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Abstract 

This study seeks to focus on Bayesian and non-Bayesian estimation for the shape 

parameter of the Kumaraswamy distribution under type-II censored samples. Maximum 

likelihood estimation and Bayes estimation have been obtained using asymmetric loss 

functions. Posterior predictive distributions along with posterior predictive intervals have 

been derived under simple and mixture priors. Elicitation of hyper-parameter through prior 

predictive approach has also been discussed. As analytical comparison is difficult, so 

comparisons among these estimators have been made using Monte Carlo simulation study 

and some interesting comparisons have been presented. The findings of the study indicate that 

the Bayes estimation is superior to classical estimation under the suitable prior. 
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1. Introduction 

Kumaraswamy [1] proposed a two-parameter Kumaraswamy distribution on (0, 1), and 

denoted by Kum (α, β ). Its cumulative distribution function is given by  

         (1) 

where  and are the shape parameters. Equation (1) compares extremely favorable 

in terms of simplicity with the Beta cdf which is given by the incomplete beta function ratio. 

It has many of the same properties as the beta distribution but has some advantages in terms 

of tractability. Its density is:  

        (2) 

This distribution is applicable to many natural phenomena whose outcomes have lower and 

upper bounds, such as the height of individuals, scores obtained on a test, atmospheric 

temperatures, hydrological data such as daily rain fall, daily stream flow, etc.  Kumaraswamy 

[1] and Ponnambalam, et al., [2] have pointed out that depending on the choice of the 

parameter  and  Kumaraswamy’s distribution can be used to approximate many 

distributions, such as uniform, triangular, or almost any single model distribution and can also 

reproduce results of beta distribution. Nadarajah [3] has discussed that the Kumaraswamy 

distribution is a special case of the three parameter beta distribution. The basic properties of 

the distribution have been given by Jones [4]. Garg [5] considered the generalized order 

statistics from Kumaraswamy distribution.  

Censoring is of supreme importance in reliability studies. It has many types each of whom 
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can be used in analysis of different kinds of data representing various real life circumstances. 

The situation may arise when complete information regarding all the units in the sample 

cannot be obtained. For example, the measuring instrument to be used, may not be capable of 

measuring the items above or below a particular point or the measurement of units above or 

below a certain point may not be of interest. For illustration, suppose it is desired to estimate 

the average life of electric bulb produced in a certain factory. The simple method would be to 

take a certain number of bulbs at random and burn them out to get the required number of 

bulbs for analysis. Instead of wasting the bulbs it might be decided to stop the experiment 

when a fixed number have burnt out. The random sample hence obtained would be a censored 

sample Type II.  Further, the biologists are often required to perform experiments on animals 

(say, rabbits or mice) to determine the effect of certain drugs on them. A fixed number of 

animals are exposed to the drug for this purpose and their reaction times are observed. 

Experience shows that some animals take an extremely long time to react. If instead of 

waiting until all animals have reacted, the experiment is stopped when a fixed number have 

reacted it will be called type ii censoring, which may result in economical experimentation. 

Wingo [6] has considered Maximum likelihood estimation of Burr XII distribution under type 

II censoring. Howlader and Hossian [7] investigate the Bayesian estimation and prediction for 

Rayleigh based on type II censored data. Singh, et al., [8] have discussed estimation of the 

parameter for exponentiated -Weibull family under type-II censoring scheme. Parakash [9] 

studied the Bayesian shrinkage approach in Weibull under Type II censored data. Gholizadeh, 

et al., [10] have studied the Kumaraswamy distribution under progressively type II censored 

data.  
The Kumaraswamy distribution does not seem to be very familiar to the statisticians and 

has not been investigated in much detail under the Bayesian paradigm. The purpose of this 

study is to obtain the estimates for the parameter assuming different asymmetric loss 

functions. Our main object is to study the classical and Bayes estimation procedures for the 

shape parameter of the Kumaraswamy distribution based on type II censored sample. The 

results obtained in this paper can be generalized to the estimation of the Kumaraswamy 

distribution based on complete sample.  

The layout of the paper is as follow. In Section 2, classical estimation of the parameter   

based on type II censored sample has been discussed. Loss function and the Bayesian 

estimator under informative priors have been derived in Section 3 and 4 respectively. Method 

of Elicitation of the hyper-parameters via prior predictive approach has been discussed in 

Section 5. Posterior predictive distribution and posterior predictive intervals have been 

derived in Section 6. Simulation study has been performed in Section 7. Some concluding 

remarks have been given in the last section. 
 

2. Classical Estimation 

This section covers the classical estimation of the shape parameter of the Kumaraswamy 

distribution. The estimators along with their mean square errors (MSEs) have been derived 

under maximum likelihood estimation (MLE) and uniformly minimum variance unbiased 

estimation (UMVUE). 

2.1. Maximum Likelihood Estimation 

In the failure censoring scheme, the n experimental units are placed under observation in a 

typical life test and the number of uncensored observations r  is predetermined. The data 

(collected) consist of observations  are the ordered lifetimes of these life 
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testing items, this means that we have no information about survival item  except that 

their lifetimes are greater than . The experiment is terminated when the  item fails and 

remaining  items are regarded as censored data. The likelihood function for 

 failed observations, as given by Cohen [11], is:  

      (3) 

Where  

  and  

. 

    (4) 

After some algebra, we obtain the maximum likelihood estimate (MLE)   as following 

 
 

where  

 

The MSE for MLE of  . is:  

   

Here, we obtain the uniformly minimum variance unbiased estimator (UMVUE) of . 

Since family of density (2) belongs to an exponential family, therefore statistic   is a 

complete sufficient statistic for . For detail see Gupta and Kundu [12]. Hence, the UMVUE 

of is:  

 
And 

 
 

3. Loss Function 

A loss function represents losses incurred when we estimate the parameter by  . 

A number of asymmetric loss functions are proposed for use, among these, we use the 

following three loss functions. 
 

3.1. Degroot Loss Function (DLF) 

DeGroot [13] discussed different types of loss functions and obtained the Bayes estimates 

under these loss functions. Here is one example of the asymmetric loss function defined for 

the positive values of the parameter. If   is an estimate of  then the DeGroot loss function is 

defined as: 
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The Bayes estimator and posterior risks under DLF can be derived by using following 

formulae:  

  

 

 

3.2. Linex Loss Function (LLF) 

The linear-exponential loss function (LINEX) has been introduced by Varian [14], and 

various authors as (see Basu and Ebrahimi [15] and Soliman [16-17]) have used this loss 

function in different estimation problems. Under the assumption that the minimal loss occurs 

at  the Linex loss function for  can be expressed as  

 

Without loss of generality, we assume that  Under the Linex loss function the Bayes 

estimator and posterior risk are defines as: 

 

 
 
3.3. General Entropy Loss Function (GELF)  

The linex loss function is suitable for the estimation of the location parameter but not for 

the estimation of the scale parameter and other parametric functions. Calabria and Pulcini 

[18] suggested the general entropy loss function (GELF) for estimation these quantities which 

can be defined it as: 

 
which has a minimum at  Without loss of generality, we assume that  This loss 

is a generalization of the entropy loss function that has been used by several authors taking 

the shape parameter   This general version allows different shapes of loss function 

when  and for  i.e. a positive error causes more serious consequences than a 

negative error. The Bayes estimator of  under the general entropy loss is 

 

Provided that   exists and is finite. The posterior risk under GELF can be defined 

as: 

 
 

4. Bayesian Analysis 

This section includes the derivations of the expressions for the shape parameter of the 

Kumaraswamy distribution under different informative priors using DLF, LLF and GELF. 
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4.1. The Posterior Distribution and Estimators under Inverse Levy Prior 

It is assumed that the prior distribution of   is Inverse Levy distribution with 

hyperparameter ‘ ’ which is given below; 

       

 (5) 

Now the posterior distribution of given data is: 

 
          (6) 

  

   (7) 

This is the density kernel of the Gamma distribution with parameters and 

 Where is defined above. 

 

4.1.1. Estimation of : The Bayes estimator  of  relative to DeGroot loss function 

is given by: 

 
 

And posterior risk is:                                          

The Bayes estimator  of  relative to Linex loss function is given by: 

 
And posterior risk under Linex loss function is given by: 

 
The Bayes estimator  of  relative to GELF is given by: 

 
And posterior risk under GELF given by: 
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Where    is defined as digamma function. 

 

 
4.2. The Posterior Distribution and Estimators under Gamma Prior 

Under the assumption that the prior distribution of   is Gamma distribution with shape 

and scale parameter ‘a’ and ‘b’ respectively and it has the pdf  

      (8) 

The posterior distribution of given data is: 

 

    (9) 

which is the density kernel of Gamma distribution with parameters and 

 

 

4.2.1. Estimation of : The Bayes estimator  of  relative to DeGroot loss function 

is given by: 

 
 

And posterior risk is:                                          

 

The Bayes estimator  of  relative to Linex loss function is given by: 

 

And posterior risk under Linex loss function is given by: 

 

The Bayes estimator  of  relative to GELF loss function is given by: 

 

And posterior risk under GELF given by: 

 

Where       is defined as digamma function. 

  



International Journal of Advanced Science and Technology 

Vol. 51, February, 2013 

 

 

45 

 

4.3. The Posterior Distribution and Estimators under Mixture of Gamma and Jeffreys Prior 

The mixture of Gamma and Jeffreys prior is defined as: 

     (10) 

The posterior distribution of given data is: 

     (11) 

 

4.3.1. Estimation of : The Bayes estimator  of  relative to DeGroot loss function 

is given by: 

 
 

And posterior risk 

 

 

 

The Bayes estimator  of  relative to Linex loss function is given by: 

 
 

And posterior risk under Linex loss function is given by: 
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The Bayes estimator  of  relative to GELF loss function is given by: 

 

And posterior risk under GELF given by: 

 

Where     is defined as digamma function. 

 

5. Elicitation of Hyper-parameter 

Elicitation is the process of talking out the expert knowledge about some unknown quantity 

of interest, or the probability of some future event, which can be used to supplement any 

numerical data we may have. If the expert in question does not have a statistical background, 

as often happens, translating their beliefs into a statistical form suitable for the use in our 

analyses can be a challenging task as described Dey [19]. Anyhow, prior elicitation is an 

important component of Bayesian statistics and yet to be invented. In any statistical analysis 

there will typically be some form of background knowledge available in addition to data at 

hand. There are various methods of elicitation in literature. Here we have used the method 

based on the prior predictive distribution, which is developed by Aslam [20].  
 

5.1. Method of Elicitation Through Prior Predictive Probabilities 

The prior predictive removes the uncertainty in the parameters to reveal a distribution for 

the data point only. We suppose that prior predictive probabilities satisfy the laws of 

probability because this law ensure the expert would be consistent in eliciting the 

probabilities and some inconsistencies may arise which are not very serious. A function 

 is defined in such a way that the hyper-parameters a₁, and a₂ are to be chosen by 

minimizing this function 

 

where  denote the prior predictive probabilities characterized by the hyper-parameters 
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a₁, and a₂ and p(n₁₂) denote the elicited prior predictive probabilities. If the prior predictive 

distribution is symmetrical the hyper-parameters a₁, and a₂ are equal  so above 

equation becomes where  and are the symmetrical prior predictive 

probabilities characterized by the hyper-parameters c and the elicited prior predictive 

probabilities respectively. By solving the above equations simultaneously by applying ‘PROC 

SYSLIN’ of the SAS package for eliciting the required hyper-parameters. 

 

5.2. Elicitation through Prior Predictive Probabilities Assuming Inverse Levy Prior 

The prior predictive distribution is defined as: 

      (12) 

Using (5) and (7) the prior predictive distribution can be written as: 

 

After simplification         

     (13) 

By the mentioned method of elicitation we obtain the following value of hyper-parameter 

 

 

5.3. Elicitation through Prior Predictive Probabilities Assuming Gamma Prior 

The equation of prior predictive using Gamma prior is: 

 

   (14) 

Which simplifies to:  

     (15) 

Hence the obtained values of hyper-parameters  

 

5.4. Elicitation Assuming Mixture of Gamma and Jeffreys Priors 

The equation of prior predictive using Gamma prior is: 

  

   (16) 

According to mentioned method the elicited values of hyper-parameters  
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6. Posterior Predictive Distributions 

The predictive distribution contains the information about the independent future random 

observation given preceding observations. Bansal [21] have given a great detailed discussion 

about the posterior predictive distribution. 

 

6.1. Posterior Distribution and Posterior Predictive Intervals Assuming Inverse Levy Prior 

The posterior predictive distribution of the future observation  is: 

     (17) 

 

    (18) 

 

And posterior predictive intervals are 

 

     (19) 

 

 
 

6.2. Posterior Distribution and Posterior Predictive Intervals Assuming Inverse Levy Prior 

The posterior predictive distribution of the future observation  is: 

 

     (20) 

And predictive intervals are: 
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6.3. Posterior Distribution and Posterior Predictive Intervals Assuming Mixture of 

Gamma and Jeffreys Prior 

The posterior predictive distribution of the future observation  is: 

 

  

And predictive intervals are: 

 

 

 
 

7. Simulation Study 

In order to assess the statistical performances of these estimates, we conducted a 

simulation study. The risks using generated random samples of different sizes are computed 

for each estimator. The behavior of the different estimators under different censoring schemes 

and prior distribution has been examined. The term different censoring scheme means 

different values of  and   We considered six censoring scheme. For all the censoring 

schemes, we have used  and    We have taken three 

informative priors and the elicited values of the hyper-parameters have been utilized. Inverse 

transformation method has been used for data generation. As one data set does not help to 

clarify performance of the estimator, so we have computed the average Bayes estimates along 

the corresponding posterior risks based on 10,000 data generation replications. In order to 

draw comparisons, we have computed MLEs, and UMVUE estimates. The results are 

reported in Table 1-23. 
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Table 1. B.Es and P.Rs (given in parentheses) under DeGroot Loss Function 
with True Value of  

 

 
Table 2. B.Es and P.Rs (given in parentheses) using DLF under mixture prior 

with true value of  

 

 
Table 3. B.Es and P.Rs (given in parentheses) using LLF under inverse levy 

prior for  
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Table 4. B.Es and P.Rs (given in parentheses) under Linex loss function with 

true value of  

 

 

Table 5. B.Es and P.Rs (given in parentheses) under Linex loss function for  

 

 

 
Table 6. B.Es and P.Rs (given in parentheses) under Linex loss function for  
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Table 7. B.Es and P.Rs (given in parentheses) under GELF with true value of 

 

 

 
Table 8. B.Es and P.Rs (given in parentheses) under GELF with true value of 

 

 

 

Table 9. B.Es and P.Rs (given in parentheses) under GELF with true value of 
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Table 10. B.Es and P.Rs (given in parentheses) under GELF  with true value of 

 

 

 
Table 11. B.Es and P.Rs (given in parentheses) under GELF  with true value of 

 

 

 

Table 12. B.Es and P.Rs (given in parentheses) under GELF  with true value of 
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Table 13. B.Es and P.Rs (given in parentheses) under GELF for  

and =0.4. 

 

 

Table 14. B.Es and P.Rs (given in parentheses) under GELF for  

and =0.6. 

 

 

Table 15. B.Es and P.Rs (given in parentheses) under GELF for   

and =0.4. 
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Table 16. B.Es and P.Rs (given in parentheses) under GELF for  

and =0.6. 

 

 

Table 17. B.Es and P.Rs (given in parentheses) under GELF for  

and =0.4. 

 

 

Table 18. B.Es and P.Rs (given in parentheses) under GELF for  

and =0.6. 
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Table 19. MLEs and UMVUE Estimates and the corresponding MSE (given in 

parentheses) for  

 

 

Table 20. 95% Posterior Predictive Intervals for   with true value of  

 

 

Table 21. 95% Posterior Predictive Intervals for   with true value of  

 

 

Table 22. 95% Posterior Predictive Intervals for   with true value of 
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Table 23. 95% Posterior Predictive Intervals for   with true value of 

 

 
 

8. Conclusion 

The findings of the simulation study are pretty interesting. The parameter has been under 

estimated for majority of the cases. The tendency of under estimation is more severe under 

mixture prior based on DLF and GELF. Similarly the increased true parametric values impose 

a negative impact on the convergence of the estimates. However, it can be observed that by 

increasing the sample size, the convergence of the estimated values toward the true 

parametric values tend to increase for each case. On the other hand, the amounts of posterior 

risks, based on each prior and loss function tend to decrease by increasing the sample size. It 

indicates that the estimators are consistent.  It is interesting to note that the posterior risks 

under DLF and GELF based on inverse levy and gamma prior are independent of the choice 

of true parametric values. While in case of mixture prior for all loss functions and LLF under 

each prior, the amounts of posterior risks inflate for larger choice of true parametric values. 

Therefore, the extremely larger values of the parameters under these estimators may not be 

estimated with higher efficiency. However, the estimates under DLF and GELF based on 

inverse levy and gamma prior will be equally efficient for all choices of the parametric values. 

The bigger values of the mixing hyper-parameter of the mixture prior have a positive impact 

on the performance of the mixture prior.  

The performance of the DLF and GELF is the best under inverse levy prior, while LLF 

provides top efficiency under mixture prior. Similarly, performance of inverse levy and 

gamma is superior under GELF, while the mixture prior works better under LLF. In case of 

LLF the improved results are observed for c = 1. And for GELF the smaller (absolute) choice 

of the shape parameter (p) of the loss function gives more precise estimates. The magnitude 

of risks under LLF and GELF are in close competition for smaller values of the parameter. 

However, when we increase the true parametric value the efficiency of GELF over LLF 

becomes evident. It is also observed that for the fixed n as r increases the performance of the 

concerned estimator becomes better in terms of the posterior risks in all the cases with an 

exception for linex loss function. Hence, it can be concluded that in order to estimate the 

smaller values of the shape parameter of the Kumaraswamy distribution the combination of 

LLF and mixture prior can be preferred. While in case of higher values of the parameter, the 

GELF under inverse levy prior can effectively be employed.  

The limits for 95% posterior predictive intervals have been presented in tables 20-23. From 

these results, it can be observed that precision of the posterior predictive intervals is directly 
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proportional to sample size and it is inversely proportional to true parametric values. The 

posterior predictions tend to be more specific under inverse levy prior. 

It can also be assessed that under informative priors for a proficient choice of the 

parameters of the loss functions, the Bayesian inference has clear superiority over the 

frequentist one. The MLEs and UMVUE’s are also under estimated but degree of 

underestimation is more in case of UMVUE. Furthermore, the relative efficiency of UMVUE 

is higher than that of MLE. 
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