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Abstract 

After constructing graph representations for a set of web documents, there are several 

techniques to determine the similarity between same-type objects. This is achieved by graph 

matching. The measure of similarity may be based on the size of the maximum common 

subgraph. In this paper, we are interested in the problem of maximum common 

subgraph(MCS) and median graph computation for the purpose of graph clustering using 

backtracking search. Median of a graph helps in the extension of prevalent term frequency 

based clustering algorithms to graph based clustering. 
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1.  Introduction 

When representing text and web document content for the purpose of clustering and 

classification, a vector-space model is generally used. In this model, each possible term that 

can appear in a document becomes a feature dimension. The value assigned to each 

dimension of a document may indicate the number of times the corresponding term appears 

on it or it may be a weight that takes into account other frequency information, such as the 

number of documents upon which the terms appear. This model is simple and allows the use 

of traditional machine learning methods that deal with numerical feature vectors in a 

Euclidean feature space. However, it discards information such as the order in which the 

terms appear, where in the document the terms appear, how close the terms are to each other, 

and so forth. By keeping this kind of structural information we could possibly improve the 

performance of various machine learning algorithms. The problem is that traditional data 

mining methods are often restricted to working on purely numeric feature vectors due to the 

need to compute distances between data items or to calculate some representative of a cluster 

of items (i.e., a centroid or center of a cluster), both of which are easily accomplished in a 

Euclidean space [8]. Thus either the original data needs to be converted to a vector of numeric 

values by discarding possibly useful structural information or we need to develop new, 

customized methodologies for the specific representation. 

The composite model [1, 2] is an efficient and well organized method of web document 

representation which takes into account additional web-related content information which is 

not done in traditional information retrieval models. It can hold almost all the necessary 

information such as the order, proximity of word occurrence, markup information and 

location of a word within a document. The composite model is a combination of TSGM(Tag 

Sensitive Graph Model) and CSGM(Context Sensitive Graph Model).We will show that This 

model along with the enhanced distance measure (Eq.1) is giving increased effectiveness in 

the graph distance measure*. 
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where ∑d
+ 

 represents the sum of in-degree and out-degree of the directed graph and 
SOM

d
+
 

represents the sum of the minimum of the degrees generated by each common node of the 

graphs which are included in the MCS. In case when there are two or more MCS then we 

should consider max(
SOM

d
+
 ). max(x, y) is the usual maximum of two numbers x and y.  

 

2. Graph Distance 

The above distance measure express that, as the size of the maximum common subgraph of 

a pair of graphs becomes larger, the similarity between  the two graphs will also increase. The 

larger the maximum common subgraph, the smaller distMCS(G1,G2) becomes, indicating more 

similarity and less distance. If the two graphs are in fact identical, their maximum common 

subgraph is the same as the graphs themselves and thus the size of all three graphs is equal:                             

|G1| = |G2| = |MCS(G1,G2)|. This leads to the distance, distMCS(G1,G2), becoming 0. Conversely, 

if no maximum common subgraph exists, then |MCS(G1,G2)| = 0 and                            

distMCS(G1, G2) = 1. This distance measure has been shown to be a metric, and produces a 

value in [0,1]. This distance measure has four important properties [8]. First, it is restricted to 

producing a number in the interval [0,1]. Second, the distance is 0 only when the two graphs 

are identical. Third, the distance between two graphs is symmetric. Fourth, it obeys the 

triangle inequality, which ensures the distance measure behaves in an intuitive way. For 

example, if we have two dissimilar objects (i.e., there is a large distance between them) the 

triangle inequality implies that a third object which is similar (i.e., has a small distance) to 

one of those objects must be dissimilar to the other. The advantage of this approach over the 

graph edit distance method is that it does not require the determination of any cost 

coefficients  

 

*In [1] the distance measure was mistakenly printed as-  
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 or other parameters. However, the metric as it is defined in Eq. 1 may not be appropriate for 

all applications. 

Graph matching is known to be a computationally expensive procedure, which limits most 

of its applications [3]. A number of graph-matching algorithms, both optimal and 

approximate, have been proposed over the last three decades. Optimal algorithms are those 

that guarantee the best solution(s) to be found, while approximate algorithms offer nearly-best 

solutions usually at considerably lower computation cost. Most optimal algorithms for 

common subgraph isomorphism (CSI), used in various applications, are based on maximal 

clique detection in the association graph, as was first proposed in [4, 5]. In contrast, 

backtracking CSI algorithms [6] are rarely used, presumably because of the extra 
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computational cost involved. It is widely accepted, however, that the problem of exact 

subgraph isomorphism (ESI, a special case of CSI when the maximal common subgraph 

coincides with one of the input graphs) is much more effectively solved by the backtracking 

algorithm due to Ullman (UA) [7]. This fact gives an implication that the backtracking 

approach may be efficient for CSI at least in cases that are close to ESI.  

     In the next sections of the paper, we are going to discuss an algorithm for determining the 

MCS based on CSIA. The CSIA algorithm was initially derived from UA by modification of 

parts related to the expansion of partial solutions and rejection of unsuitable branches of the 

search tree [3]. The algorithm was not designed to calculate the MCS of graphs representing 

web documents. It was a general CSI algorithm capable of handling much more complex 

situations of graph isomorphism than detection of MCS in case of well organized graphs 

created for the purpose of matching. We did the modification needed considering the fact that 

we only need the MCS and some other data from a well organized set of graphs. 
 

3. Steps for Extracting the MCS 

Calculating the distance between two graphs (Eq 1) requires the computation of the 

maximum common subgraph of the pair of graphs. The determination of the maximum 

common subgraph in the general case is known to be an NP-complete problem [8]. However, 

with our graph representation for documents [1] each node in a graph has a unique label 

(representing a unique term) that no other node in the graph has. Thus the maximum common 

subgraph, GMCS, of a pair of graphs, G1 and G2, can be created by the following procedure:  

 

(1) Find the nodes VMCS by determining the subset of node labels that the original graphs have 

in common with each other and create a node for each common label.  

 

(2) Find the edges EMCS by examining all pairs of nodes from step (1) and introduce edges that 

connect pairs of nodes in both of the original graphs.  

 

(3) Select the MCS which have the highest no of nodes and  

    
SOM

d
±  

= max(
SOM

d
±  

MCS(G1,G2)). 

  

We observe that the complexity of this method is O(|V1| • |V2|) for step (1) , since  

we need only to compare each node label from one graph to each node label of the other and 

to determine whether there is a match or not. Thus the maximum number of comparisons is 

|V1| • |V2|, and since each node has a unique label we only need to consider each combination 

once. The complexity is O(|VMCS|
2
) for step (2), since we have |VMCS| nodes and we look at all 

combinations of pairs of nodes to determine if an edge should be added between them or 

not:  
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Thus overall complexity is O(|V1|.|V2|+|VMCS|
2
)   O(|V|

2 
+ |VMCS|

2 
)= O(|V|

2
) ,  if we 

substitute V=max(|V1|, (|V2|) . 

 

In this paper we are presenting an algorithm for MCS detection, which will be referred to 

as AMCSI (Algorithm for Maximum Common Subgraph Isomorphism). The AMCSI 

algorithm is based on backtracking CSI algorithm (CSIA) due to E. B. Krissinel and K. 
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Henrick. The AMCSI algorithm has been proposed in view of determining the MCS of the 

graphs created according to the composite graph model for web page representation [1]. The 

computational complexity of the algorithm (AMCSI) is considerably lower than its parent 

algorithm (CSIA) designed for CSI in general [3]; the complexity of which (i.e., CSIA) is also 

considerably lower than the complexity range shown by algorithms based on the maximal 

clique detection.  
 

4.  Backtracking Scheme of AMCSI based on CSIA 

We shall represent graphs as 3-tuples G = [V,E,n], where V = {vi } and E = {eij } are sets of 

vertices and edges, respectively, and n = |V | is the number of vertices. Each element vi and eij 

has a set of properties, which may be called labels, assigned to vertices and edges.  

For the identification of matching vertices and edges, there are two separate vertex and 

edge comparison functions μ(vi, vj ) and ν(eij , ekl), respectively. These functions return true if 

vertices or edges compare, and false otherwise. A subgraph of graph G = [V,E,n] is graph H = 

[W,F, k] where k ≤ n, W ⊆ V and F = E ∩ (W × W), or, in other words, F is a subset W of k 

vertices from V , connected in graph H by all and only edges that connect these vertices in 

graph G. Without loss of generality, we can consider that all unconnected vertices are 

connected by virtual null edges under the condition that null edges compare only with 

themselves. 

Common subgraphs H1 = [V,E, k] and H2 = [W,F, k] of two given graphs G1 and G2 are 

those, of equal size k, that are isomorphic to each other. This means that there should be such 

numeration of subgraphs’ vertices x(i) and y(i), that 

 μ(vx(i),wy(i)) = true & v(ex(i),x(j), fy(i),y(j)) = true ∀i, j ∈ {1 . . .k}          …(2)  

 

or, in other words, all pairs of matching vertices in the subgraphs are connected by matching 

edges (including the virtual null edges). The problem of finding the common subgraphs can 

now be rephrased as looking for numbered sets X = {x(i)}(i=1….k) and Y = {y(i)}(i=1….k), 

satisfying conditions (2). Figure 1 presents a recursive version of the backtracking AMCSI 

algorithm (in the first consideration, ignore the undefined ‘VMM D, D1’). The algorithm 

essentially enumerates all possible mappings of vertices which satisfy the conditions of 

subgraph isomorphism (2) in sets X and Y . Initially X and Y are set empty (cf. step 2 of the 

main program). On each entry to Backtrack, X and Y index vertices of the partial common 

subgraphs found. The subgraphs may or may not be extended, which is checked by function 

Extendable. If the solution is not extendable, it is output in step 20, and the algorithm retreats. 

Otherwise, Backtrack picks a yet unmapped vertex vi from graph G1 (step 2) and identifies set 

Z of all vertices from graph G2 (step 3) that may be mapped onto vi without violation of 

subgraph isomorphism conditions (2) (candidate matchings). For each vertex wj from set Z, 

the algorithm extends the solution by appending X and Y with indices of vi and wj , 

respectively (cf. steps 5 and 6 in Figure 1). Then Backtrack is called recursively (step 8) in 

order to make further extensions. After the recursive call, X and Y are restored (steps 9 and 

10), which allows the algorithm to perform different mappings on each loopover. By going up 

and down the recursion, all possible extensions of common subgraphs, originating from the 

extension of subgraph G1 by vertex vi , are thus explored. It is clear, however, that common 

subgraphs do not have to contain any particular vertex. Therefore, the search must be 

complemented by exploring all extensions of X that do not index the chosen vertex (vi ). For 

that purpose, in steps 12–14 vi is temporarily removed from graph G1, Backtrack is called 

recursively again, and after it returns, vi is put back into G1. 



International Journal of Advanced Science and Technology 

Vol. 51, February, 2013 

 

 

71 

 

Global graph G1 = [V,E,n], G2 = [W,F,m]; set X, Y ; integer nmax,dsom 

 

1. call Initialize(D) 

2. X :=   , Y :=   

3. nmax := 0, dsom:=0 

4. call Backtrack(D) 

5. stop 

 

procedure Backtrack ( VMM D ) 

 

1. if Extendable(D) then 

2.  vi := PickVertex(D) 

3. Z := GetMappableVertices(vi ,D) 

4. for all wj ∈ Z do 

5.       X := X + {i} 

6.       Y := Y + {j } 

7.       D1 := Refine(D) 

8.       call Backtrack(D1) 

9.       X := X − {i} 

10.       Y := Y − {j } 

11.  done 

12.  V := V − {vi} 

13.  call Backtrack(D) 

14.  V := V + {vi} 

15. else 

16.  nmax := max(nmax, |X|) 

17. for all vi ∈ X do 

18.    somd min ,i j

i j

v w
 

  
 
   

19. done 

20.  Output((X, Y ),dsom) 

21. end if 

 

Figure 1. The Backtracking Scheme of the AMCSI Algorithm. 
Capital letters denote numbered sets, and small letters their elements, 

so that X = {xi}. Please see details in the text. 
 

It is obvious that the efficiency of a recursive algorithm depends exponentially on the 

number of recursive calls it makes, while the number of operations, performed within a single 

call, makes the base of that exponent. As may be seen from Figure 1, the number of recursive 

calls may be decreased if Extendable is able to determine whether the search leads to a 

desirable result on further recursion levels, and to return false if it does not.  
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Indeed, backtracking algorithms for graph matching use different techniques for 

terminating undesirable branches of the recursion tree. For example, the UA algorithm [7] 

looks for exact subgraph isomorphism only, therefore any recursion branch not leading to a 

common subgraph not coinciding with the lesser of the input graphs is rejected as soon as it is 

identified as such. In the CSI algorithm of McGregor [6], undesirable branches are defined as 

those not leading to subgraphs that have more than the maximal number of edges in common 

with subgraphs already found.  
 

5.  The AMCSI Algorithm 

In most applications, only sufficiently large common subgraphs are considered as a useful 

result of graph matching. For example, clustering techniques based on graphs normally 

require only the maximal common subgraphs (MCSs) to be found. The CSIA algorithm has 

introduced a new parameter into the CSI problem, namely the minimal size of common 

subgraphs to be found, n0. Using this parameter, AMCSI is able to reject branches of the 

recursion tree not leading to acceptable results, without spending time on finding them.  

The central idea of UA [6] is based on using the vertex matching matrix (VMM) P. Pij is 

true if vertex vi of graph G1 can be matched to vertex wj of graph G2, and false otherwise. 

Initially Pij = μ(vi,wj ), however as the solution extends, Pij takes into account that not all 

label-like vertices can be matched due to possible conflicts between edges connecting them 

(cf. conditions (2)). Using matrix P, UA concentrates only on those same-label vertices that 

do not have edge conflicts with vertices of already found subgraphs. Naturally, in most cases 

the number of such candidate mappings decreases sharply, and P becomes very sparse with 

the size of common subgraphs found.The MSIA is therefore  adopting a more efficient 

version of  VMM, namely the matrixM, such thatMij gives the index of the vertex of graph G2 

that is mappable onto vertex vi of G2, j = 1 . . .Li .  The 2-tuple D = [M,L] is referred to as 

‘VMM D’ in Figure 1, and its initialization is demonstrated by procedure Initialize in Figure 2. 

The matrixM created by the procedure initialize will be a column matrix only with L=1. 

 

Global integer n0 

 

procedure Initialize ( VMMD = [M,L] ) 
 

1. for all vi ∈ V do 

2.    k := 0 

3.    for all wj ∈ W do 

4.       if μ(vi,wj ) = true then 

5.         k := k + 1, Mik := j 

6.       endif 

7.    Li := k 

8. done 

 

function PickVertex ( VMMD = [M,L] ) 

    return vi such that for all vi, vj ∈ V − {vx(k)}k, 0 < Li ≤ Lj 

 

function GetMappableVertices ( vertex vi, VMMD = [M,L] ) 

    return {wMij} j=1….. Li 
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function Refine ( VMMD = [M,L] ) 

 

1. VMM D1 = [T,N] 

2. q := |X| 

3. for all vi ∈ V − {vx(i)}i=1…q  do 

4.    l := 0 

5.    for all j ∈ {Mik}k=1….Li do 

6.       if ν(ei,x(q), fj,y(q)) = true then 

7.          l := l + 1 

8.         Til := j 

9.       endif 

10.    Ni := l 

11. done 

12. return D1 

 

function Extendable ( VMMD1 = [M,L] ) 

1. q := s := |X| 

2. for all vi ∈ V − {vx(i)}i=1… q do 

3.  if Li > 0 then s := s + 1 

4. if s ≥ max(n0, nmax) and s > q return true else return false 

 

Figure 2. Procedures and Functions used in the AMCSI Algorithm shown 
in Figure 1. Global data from Figure 1 are used. Please see details in the 

text. 
 

The compact form of VMM (i.e., the column matrix) drastically simplifies the 

identification of mappable vertices in procedure Backtrack. The function 

GetMappableVertices merely returns all vertices of graph G2 indexed by the i
th
 row of matrix 

M (cf. Figure 2). Since the VMM M includes only mappings that do not violate conditions (2) 

for already mapped vertices, extension of X with index i allows for extension of Y with any 

index j = Mik, k ∈ {1 . . .Li}. However, once a particular extension is done, the VMM must be 

refined in order to exclude mappings that are not compatible with the newly mapped vertices 

vi and wj.  

VMM is refined in step 7 of the backtracking scheme (cf. Figure 1). The refinement is 

done by function Refine, shown in Figure 2. The procedure is based on the comparison of 

edges, connecting the last mapped vertices (vx(q) and wy(q), where  q = |X| = |Y | is the size of 

common subgraphs) with all candidate mappings in both graphs. If the edge between 

(unmapped) vertices vi and vx(q) in graph G1 is not compatible with the edge between its 

mapping candidates wM(i)(k) and wy(q) in graph G2, the candidate is removed from the list (that is, 

removed from the i
th
 row of the VMM). It may be verified that checking only edges between 

candidate mappings and last mapped vertices is equivalent to checking the conditions of 

subgraph isomorphism (2) in full. Indeed, the initialization of VMM (procedure Initialize) 
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guarantees that only vertices with compatible labels are listed as mappable, so we never check 

vertex labels in Refine. Then, the refinement is done at each extension of the solution, which 

guarantees that Refine receives a VMM, in which conditions (2) hold true for all edges 

between unmapped and mapped vertices, except only for just mapped vx(q) and wy(q). It is 

therefore evident that using VMM drastically reduces the number of comparison operations 

performed on each recursion level.  

As mentioned above, Extendable could always return true if there are unmapped vertices 

left in both graphs. Then each branch of the recursion tree would be explored to the very end 

of it. In order to terminate branches not leading to desirable solutions (cf. above) and thus 

save computational efforts, Extendable estimates the maximum possible size of common 

subgraphs that may be achieved by further continuation of the search. This is done on the 

basis of consideration that if, for yet unmapped vertex vi from graph G1, the number of 

mapping candidates from graph G2 is zero, vi will never be mapped (the mapping candidates 

are only removed as the search proceeds, cf. Refine). Therefore, the maximal possible size of 

AMCSI s is given by the size of the currently identified subgraphs q = |X| plus the number of 

non-empty rows in VMM, D = [M,L] (i.e., those for which Li > 0, see function Extendable in 

Figure 2). If s falls below n0 (the minimal size of common subgraphs to be looked at) or is 

equal to q, Extendable returns false and the branch is abandoned. In the case of looking for 

maximal common subgraphs only, Extendable should also return false if s is less than the size 

of the largest common subgraphs found so far, nmax (nmax may be updated each time a 

common subgraph is output, cf. Figure 1, step 16). Then maximal common subgraphs will be 

found without finding all smaller subgraphs. 

This procedure is illustrated by Figure 3, 4 and 5. Both of the two graph representations of 

the Figure 3 are taken from [1].The figure shows only one branch of the recursion tree 

starting with mapping (v3,w3), and includes only connected components. On the very first 

level of recursion r = 1, AMCSI removes vertex v1,v7,v10,v11 and v12 from graph G1 (v1,v7 is 

not mappable because there is no vertex in G2 with the same label, vertex v10,v11 and v12 are 

unmappable because of connectivity reasons). At r =2 AMCSI maps (v2,w2).On the next 

recursion level, r = 3, AMCSI explores two sub branches, A and B, which correspond to 

different paths from the vertex v2. In sub branch A, mapping (v6,w6) makes vertex v4,v5 and v8 

unmappable because of connectivity reasons, and the subbranch results in a MCS of size 4. 

Branch B leads to the largest CSI of size 6. If parameter n0 is set to 5, then sub branch A can 

be terminated on recursion level r = 3, because the sum of mapped and potentially mappable 

vertices in graph G1 on that level is less than n0 = 5. Thus, in this example, AMCSI abandons 

subbranch A before detecting MCS of size 4 (highlighted in Figure by shading). Although in 

this particular example the profit of avoiding level  r = 4 of branch A does not look impressive, 

it is immense in most actual cases. Finally, consider function PickVertex (cf. Figure 2), which 

decides which vertex from graph G1 should be chosen for mapping on a particular level of 

recursion. 
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Figure 3(a) 

 

 

Figure 3(b) 

            Figure 3(a,b). The graph representations(G1,G2) of two similar kind of 
web pages taken from [1]. The document represented by Figure 3(a) has the 

title "Gauhati University", text containing "Gauhati University Secures 26th In 
All India Ranking", a link whose text reads "Other Universities In Assam", an 
address that contain "Powered by xyz”. The document represented by Figure 

3(b) has the title "Delhi University", a link whose text reads "Other Universities 
In Assam", an address that contain "Powered by xyz” and text containing 

"Delhi University Secures 26th In world Ranking". 
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Step 1: (r=1) 
 Mapped Candidates Removed and Unmappable 

X Other (V3,1) University(V2,5),In(V6,6),Assam 

(V9,1),Secure(V4,4),26
th
(V5,4), 

Rank(V8,2) 

Delhi(V1),World(V7), 

Power(V10),By(V11),xyz(V12) 

Y Other (W3) University(W2),In(W6),Assam 

(W10),Secure(W4),26
th
(W5), 

Rank(W9) 

Guwahati(W1),All(W7),India 

(W8)Power(W11),By(W12), 

xyz(W13) 

 

Step 2: (r=2) 
 Mapped Candidates Removed and Unmappable 

X Other(V3,1), 
University 

(V2,5) 

In(V6,6),Assam(V9,1),Secure 

(V4,4), 26
th
(V5,4), Rank(V8,2) 

Delhi(V1),World(V7), 

Power(V10),By(V11),xyz(V12) 

Y Other(W3), 

University 

(W2) 

In(W6),Assam(W10),Secure(W4), 

26
th
(W5), Rank(W9) 

Guwahati(W1),All(W7), 

India(W8), Power(W11), 

By(W12),xyz(W13) 

 

Step3(A): (r=3) 
 Mapped Candidates Removed and Unmappable 

X Other(V3,1),University(V2,

5), In(V6,6) 

Assam(V9,1) Delhi(V1),World(V7),Power(V10), 

By(V11), xyz(V12), Secure(V4), 

26
th
(V5), Rank(V8) 

Y Other(W3),University(W2), 

In(W6) 

Assam(W10) Guwahati(W1),All(W7),India(W8), 

Power(W11), By(W12),xyz(W13), 

secure(W4),26
th
(W5), Rank(W9) 

 

Step 3(B): (r=3) 
 Mapped Candidates Removed and Unmappable 

X Other(V3,1),University 

(V2,5),Secure(V4,4) 

In(V6,6),Assam 

(V9,1),26
th
(V5,4), 

Rank(V8,2) 

Delhi(V1),World(V7), 

Power(V10),By(V11), 

xyz(V12) 

Y Other(W3),University 

(W2),Secure(W4) 

In(W6),Assam 

(W10),26
th
(W5), 

Rank(W9) 

Guwahati(W1),All(W7), 

India(W8),Power(W11), 

By(W12),xyz(W13) 

 

 

Step 4: (r=4) 
 Mapped Candidates Removed and Unmappable 

X Other(V3,1),University 

(V2,5), Secure(V4,4), 

26
th
(V5,4) 

In(V6,6),Assam 

(V9,1),Rank(V8,2) 

Delhi(V1),World(V7), 

Power(V10),By(V11),xyz(V12) 

Y Other(W3),University 

(W2),Secure(W4), 

26
th
(W5) 

In(W6),assam(W10), 

Rank(W9) 

Guwahati(W1),All(W7),India(W8

)Power(W11),By(W12),xyz(W13) 
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Step5: (r=5) 
 Mapped Candidates Removed and Unmappable 

X Other(V3,1),University 

(V2,5), Secure(V4,4),26
th 

(V5,4), In(V6,6) 

Assam(V9,1) Delhi(V1),World(V7),Power(V10), 

By(V11), xyz(V12), Rank(V8) 

Y Other(W3),University(W2), 

Secure(W4), 26
th
(W5), 

In(W6) 

Assam(W10) Guwahati(W1),All(W7),India(W8), 

Power(W11),By(W12),xyz(W13), 

Rank(W9) 

 

Step 6: (r=6) 
 Mapped Candid

ates 

Removed and Unmappable 

X Other(V3,1),University(V2,5), 

Secure(V4,4), 26
th
(V5,4),In(V6,6), 

Assam(V9,1) 

 Delhi(V1),World(V7),Power(V10), 

By(V11), xyz(V12), Rank(V8) 

Y Other(W3),University(W2), 

Secure(W4), 26
th
(W5), In(W6), 

Assam(W10) 

 Guwahati(W1),All(W7),India(W8), 

Power(W11),By(W12),xyz(W13), 

Rank(W9) 

Figure 4. Example of the recursive AMCSI algorithm functionality. r stands for 
the recursion level, X and Y list vertices of graphs G1 = [V,E,n] and G2 = [W, 
F,m], respectively. Mapped vertices are aligned vertically in ‘mapped’ cells. 

Different patterns of graph vertex symbols denote different vertex labels. Only 
one branch of the recursion tree, starting from mapping (v3,w3), is shown, and 
only connected common subgraphs are considered. At minimal requested size 

of CSI, n0 = 5, the last mapping on the recursion level r = 3 in sub-branch A 
(highlighted by shaded background) is terminated by AMCSI because the 

current size of graph G1 plus the number of candidate matchings on level r = 3, 
sub-branch A, is less then n0, see text for more details. 

 

 

Figure 5. The MCS Obtained 
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6. Calculation of the Distance between the Two Graphs 

To calculate the distance between the two graphs by using the above mentioned (Eq.1) 

distance measure which was proposed by us [1], we must have the numerical values of the 

following: 

 

(i) max(
SOM

d
±  

MCS(G1,G2)) 

(ii) max(∑d
± 

(G1),( ∑d
± 

(G2)) 

     

To calculate the distance between the two graphs by using the prevalent distance measure 

as stated below  

                         
1 2

1 2

1 2

( , )
( , ) 1

max( , )
MCS

mcs G G
dist G G

G G
 

                                               …(3)

 

we must have the numerical values of the following: 

 

(iii) max(|G1|,|G2|) 

 

(iv) |MCS(G1,G2) | 

 

From Figure 4 and 5 we obtain: 

 
Table 1. Calculation of the Distance between G1 and G2 

Method of 

Calculation 

(i) (ii) (iii) (iv) distMCS (G1,G2) 

Proposed 21 38   0.44737 

Prevalent   6 13 0.53846 

 
From Table 1 it is clear that the distance between two web pages (i.e. graphs G1 and G2) is 

found to be grater (|Prevalent - Proposed|=0.09103) in case of the prevalent method. The two 

web pages have an actual difference of only 3 words out of a maximum of 13 significant 

words of the second web page (represented by graph G2). Also, it is seemed to be obvious that 

the two web pages are of very similar kind. 

Hence it may be inferred that the proposed method for calculating the difference between 

graphs representing web documents is capable of yielding batter result (16.9% approx in case 

of the above example) then the prevalent one. However to establish this inference statistically, 

we must perform experiments in large scale which is not possible for us within the scope of 

our research. In one of our article [1] we showed this usefulness by arbitrarily determining the 

different numerical values required to calculate the distance. In this article we are considering 

the same example to calculate the distance by following a concrete procedure and are getting 

slight different but more desired result. 
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7. Median of a Set of Graphs 

To form clusters from a set of data items it is necessary to compute the distance between 

data items and cluster centers. In our approach it follows that the cluster centers (centroids) 

must also be graphs. Therefore, we have to compute the representative "centroid" of a cluster 

as the median graph of the set of graphs in that cluster  (Eq. 4). 

The median of a set of graphs S is a graph g   S (S = {G1,G2,..., Gn}) such that g has the 

lowest average distance to all elements in S [8]:  

 

     
1

1
arg min ( , )

S

i
s S

i

g dist s G
s 



 
   

 


                                … (4)

 

                                                      

since g   S, it is straightforward (and relatively inexpensive) to simply compute the average 

distance to all graphs for each graph in S. 
 

8. Conclusion 

In this article we have introduced a new approach for graph distance measure which is 

useful to cluster data sets (in this case web documents) when utilizing more descriptive 

graphs in lieu of the usual case of vector representations. Our first contribution is presenting 

an efficient model by which web document content can be modeled as graphs. These graph 

representations retain information that is usually lost when using a vector model, such as term 

order and document section information. We have demonstrated how with the composite 

model of graph representation, we can perform the graph similarity task in O(n
2
) time ,n 

being the number of nodes. In general, graph similarity using maximum common subgraph is 

an NP-complete problem, so this is an important result that allows us to forgo sub- optimal 

approximation approaches and find the exact solution in polynomial time. 

While AMCSI has been designed for use in web document management, the algorithm is 

conceptually general and is directly applicable to any graph-based similarity application. The 

new algorithm presented in this paper is highly recommended for applications where we are 

faced with large labeled and directed graphs. By contrast, the proposed algorithm is not 

suitable to be applied to problems dealing with unlabeled, undirected, highly disjoint graphs.  

The experimental verification remains for future work on the algorithm. 
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