novel gradient based cooperative 

multi-agent based reinforcement skill learning scheme is also presented for imparting 

training to lower level agents in case the skill level towards orbit control of lower layer 

agents degrades. The effectiveness of the proposed scheme is shown through 

simulation results obtained with the early implementation of the scheme with INDUS-2 

model. The integration of the scheme with INDUS-2 machine control system is in 
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progress. Assuming that under dynamic environment the agents can successfully 

maintain their up to date skill levels with the presented skill learning method, then this 

distributed skill information can be further utilized for extracting the systems model 

which can be used to improve the system performance. 
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