
International Journal of Advanced Science and Technology

Vol. 51, February, 2013

67

Maximum Common Subgraph and Median Graph Computation

from Graph Representations of Web Documents Using Backtracking

Search

Kaushik K. Phukon

Department of Computer Science,

Gauhati University, Guwahati-14, Assam, India

kaushikphukon@gmail.com

Abstract

After constructing graph representations for a set of web documents, there are several

techniques to determine the similarity between same-type objects. This is achieved by graph

matching. The measure of similarity may be based on the size of the maximum common

subgraph. In this paper, we are interested in the problem of maximum common

subgraph(MCS) and median graph computation for the purpose of graph clustering using

backtracking search. Median of a graph helps in the extension of prevalent term frequency

based clustering algorithms to graph based clustering.

Keywords: Graph, Subgraph, Median, Algorithm, Graph Distance

1. Introduction

When representing text and web document content for the purpose of clustering and

classification, a vector-space model is generally used. In this model, each possible term that

can appear in a document becomes a feature dimension. The value assigned to each

dimension of a document may indicate the number of times the corresponding term appears

on it or it may be a weight that takes into account other frequency information, such as the

number of documents upon which the terms appear. This model is simple and allows the use

of traditional machine learning methods that deal with numerical feature vectors in a

Euclidean feature space. However, it discards information such as the order in which the

terms appear, where in the document the terms appear, how close the terms are to each other,

and so forth. By keeping this kind of structural information we could possibly improve the

performance of various machine learning algorithms. The problem is that traditional data

mining methods are often restricted to working on purely numeric feature vectors due to the

need to compute distances between data items or to calculate some representative of a cluster

of items (i.e., a centroid or center of a cluster), both of which are easily accomplished in a

Euclidean space [8]. Thus either the original data needs to be converted to a vector of numeric

values by discarding possibly useful structural information or we need to develop new,

customized methodologies for the specific representation.

The composite model [1, 2] is an efficient and well organized method of web document

representation which takes into account additional web-related content information which is

not done in traditional information retrieval models. It can hold almost all the necessary

information such as the order, proximity of word occurrence, markup information and

location of a word within a document. The composite model is a combination of TSGM(Tag

Sensitive Graph Model) and CSGM(Context Sensitive Graph Model).We will show that This

model along with the enhanced distance measure (Eq.1) is giving increased effectiveness in

the graph distance measure*.

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

68

1 2

1 2

1 2

((,))

(,) 1
max((), (()))

SOM
MCS

d MCS G G

dist G G
d G d G



 

 
 

 
 
 
 



  …(1)

where ∑d
+

 represents the sum of in-degree and out-degree of the directed graph and 
SOM

d
+

represents the sum of the minimum of the degrees generated by each common node of the

graphs which are included in the MCS. In case when there are two or more MCS then we

should consider max(
SOM

d
+
). max(x, y) is the usual maximum of two numbers x and y.

2. Graph Distance

The above distance measure express that, as the size of the maximum common subgraph of

a pair of graphs becomes larger, the similarity between the two graphs will also increase. The

larger the maximum common subgraph, the smaller distMCS(G1,G2) becomes, indicating more

similarity and less distance. If the two graphs are in fact identical, their maximum common

subgraph is the same as the graphs themselves and thus the size of all three graphs is equal:

|G1| = |G2| = |MCS(G1,G2)|. This leads to the distance, distMCS(G1,G2), becoming 0. Conversely,

if no maximum common subgraph exists, then |MCS(G1,G2)| = 0 and

distMCS(G1, G2) = 1. This distance measure has been shown to be a metric, and produces a

value in [0,1]. This distance measure has four important properties [8]. First, it is restricted to

producing a number in the interval [0,1]. Second, the distance is 0 only when the two graphs

are identical. Third, the distance between two graphs is symmetric. Fourth, it obeys the

triangle inequality, which ensures the distance measure behaves in an intuitive way. For

example, if we have two dissimilar objects (i.e., there is a large distance between them) the

triangle inequality implies that a third object which is similar (i.e., has a small distance) to

one of those objects must be dissimilar to the other. The advantage of this approach over the

graph edit distance method is that it does not require the determination of any cost

coefficients

*In [1] the distance measure was mistakenly printed as-

1 2

1 2

1 2

((,))

(,)
max((), (()))

SOM
MCS

d MCS G G

dist G G
d G d G



 

 
 


 
 
 



 

 or other parameters. However, the metric as it is defined in Eq. 1 may not be appropriate for

all applications.

Graph matching is known to be a computationally expensive procedure, which limits most

of its applications [3]. A number of graph-matching algorithms, both optimal and

approximate, have been proposed over the last three decades. Optimal algorithms are those

that guarantee the best solution(s) to be found, while approximate algorithms offer nearly-best

solutions usually at considerably lower computation cost. Most optimal algorithms for

common subgraph isomorphism (CSI), used in various applications, are based on maximal

clique detection in the association graph, as was first proposed in [4, 5]. In contrast,

backtracking CSI algorithms [6] are rarely used, presumably because of the extra

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

69

computational cost involved. It is widely accepted, however, that the problem of exact

subgraph isomorphism (ESI, a special case of CSI when the maximal common subgraph

coincides with one of the input graphs) is much more effectively solved by the backtracking

algorithm due to Ullman (UA) [7]. This fact gives an implication that the backtracking

approach may be efficient for CSI at least in cases that are close to ESI.

 In the next sections of the paper, we are going to discuss an algorithm for determining the

MCS based on CSIA. The CSIA algorithm was initially derived from UA by modification of

parts related to the expansion of partial solutions and rejection of unsuitable branches of the

search tree [3]. The algorithm was not designed to calculate the MCS of graphs representing

web documents. It was a general CSI algorithm capable of handling much more complex

situations of graph isomorphism than detection of MCS in case of well organized graphs

created for the purpose of matching. We did the modification needed considering the fact that

we only need the MCS and some other data from a well organized set of graphs.

3. Steps for Extracting the MCS

Calculating the distance between two graphs (Eq 1) requires the computation of the

maximum common subgraph of the pair of graphs. The determination of the maximum

common subgraph in the general case is known to be an NP-complete problem [8]. However,

with our graph representation for documents [1] each node in a graph has a unique label

(representing a unique term) that no other node in the graph has. Thus the maximum common

subgraph, GMCS, of a pair of graphs, G1 and G2, can be created by the following procedure:

(1) Find the nodes VMCS by determining the subset of node labels that the original graphs have

in common with each other and create a node for each common label.

(2) Find the edges EMCS by examining all pairs of nodes from step (1) and introduce edges that

connect pairs of nodes in both of the original graphs.

(3) Select the MCS which have the highest no of nodes and

 
SOM

d
±

= max(
SOM

d
±

MCS(G1,G2)).

We observe that the complexity of this method is O(|V1| • |V2|) for step (1) , since

we need only to compare each node label from one graph to each node label of the other and

to determine whether there is a match or not. Thus the maximum number of comparisons is

|V1| • |V2|, and since each node has a unique label we only need to consider each combination

once. The complexity is O(|VMCS|
2
) for step (2), since we have |VMCS| nodes and we look at all

combinations of pairs of nodes to determine if an edge should be added between them or

not:

    

  2

2

. 1!

2! 2 ! 2

MCS MCSMCS

MCS MCS

MCS

V VV
V V

V
C


  



Thus overall complexity is O(|V1|.|V2|+|VMCS|
2
)  O(|V|

2
+ |VMCS|

2
)= O(|V|

2
) , if we

substitute V=max(|V1|, (|V2|) .

In this paper we are presenting an algorithm for MCS detection, which will be referred to

as AMCSI (Algorithm for Maximum Common Subgraph Isomorphism). The AMCSI

algorithm is based on backtracking CSI algorithm (CSIA) due to E. B. Krissinel and K.

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

70

Henrick. The AMCSI algorithm has been proposed in view of determining the MCS of the

graphs created according to the composite graph model for web page representation [1]. The

computational complexity of the algorithm (AMCSI) is considerably lower than its parent

algorithm (CSIA) designed for CSI in general [3]; the complexity of which (i.e., CSIA) is also

considerably lower than the complexity range shown by algorithms based on the maximal

clique detection.

4. Backtracking Scheme of AMCSI based on CSIA

We shall represent graphs as 3-tuples G = [V,E,n], where V = {vi } and E = {eij } are sets of

vertices and edges, respectively, and n = |V | is the number of vertices. Each element vi and eij

has a set of properties, which may be called labels, assigned to vertices and edges.

For the identification of matching vertices and edges, there are two separate vertex and

edge comparison functions μ(vi, vj) and ν(eij , ekl), respectively. These functions return true if

vertices or edges compare, and false otherwise. A subgraph of graph G = [V,E,n] is graph H =

[W,F, k] where k ≤ n, W ⊆ V and F = E ∩ (W × W), or, in other words, F is a subset W of k

vertices from V , connected in graph H by all and only edges that connect these vertices in

graph G. Without loss of generality, we can consider that all unconnected vertices are

connected by virtual null edges under the condition that null edges compare only with

themselves.

Common subgraphs H1 = [V,E, k] and H2 = [W,F, k] of two given graphs G1 and G2 are

those, of equal size k, that are isomorphic to each other. This means that there should be such

numeration of subgraphs’ vertices x(i) and y(i), that

 μ(vx(i),wy(i)) = true & v(ex(i),x(j), fy(i),y(j)) = true ∀i, j ∈ {1 . . .k} …(2)

or, in other words, all pairs of matching vertices in the subgraphs are connected by matching

edges (including the virtual null edges). The problem of finding the common subgraphs can

now be rephrased as looking for numbered sets X = {x(i)}(i=1….k) and Y = {y(i)}(i=1….k),

satisfying conditions (2). Figure 1 presents a recursive version of the backtracking AMCSI

algorithm (in the first consideration, ignore the undefined ‘VMM D, D1’). The algorithm

essentially enumerates all possible mappings of vertices which satisfy the conditions of

subgraph isomorphism (2) in sets X and Y . Initially X and Y are set empty (cf. step 2 of the

main program). On each entry to Backtrack, X and Y index vertices of the partial common

subgraphs found. The subgraphs may or may not be extended, which is checked by function

Extendable. If the solution is not extendable, it is output in step 20, and the algorithm retreats.

Otherwise, Backtrack picks a yet unmapped vertex vi from graph G1 (step 2) and identifies set

Z of all vertices from graph G2 (step 3) that may be mapped onto vi without violation of

subgraph isomorphism conditions (2) (candidate matchings). For each vertex wj from set Z,

the algorithm extends the solution by appending X and Y with indices of vi and wj ,

respectively (cf. steps 5 and 6 in Figure 1). Then Backtrack is called recursively (step 8) in

order to make further extensions. After the recursive call, X and Y are restored (steps 9 and

10), which allows the algorithm to perform different mappings on each loopover. By going up

and down the recursion, all possible extensions of common subgraphs, originating from the

extension of subgraph G1 by vertex vi , are thus explored. It is clear, however, that common

subgraphs do not have to contain any particular vertex. Therefore, the search must be

complemented by exploring all extensions of X that do not index the chosen vertex (vi). For

that purpose, in steps 12–14 vi is temporarily removed from graph G1, Backtrack is called

recursively again, and after it returns, vi is put back into G1.

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

71

Global graph G1 = [V,E,n], G2 = [W,F,m]; set X, Y ; integer nmax,dsom

1. call Initialize(D)

2. X :=  , Y := 

3. nmax := 0, dsom:=0

4. call Backtrack(D)

5. stop

procedure Backtrack (VMM D)

1. if Extendable(D) then

2. vi := PickVertex(D)

3. Z := GetMappableVertices(vi ,D)

4. for all wj ∈ Z do

5. X := X + {i}

6. Y := Y + {j }

7. D1 := Refine(D)

8. call Backtrack(D1)

9. X := X − {i}

10. Y := Y − {j }

11. done

12. V := V − {vi}

13. call Backtrack(D)

14. V := V + {vi}

15. else

16. nmax := max(nmax, |X|)

17. for all vi ∈ X do

18. somd min ,i j

i j

v w
 

  
 
 

19. done

20. Output((X, Y),dsom)

21. end if

Figure 1. The Backtracking Scheme of the AMCSI Algorithm.
Capital letters denote numbered sets, and small letters their elements,

so that X = {xi}. Please see details in the text.

It is obvious that the efficiency of a recursive algorithm depends exponentially on the

number of recursive calls it makes, while the number of operations, performed within a single

call, makes the base of that exponent. As may be seen from Figure 1, the number of recursive

calls may be decreased if Extendable is able to determine whether the search leads to a

desirable result on further recursion levels, and to return false if it does not.

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

72

Indeed, backtracking algorithms for graph matching use different techniques for

terminating undesirable branches of the recursion tree. For example, the UA algorithm [7]

looks for exact subgraph isomorphism only, therefore any recursion branch not leading to a

common subgraph not coinciding with the lesser of the input graphs is rejected as soon as it is

identified as such. In the CSI algorithm of McGregor [6], undesirable branches are defined as

those not leading to subgraphs that have more than the maximal number of edges in common

with subgraphs already found.

5. The AMCSI Algorithm

In most applications, only sufficiently large common subgraphs are considered as a useful

result of graph matching. For example, clustering techniques based on graphs normally

require only the maximal common subgraphs (MCSs) to be found. The CSIA algorithm has

introduced a new parameter into the CSI problem, namely the minimal size of common

subgraphs to be found, n0. Using this parameter, AMCSI is able to reject branches of the

recursion tree not leading to acceptable results, without spending time on finding them.

The central idea of UA [6] is based on using the vertex matching matrix (VMM) P. Pij is

true if vertex vi of graph G1 can be matched to vertex wj of graph G2, and false otherwise.

Initially Pij = μ(vi,wj), however as the solution extends, Pij takes into account that not all

label-like vertices can be matched due to possible conflicts between edges connecting them

(cf. conditions (2)). Using matrix P, UA concentrates only on those same-label vertices that

do not have edge conflicts with vertices of already found subgraphs. Naturally, in most cases

the number of such candidate mappings decreases sharply, and P becomes very sparse with

the size of common subgraphs found.The MSIA is therefore adopting a more efficient

version of VMM, namely the matrixM, such thatMij gives the index of the vertex of graph G2

that is mappable onto vertex vi of G2, j = 1 . . .Li . The 2-tuple D = [M,L] is referred to as

‘VMM D’ in Figure 1, and its initialization is demonstrated by procedure Initialize in Figure 2.

The matrixM created by the procedure initialize will be a column matrix only with L=1.

Global integer n0

procedure Initialize (VMMD = [M,L])

1. for all vi ∈ V do

2. k := 0

3. for all wj ∈ W do

4. if μ(vi,wj) = true then

5. k := k + 1, Mik := j

6. endif

7. Li := k

8. done

function PickVertex (VMMD = [M,L])

 return vi such that for all vi, vj ∈ V − {vx(k)}k, 0 < Li ≤ Lj

function GetMappableVertices (vertex vi, VMMD = [M,L])

 return {wMij} j=1….. Li

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

73

function Refine (VMMD = [M,L])

1. VMM D1 = [T,N]

2. q := |X|

3. for all vi ∈ V − {vx(i)}i=1…q do

4. l := 0

5. for all j ∈ {Mik}k=1….Li do

6. if ν(ei,x(q), fj,y(q)) = true then

7. l := l + 1

8. Til := j

9. endif

10. Ni := l

11. done

12. return D1

function Extendable (VMMD1 = [M,L])

1. q := s := |X|

2. for all vi ∈ V − {vx(i)}i=1… q do

3. if Li > 0 then s := s + 1

4. if s ≥ max(n0, nmax) and s > q return true else return false

Figure 2. Procedures and Functions used in the AMCSI Algorithm shown
in Figure 1. Global data from Figure 1 are used. Please see details in the

text.

The compact form of VMM (i.e., the column matrix) drastically simplifies the

identification of mappable vertices in procedure Backtrack. The function

GetMappableVertices merely returns all vertices of graph G2 indexed by the i
th
 row of matrix

M (cf. Figure 2). Since the VMM M includes only mappings that do not violate conditions (2)

for already mapped vertices, extension of X with index i allows for extension of Y with any

index j = Mik, k ∈ {1 . . .Li}. However, once a particular extension is done, the VMM must be

refined in order to exclude mappings that are not compatible with the newly mapped vertices

vi and wj.

VMM is refined in step 7 of the backtracking scheme (cf. Figure 1). The refinement is

done by function Refine, shown in Figure 2. The procedure is based on the comparison of

edges, connecting the last mapped vertices (vx(q) and wy(q), where q = |X| = |Y | is the size of

common subgraphs) with all candidate mappings in both graphs. If the edge between

(unmapped) vertices vi and vx(q) in graph G1 is not compatible with the edge between its

mapping candidates wM(i)(k) and wy(q) in graph G2, the candidate is removed from the list (that is,

removed from the i
th
 row of the VMM). It may be verified that checking only edges between

candidate mappings and last mapped vertices is equivalent to checking the conditions of

subgraph isomorphism (2) in full. Indeed, the initialization of VMM (procedure Initialize)

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

74

guarantees that only vertices with compatible labels are listed as mappable, so we never check

vertex labels in Refine. Then, the refinement is done at each extension of the solution, which

guarantees that Refine receives a VMM, in which conditions (2) hold true for all edges

between unmapped and mapped vertices, except only for just mapped vx(q) and wy(q). It is

therefore evident that using VMM drastically reduces the number of comparison operations

performed on each recursion level.

As mentioned above, Extendable could always return true if there are unmapped vertices

left in both graphs. Then each branch of the recursion tree would be explored to the very end

of it. In order to terminate branches not leading to desirable solutions (cf. above) and thus

save computational efforts, Extendable estimates the maximum possible size of common

subgraphs that may be achieved by further continuation of the search. This is done on the

basis of consideration that if, for yet unmapped vertex vi from graph G1, the number of

mapping candidates from graph G2 is zero, vi will never be mapped (the mapping candidates

are only removed as the search proceeds, cf. Refine). Therefore, the maximal possible size of

AMCSI s is given by the size of the currently identified subgraphs q = |X| plus the number of

non-empty rows in VMM, D = [M,L] (i.e., those for which Li > 0, see function Extendable in

Figure 2). If s falls below n0 (the minimal size of common subgraphs to be looked at) or is

equal to q, Extendable returns false and the branch is abandoned. In the case of looking for

maximal common subgraphs only, Extendable should also return false if s is less than the size

of the largest common subgraphs found so far, nmax (nmax may be updated each time a

common subgraph is output, cf. Figure 1, step 16). Then maximal common subgraphs will be

found without finding all smaller subgraphs.

This procedure is illustrated by Figure 3, 4 and 5. Both of the two graph representations of

the Figure 3 are taken from [1].The figure shows only one branch of the recursion tree

starting with mapping (v3,w3), and includes only connected components. On the very first

level of recursion r = 1, AMCSI removes vertex v1,v7,v10,v11 and v12 from graph G1 (v1,v7 is

not mappable because there is no vertex in G2 with the same label, vertex v10,v11 and v12 are

unmappable because of connectivity reasons). At r =2 AMCSI maps (v2,w2).On the next

recursion level, r = 3, AMCSI explores two sub branches, A and B, which correspond to

different paths from the vertex v2. In sub branch A, mapping (v6,w6) makes vertex v4,v5 and v8

unmappable because of connectivity reasons, and the subbranch results in a MCS of size 4.

Branch B leads to the largest CSI of size 6. If parameter n0 is set to 5, then sub branch A can

be terminated on recursion level r = 3, because the sum of mapped and potentially mappable

vertices in graph G1 on that level is less than n0 = 5. Thus, in this example, AMCSI abandons

subbranch A before detecting MCS of size 4 (highlighted in Figure by shading). Although in

this particular example the profit of avoiding level r = 4 of branch A does not look impressive,

it is immense in most actual cases. Finally, consider function PickVertex (cf. Figure 2), which

decides which vertex from graph G1 should be chosen for mapping on a particular level of

recursion.

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

75

Figure 3(a)

Figure 3(b)

 Figure 3(a,b). The graph representations(G1,G2) of two similar kind of
web pages taken from [1]. The document represented by Figure 3(a) has the

title "Gauhati University", text containing "Gauhati University Secures 26th In
All India Ranking", a link whose text reads "Other Universities In Assam", an
address that contain "Powered by xyz”. The document represented by Figure

3(b) has the title "Delhi University", a link whose text reads "Other Universities
In Assam", an address that contain "Powered by xyz” and text containing

"Delhi University Secures 26th In world Ranking".

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

76

Step 1: (r=1)
 Mapped Candidates Removed and Unmappable

X Other (V3,1) University(V2,5),In(V6,6),Assam

(V9,1),Secure(V4,4),26
th
(V5,4),

Rank(V8,2)

Delhi(V1),World(V7),

Power(V10),By(V11),xyz(V12)

Y Other (W3) University(W2),In(W6),Assam

(W10),Secure(W4),26
th
(W5),

Rank(W9)

Guwahati(W1),All(W7),India

(W8)Power(W11),By(W12),

xyz(W13)

Step 2: (r=2)
 Mapped Candidates Removed and Unmappable

X Other(V3,1),
University

(V2,5)

In(V6,6),Assam(V9,1),Secure

(V4,4), 26
th
(V5,4), Rank(V8,2)

Delhi(V1),World(V7),

Power(V10),By(V11),xyz(V12)

Y Other(W3),

University

(W2)

In(W6),Assam(W10),Secure(W4),

26
th
(W5), Rank(W9)

Guwahati(W1),All(W7),

India(W8), Power(W11),

By(W12),xyz(W13)

Step3(A): (r=3)
 Mapped Candidates Removed and Unmappable

X Other(V3,1),University(V2,

5), In(V6,6)

Assam(V9,1) Delhi(V1),World(V7),Power(V10),

By(V11), xyz(V12), Secure(V4),

26
th
(V5), Rank(V8)

Y Other(W3),University(W2),

In(W6)

Assam(W10) Guwahati(W1),All(W7),India(W8),

Power(W11), By(W12),xyz(W13),

secure(W4),26
th
(W5), Rank(W9)

Step 3(B): (r=3)
 Mapped Candidates Removed and Unmappable

X Other(V3,1),University

(V2,5),Secure(V4,4)

In(V6,6),Assam

(V9,1),26
th
(V5,4),

Rank(V8,2)

Delhi(V1),World(V7),

Power(V10),By(V11),

xyz(V12)

Y Other(W3),University

(W2),Secure(W4)

In(W6),Assam

(W10),26
th
(W5),

Rank(W9)

Guwahati(W1),All(W7),

India(W8),Power(W11),

By(W12),xyz(W13)

Step 4: (r=4)
 Mapped Candidates Removed and Unmappable

X Other(V3,1),University

(V2,5), Secure(V4,4),

26
th
(V5,4)

In(V6,6),Assam

(V9,1),Rank(V8,2)

Delhi(V1),World(V7),

Power(V10),By(V11),xyz(V12)

Y Other(W3),University

(W2),Secure(W4),

26
th
(W5)

In(W6),assam(W10),

Rank(W9)

Guwahati(W1),All(W7),India(W8

)Power(W11),By(W12),xyz(W13)

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

77

Step5: (r=5)
 Mapped Candidates Removed and Unmappable

X Other(V3,1),University

(V2,5), Secure(V4,4),26
th

(V5,4), In(V6,6)

Assam(V9,1) Delhi(V1),World(V7),Power(V10),

By(V11), xyz(V12), Rank(V8)

Y Other(W3),University(W2),

Secure(W4), 26
th
(W5),

In(W6)

Assam(W10) Guwahati(W1),All(W7),India(W8),

Power(W11),By(W12),xyz(W13),

Rank(W9)

Step 6: (r=6)
 Mapped Candid

ates

Removed and Unmappable

X Other(V3,1),University(V2,5),

Secure(V4,4), 26
th
(V5,4),In(V6,6),

Assam(V9,1)

 Delhi(V1),World(V7),Power(V10),

By(V11), xyz(V12), Rank(V8)

Y Other(W3),University(W2),

Secure(W4), 26
th
(W5), In(W6),

Assam(W10)

 Guwahati(W1),All(W7),India(W8),

Power(W11),By(W12),xyz(W13),

Rank(W9)

Figure 4. Example of the recursive AMCSI algorithm functionality. r stands for
the recursion level, X and Y list vertices of graphs G1 = [V,E,n] and G2 = [W,
F,m], respectively. Mapped vertices are aligned vertically in ‘mapped’ cells.

Different patterns of graph vertex symbols denote different vertex labels. Only
one branch of the recursion tree, starting from mapping (v3,w3), is shown, and
only connected common subgraphs are considered. At minimal requested size

of CSI, n0 = 5, the last mapping on the recursion level r = 3 in sub-branch A
(highlighted by shaded background) is terminated by AMCSI because the

current size of graph G1 plus the number of candidate matchings on level r = 3,
sub-branch A, is less then n0, see text for more details.

Figure 5. The MCS Obtained

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

78

6. Calculation of the Distance between the Two Graphs

To calculate the distance between the two graphs by using the above mentioned (Eq.1)

distance measure which was proposed by us [1], we must have the numerical values of the

following:

(i) max(
SOM

d
±

MCS(G1,G2))

(ii) max(∑d
±

(G1),(∑d
±

(G2))

To calculate the distance between the two graphs by using the prevalent distance measure

as stated below

1 2

1 2

1 2

(,)
(,) 1

max(,)
MCS

mcs G G
dist G G

G G
 

 …(3)

we must have the numerical values of the following:

(iii) max(|G1|,|G2|)

(iv) |MCS(G1,G2) |

From Figure 4 and 5 we obtain:

Table 1. Calculation of the Distance between G1 and G2

Method of

Calculation

(i) (ii) (iii) (iv) distMCS (G1,G2)

Proposed 21 38 0.44737

Prevalent 6 13 0.53846

From Table 1 it is clear that the distance between two web pages (i.e. graphs G1 and G2) is

found to be grater (|Prevalent - Proposed|=0.09103) in case of the prevalent method. The two

web pages have an actual difference of only 3 words out of a maximum of 13 significant

words of the second web page (represented by graph G2). Also, it is seemed to be obvious that

the two web pages are of very similar kind.

Hence it may be inferred that the proposed method for calculating the difference between

graphs representing web documents is capable of yielding batter result (16.9% approx in case

of the above example) then the prevalent one. However to establish this inference statistically,

we must perform experiments in large scale which is not possible for us within the scope of

our research. In one of our article [1] we showed this usefulness by arbitrarily determining the

different numerical values required to calculate the distance. In this article we are considering

the same example to calculate the distance by following a concrete procedure and are getting

slight different but more desired result.

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

79

7. Median of a Set of Graphs

To form clusters from a set of data items it is necessary to compute the distance between

data items and cluster centers. In our approach it follows that the cluster centers (centroids)

must also be graphs. Therefore, we have to compute the representative "centroid" of a cluster

as the median graph of the set of graphs in that cluster (Eq. 4).

The median of a set of graphs S is a graph g  S (S = {G1,G2,..., Gn}) such that g has the

lowest average distance to all elements in S [8]:

1

1
arg min (,)

S

i
s S

i

g dist s G
s 



 
   

 


 … (4)

since g  S, it is straightforward (and relatively inexpensive) to simply compute the average

distance to all graphs for each graph in S.

8. Conclusion

In this article we have introduced a new approach for graph distance measure which is

useful to cluster data sets (in this case web documents) when utilizing more descriptive

graphs in lieu of the usual case of vector representations. Our first contribution is presenting

an efficient model by which web document content can be modeled as graphs. These graph

representations retain information that is usually lost when using a vector model, such as term

order and document section information. We have demonstrated how with the composite

model of graph representation, we can perform the graph similarity task in O(n
2
) time ,n

being the number of nodes. In general, graph similarity using maximum common subgraph is

an NP-complete problem, so this is an important result that allows us to forgo sub- optimal

approximation approaches and find the exact solution in polynomial time.

While AMCSI has been designed for use in web document management, the algorithm is

conceptually general and is directly applicable to any graph-based similarity application. The

new algorithm presented in this paper is highly recommended for applications where we are

faced with large labeled and directed graphs. By contrast, the proposed algorithm is not

suitable to be applied to problems dealing with unlabeled, undirected, highly disjoint graphs.

The experimental verification remains for future work on the algorithm.

Acknowledgments

The author would like to extend his gratitude to Prof. H.K. Baruah, Gauhati University for

his valuable support in preparing this research article. The author would also like to thank the

reviewers for their helpful comments and suggestions for improving the manuscript.

References:

[1] K. K. Phukon, “A Composite Graph Model for Web Document and the MCS Technique”, International

Journal of Multimedia and Ubiquitous Engineering, vol. 7, no. 1, SERSC, (2012) January.

[2] K. K. Phukon, “The Composite Graph Model for Web Document and its Impacts on Graph Distance

Measurement”, International Journal of Energy, Information and Communications, vol. 3, Issue 2, SERSC,

(2012) May.

[3] E. B. Krissinel and K. Henrick, “Common subgraph isomorphism detection by backtracking search”, Softw.

Pract. Exper., vol. 34, (2004), pp. 591–607 (DOI: 10.1002/spe.588).

International Journal of Advanced Science and Technology

Vol. 51, February, 2013

80

[4] G. Levi, “A note on the derivation of maximal common subgraphs of two directed or undirected graphs”,

Calcolo., vol. 9, (1972), pp. 341–354.

[5] C. Bron and J. Kerbosch, “Algorithm 457—finding all cliques of an undirected graph”, Communications of

the ACM, vol. 16, (1973), pp. 575–577.

[6] J. McGregor, “Backtrack search algorithms and the maximal common subgraph problem”, Software—

Practice and Experience, vol. 12, (1982), pp. 23–34.

[7] J. R. Ullman, “An algorithm for subgraph isomorphism”, Journal of the Association of Computers and

Machines, vol. 23, no. 1, (1976), pp. 31–42.

[8] A. Schenker, H. Bunke, M. Last, A. Kandel, “Graph Theoretic Techniques for Web Content Mining”, Series

in Machine Perception and Artificial Intelligence, vol. 62, Copyright © 2005 by World Scientific Publishing

Co. Pte. Ltd., (2005).

Author

Kaushik Kishore Phukon, Assistant Professor (IT), Department of

Commerce, Gauhati University, India received MCA degree from

Jorhat Engineering College (Under Dibrugarh University), India in

2009. He is currently pursuing doctoral research at Department of

Computer Science, Gauhati University, Assam, India. His research

interests include representation of web documents using graphs and

graph based clustering and classification.

