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Abstract 

Clustering has an extensive and long history in a variety of scientific fields. Several recent 

studies of complex networks have suggested that the clustering analysis on networks has been 

an emerging research issue in data mining due to its variety of applications. Many graph 

clustering algorithms have been proposed in recent past, however, this clustering approach 

remains a challenging problem to solve real-world situation. In this work, we propose an 

aspiration criteria based graph clustering algorithm using stochastic local search for 

generating lower cost clustering results in terms of robustness and optimality for real-world 

complex network problems. In our proposed algorithm, all moves are meaningful and 

effective during the whole clustering process which indicates that moves are only accepted if 

the target node has neighbouring nodes in the destination cluster (moves to an empty cluster 

are the only exception to this instruction). An adaptive approach in our method is in 

incorporating the aspiration criteria for the best move (lower-cost changes) selection when 

the best non-tabu move involvements much higher cost compared to a tabued move then the 

tabued move is permitted otherwise the best non-tabu move is acceptable. Extensive 

experimentation with synthetic and real power-law distribution benchmark datasets show that 

our algorithm outperforms state-of-the-art graph clustering techniques on the basis of cost of 

clustering, cluster size, normalized mutual information (NMI) and modularity index of 

clustering results. 

  

Keywords: Cost of clustering, Cluster size, Normalized Mutual Information (NMI) and 
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1. Introduction 

Cluster analysis of graphs is a fundamental data analytic technique which explores 

mathematical modelling of diverse problems related to nature and society. For creating the 

graph clustering phenomena successful, different types of algorithms and methods have 

emerged over the years and these are often encountered into many applications such as data 

mining [1], machine learning [2], complex network analysis [3, 4], image segmentation [5, 6], 

information retrieval [7], bioinformatics [8, 9], study of social networks [10], continues to be 

employed in the field of sociology to explore social interactions, the study of biochemical 

networks [11, 12], biological neural networks [13, 14], and transport and communication 

networks. Although many successful graph clustering algorithms have been proposed in the 

recent decades, clustering is till now a tough problem. The notion of clusters is strongly 

dependent on the situation as well as the purpose of clustering to deal with all real-world 

cluster analysis problems. The essential problems [15] of a graph clustering algorithm are 



International Journal of Advanced Science and Technology 

Vol. 51, February, 2013 

 

 

12 

 

identified and stated as follows. It is data driven to choose appropriate measure of similarity 

or dissimilarity between data points. It is a challenging task to select the best one among 

diverse measures. Considering the conceptual viewpoint of a cluster, there exist widely 

acceptable definitions of a cluster but it is difficult to develop strong fundamental framework 

of a concrete algorithm. However, these concepts are not capable of giving much impact to 

produce a robust and optimal algorithm. Optimality of an algorithm is mainly determined by 

the quality of clusters and it is computed by measuring the mutual information sharing 

between clusterings. The quality can be hampered by background noise or outliers. Therefore, 

it is necessary to eliminate or to distinguish them from actual clusters, to achieve optimal and 

robust clustering. Many of the clustering algorithms, which are built on the conception of 

minimizing the cost of error iteratively, suffer from getting trapped in local minima. The 

hyper parameters such as the kernel width in spectral clustering are not easy to tune manually 

[16]. An overview of graph-based clustering algorithms that are related to our work is 

stipulated herein. Widespread literature survey for clustering can be found in [17, 18]. 

Commonly, the abstract knowledge of graph based clustering algorithms comprises of three 

major steps. 

(1) Create an underlying graph to derive a geometric structure among data points.  

(2) Remove few inconsistent edges according to some important instructions.  

(3) Recognize clusters from resulting subgraphs. 

The basic concept of graph clustering is the separation of sparsely connected dense 

subgraphs from each other. In the recent past, various other graph clustering algorithms came 

into the field like Restricted Neighbourhood Search Clustering (RNSC) [19], Markov 

clustering (MCL) [20], Super Paramagnetic Clustering (SPC), Genetic Algorithm, Molecular 

Complex Detection (MCODE), Local Clique Merging Algorithm (LCMA), etc. RNSC, which 

is a cost based clustering method and performs local search iteratively to obtain optimum 

clustering in an efficient way. RNSC is a stochastic technique which uses restricted 

neighbourhood search concept. It acts like a metaheuristic technique as for example tabu 

search, described in [21] and can be used in various search space schematics. Tabu search 

concept was first proposed by Glover in [22] and is described in detail in [23]. It is a meta-

heuristic, one that guides local search heuristics. The idea behind it is to allow cost-based 

local search algorithms to enter, then leave local minima by preventing the search from 

retracing its steps and settling in a local minimum. RNSC is also known as Variable 

neighbourhood search [24]. A restriction is imposed in the neighbourhood for the current 

clustering while doing iterative local search. The main goal of this algorithm is to find the 

best cost clusterings (lower cost) from the set of clusterings of a graph by assigning some cost 

functions (Naive cost function and scaled cost function). The memory requirement for RNSC 

is O (n^2). The complexity of a move in the naive cost function is O (n), which is the size of 

the restricted neighbourhood of a move M. A graph-clustering algorithm (MCL) 

incorporating the idea of performing a random walk on the graph to identify the more densely 

connected subgraphs is presented in van Dongen [20]. MCL is an efficient clustering method 

in weighted graphs, based on the prototype of stochastic flow simulation technique. In this 

technique, clusters (a natural grouping of densely flow-connected vertices) are obtained by 

using two operators: flow expansion and inflation. MCL technique performs well for sparse 

graphs. The expansion step of MCL has complexity O (n^3), assuming some small bound on 

the expansion exponents ei. The inflation has complexity O (n^2). The idea of random walks 

is also used in [25], but only for clustering geometric data. Obviously, there is a close 

connection between graph clustering and the classical graph problem minimum cut. In the 
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case of weighted graphs, the simple paradigm gains additional ambiguities, namely, the 

interpretation of sparse, yet heavy, or dense, yet light, subgraphs. These potential groups fulfil 

the density or weight criterion, while failing the other. Thus their relevance as clusters is 

questionable or at least depends on the application. Along the lines of [26] using unweighted 

graphs, we concentrate on indices and algorithms that focus on the relation between the 

number of intracluster and intercluster edges. In [27] some indices measuring the quality of 

graph clustering are discussed. Conductance, an index concentrating on the intracluster edges 

is introduced and a clustering algorithm that repeatedly separates the graph is presented. A 

purely graph-theoretic approach using this connection, more or less directly, is the recursive 

minimum cut approach presented in [28]. Hartuv and Shamir, among others, proposed a 

clustering model based on high cluster connectivity [29]. Very recently, the physics 

community presented techniques based on centralities and statistical properties. For example, 

an algorithm that iteratively prunes edges based on betweenness centrality was introduced as 

a clustering technique in Newman and Girvan [30]. A related quality measure named 

modularity was presented in [31]. It evaluates the significance of clustering with respect to 

the graph structure by considering a random rewiring of the edge set. Nascimento and Eades 

applied simulated annealing to graph clustering, but the focus of their work was the 

integration of user participation in graph clustering algorithms [32]. In [33], Hoos and Stutzle 

compare systematic search algorithms with stochastic local search algorithms for 3-SAT, the 

propositional satisfiability problem with three literals in each clause. 

Many complex systems in nature and society can be represented in terms of networks or 

graphs. Networks are universal in nature and society [34], defining various complex systems, 

such as the society, a network of individuals linked by various social links [35]; the Internet, a 

network of routers connected by various physical connections [36]; the world wide web, a 

virtual web of documents connected by uniform resource connectors [37] or the cell, a 

network of substrates connected by chemical reactions [38]. Particularly, it has been found 

that many networks of scientific interest are possessed scale-free property [39], that is, the 

probability that a randomly selected node has exactly k links decays as a power law, 

following  

P (k) ∼ k  , (1) where  is the degree exponent. 

The list of recognized scale-free networks now consist of the world wide web, the Internet, 

the cell, the web of human sexual contacts, the language, or the web of actors in Hollywood, 

genetic networks, ecological networks, information engineering, citation networks, most of 

which appear to have degree exponents between two and three. 

In this work, by introducing novel formulation of cost measurement we present an 

aspiration criterion based graph clustering algorithm that improves few objectives related to 

graph clustering. It is designed as an adaptive way that can alleviate the aforementioned 

problems. Mainly, the aim of this work is to improve the performance of RNSC algorithm 

through detection of its weaknesses. Performance evaluation of the proposed technique is 

processed using a range of synthetic and real power-law distribution benchmark dataset. The 

widespread experiments on these datasets demonstrate that the proposed technique is 

producing better clustering effectively in terms of robustness and optimality. 
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Figure 1. Power-law Graph with 200 Nodes 
 

2.  Background  
 

2.1 Fundamentals of Restricted Neighborhood Search Clustering (RNSC) 

RNSC is a local search meta-heuristic technique which is used to minimize the cost of 

clustering in the solution space. According to Stijn van Dongen, the vertex-wise performance 

criteria for clustering of unweighted graphs as the sum of the coverage measure taken on each 

vertex. In RNSC, a simple integer-valued cost function (called the naive cost function) is used 

as a pre-processor to produce initial clustering results on a graph and after that to evaluate the 

low-cost clustering result, a  more expressive (but less efficient) real-valued cost function 

(called the scaled cost function) is applied. The scaled function tries to optimize the output 

from naive function and reach to the global optimal solution. For a clustering C on an un-

weighted graph G (V, E) in which |V| = n, more expressive scaled coverage measure is in the 

following expression where, N (v) is the open neighbourhood of v.  
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The scaled cost function is expressed as in Eq. (4).  
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Cost functions for weighted graphs: If Wu, v   is the weight of the edge between vertices u 

and v. αv is the cost numerator for v in a simple unweighted graph and that can be transformed 

to achieve v , the cost numerator for v in a weighted graph. Define v   as follows. 

                                            
, ,(1 ).

v v

v u v u v

u C u C

w w
 

   
                                                     (4) 

                                               
| ( ) |v v

v V

N v C


 
                                                                    (5)

 



International Journal of Advanced Science and Technology 

Vol. 51, February, 2013 

 

 

15 

 

With the new cost numerator 
v   defined in Eq. (4), the scaled cost function may be 

written as in Eq. (6). 
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2.1.1 Limitations of RNSC 

RNSC is an effective technique capable of solving many graphs clustering problems in the 

last decade. It provides suitable clusterings for some problems even better than MCL. But 

there are few fundamental weaknesses found out in this method. These limitations are divided 

into two categories; lack of effectiveness and fragmentation of output respectively.  
 

2.1.1.1 Lack of Effectiveness 

i) Complete re-generation of Candidate list. 

ii) Moves for a node to cluster with no neighbouring nodes in it are also included. These 

moves are costlier than moving it to an empty cluster.  

iii) The cost function evaluation in RNSC is not exact in their measure and a large 

number of moves are required during the computation, out of which few moves 

are meaningful. 

iv) Cost scheme ignores the effect of a move on other nodes of the clusters involve on 

the move.  

v) Costlier Scaled cost computation.  
 

2.1.1.2 Fragmentation of Output 

Tendency of RNSC is yielding too many clusters. For example, S. cerevisiae PPI network 

originating from Von Mering, et al., (2002) [40] comprising 11000 interactions with 2401 

nodes (proteins) is tested on RNSC and 1155 clusters produced by RNSC in that case. From 

that scenario it is obvious that the method produces unnecessarily many clusters. 
 

2.2 Aspiration Criteria 

It is a rule for overriding the tabu restrictions at various levels to enhance the flexibility in 

tabu search. The tabu status of a solution is not an absolute. That can be overruled if certain 

conditions are encountered, conveyed in the form of aspiration levels. In effect, these 

aspiration levels deliver thresholds of attractiveness that direct whether the solutions may be 

considered admissible despite of being classified tabu. Clearly a solution better than any 

previously seen deserves to be considered admissible. The simplest and most commonly used 

aspiration criterion, found in almost all tabu search implementations, permits a tabu move 

when it results in a solution with an objective value better than that of the current best-known 

solution (since the new solution has obviously not been previously visited).The phenomenon 

behind using aspiration criterion is to improve tractability in the tabu search by leading it 

towards better moves. The overall description about the aspiration criteria is presented in the 

following Figure 2. 
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Figure 2. Short-term Memory based Tabu Evaluation  
 

3. Description of Aspiration Criteria Based Graph Clustering algorithm 

(ACOGCT) 

The proposed algorithm is developed by using advantage of the intellectual conception of 

tabu search. The main intension is to design a more significant and optimal algorithm for 

providing better clustering results by exploring some advanced concepts as aspiration criteria 

in tabu search. The step by step evaluation of our algorithm is deliberated below.  
 

3.1 Overview of the Algorithm 

In this section, summary of the steps of the developed algorithm is presented to acquire a 

quick insight into the logic involved. 

 

Step 1 

Create an initial clustering solution: This step involves assigning nodes to their 

cluster either on a random or on some other basis. 
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Step 2 

Generate Move list: Generate a set of all possible moves and associate cost with them.  

Step 3 

Update Move list: Update the list of moves based on the last move. Last move may 

have brought changes in the cost of nodes in the move’s source or destination cluster 

or both. They might be inclusion or exclusion of the moves. 

Step 4 

Move selection: Move may belong from the candidate list or be a diversification 

move. 

Step 5 

Apply the move: Update cluster and nodes about the application of the move. Save 

the best answer at local minima. 

Step 6 

Check: If the specified number of moves has not been applied, then jump to update 

move list. 

Step 7 

Return: Print the best answer and Exit. 

 

3.2 Comparative Features of RNSC and Proposed Algorithm 

The proposed algorithm is the refinement of RNSC with respect to few positive aspects. 

These features are conferred with proper explanations. 
 

3.2.1 Key Positive Features  

Few positive features are pointed out here to lay the foundation of the algorithm better 

compare to RNSC.   

 Scale cost evaluation is O (n) in RNSC. This can easily be done in O (1) time if the 

information about current node, and its cluster contribution are pre-computed. 

 RNSC might tabu some very good moves based on the tabu criteria. Instead, in the 

proposed algorithm, aspiration criteria serve the sole purpose of avoiding tabu (based 

on the relative cost of the best non-tabu move). 

 Regeneration of all possible moves to select the best move, each time before it is 

applied in RNSC. 

 Moves are considered only if the target node has neighbouring nodes in the 

destination cluster (moves to empty cluster are the only exception to this rule). 

 The effect of a move for any cost scheme considered in RNSC is not exact in nature. 

They ignore the effect of moving on nodes other than the target node. 

 Cost scheme is evaluated in RNSC on an absolute basis after each move. Instead, in 

the proposed algorithm, costs are evaluated relative to starting clustering state and 

iteratively. The cost of the starting cluster is set equal to zero and effects of moves are 
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added upon it. So, the effects of a move are added to get the cost of current clustering 

state relative to the initial clustering solution. 

 

3.2.2 Features Retained in our Proposed Algorithm  

The properties that are kept unchanged and taking advantage of this retained properties of 

RNSC is focused here. 

 Short-term memory considerations using Tabu criteria are actively used. 

 As in the case of RNSC, diversification moves are applied when in the recent past no 

good solution was found. 

 Scale cost scheme forms the basis for evaluating the cost of a move. 

 

3.3 Greedily Create an Initial Clustering Solution  

There are different ways to perform the operation to create an initial clustering solution. 

Most common is the random clustering method that used in RNSC.  Our algorithm uses a 

greedy initial clustering instead of random clustering. Due to this clustering, most of the 

nodes are placed such a way that there are good chances for some of its neighbours residing 

in the same cluster.  

The initial clustering solution technique is explained here with the proper manner: 

I. Select the node with the highest degree with no cluster assigned yet. 

II. Add node to a new cluster and its unassigned neighbours are also put into the 

same cluster. 

III. If all nodes haven’t been assigned yet then go back to the initial step I. 

 

3.4 Move selection 

The idea behind the selection of a move similar to the technique used in RNSC, where type 

of move is decided based on the previous clustering costs or improvements. Diversification 

move is executed when there has been no improvement in the best cost of the clustering over 

the last specified interval of time otherwise a normal move (in our case tabu move) is applied. 

Diversification when run shuffles the current clustering by the specified amount of 

diversification period and frequency, even if it means a significant increase in the current cost. 

This helps us to get out of any local minima where we might have been stuck in and explore 

some new possible clusterings. 

If there is no need for diversification, best move from the candidate list is selected if it’s 

not on the tabu list (i.e., the target node wasn’t moved in the near past). 

Our algorithm satisfies the aspiration criteria, whereas RNSC does not follow this criterion. 

Aspiration criteria allow selection of a move even if it’s already tabued when the best non-

tabu move incurs a cost which is much higher than itself. The basic idea is that, if the best 

move is already tabued instead of ignoring it, check the feasibility see if this move is going to 

be much better than the best non-tabu move existent. This difference between best move cost 

(which is in tabu) and best non-tabu move cost, if less than the aspiration level, then select the 

non-tabu move,  otherwise select the best move. 
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3.5 Application of a MOVE 

In this algorithm when a move is made then the target node is removed from the source 

cluster and added to the destination cluster. During execution of a move, a list of changes that 

contains the whole information about the source and target cluster is passed to each node 

related to those sources and destination cluster. Each node now quickly updates based on the 

changes it's going to incur the value for the total edge connections and edge weight with the 

neighbouring nodes in the cluster. These values later help in O (1) scale cost associated with 

the node.  

After the updates on nodes and clusters performed tabu-list is informed about the changes 

that have occurred. Tabu list now identifies the last target node as tabu with duration 

depending on the previous tabu duration value associated with the target node. Greater the 

previous tabu duration value much greater will be the penalty added to the target node, so that 

the occurrence of moves with the node is forbidden. 

 

3.6 Cost Estimation 

Move stored in the candidate list other than consisting of a target node to be moved from 

the source cluster to destination cluster and also the recomputed cost is going to incur. The 

scaled cost scheme for weighted graph is described briefly in this section. 

The scaled cost scheme: RNSC’s scaled cost evaluation is costly due to the O (n) 

computation of a denominator value ( ). In RNSC only the direct cost associated with the 

move is considered, i.e., the changes in the cost for target node. It does not consider the effect 

induced on the nodes of the source and destination cluster. 

In our algorithm, only the scaled cost evaluation is used. Scaled cost evaluated with any 

node could be computed in O (1) time against the O (n) time spent in the case of RNSC. The 

faster computations are due to constant update about the changes in the cluster to its node. 

Each node now quickly updates based on the changes it's going to incur the value for the total 

edge connections and edge weight with the neighbouring nodes in the cluster. The value of 

the total number of edge connections and total edge weights with the neighbouring nodes in 

the cluster have incurred during the node update process and based on that incurred value 

some changes are made for each node.  This argument justifies that there is no need of using 

the naïve cost scheme. A cost change caused by the move is due to the sum of changes in the 

cost associated with the nodes of the source and the destination cluster. Direct cost is the 

change in the cost of a target node (moving node) itself. Induced cost is the sum of changes in 

cost of nodes belonging to the source or destination cluster other than the target node.  

Logical view of cost changes with move evaluations: 

In the new algorithm, only scale cost scheme from RNSC is used for move evaluations. 

Scale cost evaluations have been simplified to simple constant time operations, due to active 

update of information corresponding to nodes about its cluster contributions. Further, move 

evaluations have been broken down and simplified for a clearer understanding. 

Let scale cost for node “t” in a cluster “c” is represented by Scale cost (t, c). For a graph 

with n vertices, Scale cost (t, c) ignores the constant multiplier of (n-1) /3 during the 

discussion ahead. Scale cost value combines results of contributions from interconnection, 
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intra-connection and neighbourhood (nodes present in the cluster c or have an edge with the 

node n). 

α (numerator) = Weight due to inter-cluster connections of t+ weight due to intra-cluster 

connections of t. 

β (denominator) = neighbourhood size. 

                                                          Scale Cost= α/β                                                              (7) 

Inter-Cluster contributions are the sum of all the connections from “t” to nodes in clusters 

other than “c”. This adds the cost associated with inter-cluster connection, as they should 

have formed an intra-cluster connection. 

Inter Cluster weight = (Total Edge weight of “t” – sum of all edge weights (of “t”) within the 

cluster “c”). 

Intra-cluster contributions evaluate to a difference of maximum possible intra-connection 

value (edges formed with all vertices in the cluster) and the actual value.  

Let M be the maximum possible edge weight and Nc be the size of the cluster “c”. 

Intra Cluster weight = (Nc-1) *M – sum of all edge weights (of “t”) within the cluster “c”. 

Let total edge weight of t be represented is Wt. The total edge weight of connections or 

edges within the cluster c with one of its vertices being “t” and that is represented as Wc, t. 

Number of edges of the node t is represented as Et. 

Number of connections or edges within the cluster c with on its vertex being “t” and 

which is represented as Ec,t. 

                                               α= (Wt – Wc,t) + (M*(N-1) – Wc,t)                                        (8) 

                                                    β= Et + (Nc-1) – Ec,t                                                           (9) 

Since, α= Wc,t and Ec,t are constantly updated after application of each move, cost evaluation 

for any node in its current cluster is evaluated in constant time (will not be true if “c” doesn’t 

contain “t”). 

Move consists of a target node (represented by “T”), source cluster (represented by “S”) 

and the destination cluster (represented by “D”). On applying the move target node is moved 

from the source cluster to the destination cluster. Let there be a temporary empty cluster E.  

Moving a node from a cluster to cluster brings changes in the costs associated with the 

nodes in the target and destination clusters also. This further impacts any move with its source 

or destination cluster equal to the last applied move’s source or destination cluster. So for any 

move there are two costs associated. 

(a) Direct Cost : Cost change on the target node “t” 

(b) Induced Cost: Cost change on nodes in source & destination cluster other than “t”. 

Let E, be a temporary empty cluster. 

The move is broken down into two simple steps.  

(a) Move T from S to empty cluster E: mark all connections of node T as inter-cluster 

connection. 
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(b) Move T from E to destination D: unmakes connection to node T to nodes in the 

destination cluster as inter-cluster connection (intra-cluster connection). 

Move Effect on cost = change in cost due to step (a) + change in cost due to step (b). 

Remove Effect: 

This step involves moving node T from S to E; 

Let S’ represent S after the move. 

Direct-Remove-Effect = Scale cost (T, E) – Scale cost (T, S). 

Induced-Remove-Effect as shown below contains changes in cost with other nodes. 

For each node R in S { 

                   Induced-Remove-Effect += (Scale cost (R, S’) – Scale cost (R, S));                         

} 

The new scaled cost evaluated from the induced-remove effect is measured by following 

two conditions. The conditions are stated as node in the source cluster was directly connected 

to the moved node and node in the source cluster wasn’t directly connected to the moved 

node. 

                                                 Scaled cost(R, S’) = ( R R

R R

 

 

 

 
)                                           (10) 

Where 
R  = - M 2 weight (T,R); if connected 

- M 2 weight (T,R); if not connected

 


 

 and    
R  = 0; if connected 

-1; if not connected





 

Total Remove Effect = T.R.E = Direct-Remove-Effect + Induced-Remove-Effect; 

Add Effect:  

This involves moving node from temporary empty cluster E to destination cluster D. 

Let D’, be the new state of D after a move has been applied. 

Direct-Add-Effect = Scale cost (T, D) – Scale cost (T, E). 

Induced cost is the sum of all cost changes on other nodes of the destination cluster. 

For each Node R in D { 

                          Induced-Add-Effect += (Scale cost (R, D’) – Scale cost (R, D));                       

}  

The new scaled cost, evaluated from the induced-add effect is measured by following two 

conditions. The conditions are specified as a node in the destination cluster was connected to 

the node added and a node in destination cluster wasn’t directly connected to the moved node. 
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                                    Scaled cost (R, D’) = ( R R

R R

 

 

 

 

)                                                         (11) 

Where 
R = M-2 weight (T,R); if connected 

M-2 weight (T,R); if not connected






and   
R =  0;

1;

if connected

if not connected





 

Total Add Effect = T.A.E =Induced-Remove-Effect + Induced-Add-Effect. 

The details of adaptive scaled cost estimation and the proposed algorithm are stipulated in 

the Figure 3. 

 

Figure 3. Adaptive Scaled Cost Evaluation
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4. Experimental Results and Discussions  

The evaluation of the performance in terms of robustness and quality of our proposed 

algorithm ACOGCT is compared with few selected state-of-art graph clustering algorithms as 

RNSC and MCL. The experiments are performed on a PC with a 2.53 GHz Intel (R) core 

(TM) 2 Duo and 2 GB of RAM. Some synthetic and real benchmark power-law distribution 

datasets are chosen to conduct the analysis of accuracy measure of graph clustering 

algorithms through computation of few performance metrics. The real power-law distribution 

networks are listed in table1 with respective references.  We set up an initial configuration for 

creating the environment same for ACOGCT, RNSC and MCL to carry forward the 

experiments. The initial configuration for ACOGCT, RNSC and MCL is as follows. For 

ACOGCT, the number of moves denoted as move Count=1000; shuffling frequency denoted 

as div Amount =40; diversification length denoted as div Interval=10 and tabu-length=250. 

For RNSC, the following parameters are set like as d (diversification Length) = 10; D 

(shuffling Frequency) = 40; t (tabu-length) = 250 and e (number of experiments) = 1000 and 

in case of MCL, the inflation (I) value is 4; reweight loops c= 0. 25; pre-inflation value p= 0. 

8 and preset resource scheme= 5. 

 

Table 1. Real Power-law Network Data sets 

Real Power-Law Networks Graph 

Size 

Average 

Degree  

<k> 

Degree 

exponent 

(γout) 

Degree 

exponent 

(γin) 

Electronic circuits [41] 329 3.17 2.5 2.5 

Protein, S. Cerev [42] 985 1.83 2.5 2.5 

Software [43] 1376 6.39 2.5 2.5 

Protein, S. cerev. [44] 1870 2.39 2.4 2.4 

Internet, router [45] 3,888 2.57 2.48 2.48 

Internet, domain [45] 4,389 3.76 2.2 2.2 

Prot. Dom. (PromDom) 

[46] 

5995 2.33 2.5 2.5 

 

4.1 Performance Metrics  

We select few suitable metrics as modularity index, NMI value to validate the performance 

measure of our proposed algorithm ACOGCT. Although there are some parametric measures 

as cost of clustering, cluster size of the algorithm to check the behaviour but these metrics 

provide important concepts of accuracy measurement. Graph size (number of nodes) is a basis, 

depending on which all the computation are executed to achieve the characteristics of the 

algorithm. 
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4.1.1 Modularity Index 

A topology-based modularity metric, originally proposed by Newman and Girvan, 2004 

[30], is used in this investigation to check the performance. This is a square symmetric matrix 

of clusters where each element dij represents the fraction of edges that link nodes between 

clusters i and j and each dii represents the fraction of edges linking nodes within cluster i. The 

modularity measure is given by Eq. (12) as follows. 

 

                                             

2( ( ) )ii ij

i j

M d d  
                                              (12)

 

4.1.2 NMI Value 

Another metric to estimate the quality of clusters achieved is the amount of mutual 

information shared between clusterings. This metric was originally defined by Kvalseth 

(1987) [47]. The NMI value plays an important role in checking the optimal nature of 

clusterings of different methods. It evaluates the algorithm’s behaviour in information passing 

through different clustering results. It can predict the optimal or accurate clusters during 

clusterings. Assume, there are set of groupings of clusterings as ( ){ | {1,.., }}q q r  which is denoted 

by ^. Let 
( )a

hn be the number of objects in the cluster hc  according to ( )a and ( )b

ln  be the 

number of objects in the cluster lc  according to ( )b . Let 
,h ln represents the number of objects 

that are in hc  according to ( )a and in cluster lc  according to ( )b .The symbol ( )NMI is denoted 

as the estimation of NMI (Kvalseth (1987)) as represented in Eq. (13). 
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                                 (13)                       

 

Based on this pairwise measure of mutual information, we can now define a measure between 

a set of r labelings,  , and a single labelling 
'  as the average normalized mutual 

information (ANMI) expressed by Eq. (14). 

                                                                                 

( ) ' ( ) ' ( )

1

1
( , ) ( , )

r
ANMI NMI q

qr
    



  
             (14)                        

 

  

4.1.3 Cluster size 

Cluster size can determine the quality of clusters produced during clustering by any graph 

clustering algorithm. It is also computed as the number of clusters, produced from the 

clustering results.  

4.2 Evaluation on Real-World Network Datasets 

To obtain the performance measure on the basis of robustness and quality of the proposed 

algorithm ACOGCT compared to RNSC and MCL in the real-world scenario, few real 

power-law distribution datasets, placed in Table 1, are taken into account. The robustness and 

quality of the graph clustering algorithm are verified in terms of cost of clustering, cluster size, 

modularity index of clustering result and optimality. 
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4.2.1 Cost of Clustering: Table 2 gives the details of cost of clustering results, produced by 

ACOGCT, RNSC and MCL. The evaluation of cost is executed on real power-law 

distribution graphs with increasing graph size. 

 

Table 2. Comparison of Cost of Clustering, Produced by ACOGCT, RNSC and 
MCL 

Real Power-

Law Networks 

Cost of 

Clustering 

(ACOGCT) 

Cost of 

Clustering 

(RNSC) 

Cost of 

Clustering 

(MCL) 

Electronic 

circuits 

20326.06 20809.51 35552.36 

Protein, S. 

Cerev 

191633.2 197488.1 322559.9 

Software 452441.6 452564.8 629417.7 

Protein, S. 

cerev. 

751914.3 781375.4 1163968 

Internet, router 3131658.635 3233392 5032580 

Internet, 

domain 

4434223.79 4497642 6411685 

Prot. Dom. 

(PromDom) 

7552485.719 7738787 9652835 

 

It is observed from Figure 4 that the cost is increased with increasing of graph size for all 

the test cases by these graph clustering algorithms. ACOGCT is performed better in cost 

evaluation compared to RNSC and MCL. The cost produced by MCL is more costly 

compared to ACOGCT and RNSC. But the cost produced by RNSC is less compared to MCL.  

 

 

Figure 4. Evaluation of Cost of Clustering with Increasing Graph Size 
 

It can be concluded that ACOGCT is producing lower-cost clustering results compared to 

RNSC and MCL.  
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4.2.2 Modularity Index: Table3 represents the modularity index values which are 

produced during clustering by ACOGCT, RNSC and MCL algorithm. The evaluation of 

modularity is performed on real power-law distribution graphs with increasing graph size. 

 

Table 3. Comparison of Modularity Index of Clustering Results for ACOGCT, 
RNSC and MCL 

Real Power-Law 
Networks 

Modularit
y Index 
(ACOGCT) 

Modularity 
Index (RNSC) 

Modularity 
Index (MCL) 

Electronic 
circuits 

-12.17 -107.417 -14.6429 

Protein, S. Cerev -6.422 -354.502 -46.9323 

Software -3.946 -632.844 -57.5208 

Protein, S. cerev. 79.9 -891.266 -117.11 

Internet, router -32.817 -1652.29 -243.728 

Internet, domain -36.557 -2343.96 -291.768 

Prot. Dom. 
(PromDom) 

-37.5893 -2523.57 -390.877 

 

Modularity Index is an essential performance metric to test accuracy of clustering results of 

different graph clustering methods. The accuracy is measured based on the strength 

(intracluster links) of the clusters, produced during clustering. Figure 5 shows that ACOGCT 

is behaving more modular or producing more strength clusters compared to RNSC and MCL. 

The modularity is decreasing gradually with increasing of graph size in case of RNSC. MCL 

is achieving better modularity compared to RNSC. ACOGCT gains positive impact on 

modularity index evaluation. ACOGCT is producing more accurate clusters compared to 

RNSC and MCL. 

 

 

Figure 5. Modularity Index of Clustering Results with Increasing Graph Size 
 

4.2.3 Cluster Size: Table 4 gives the detailed cluster size values, computed during clustering. 

The computation is performed on real power-law distribution graph with increasing graph 

size. 
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Table 4. Comparison of computed cluster size of graph clustering algorithms 
ACOGCT, RNSC and MCL 

Real Power-Law 
Networks 

Cluster Size 
(ACOGCT) 

Cluster 
Size 
(RNSC) 

Cluster 
Size 
(MCL) 

Electronic circuits 119 187 54 

Protein, S. Cerev 294 602 183 

Software 418 805 397 

Protein, S. cerev. 447 1311 253 

Internet, router 1643 2589 700 

Internet, domain 2212 3084 572 

Prot. Dom. (PromDom) 2822 4003 1005 
 

It is observed from figure 6 that cluster size prediction is nearly reaching the highest 

accuracy in case of ACOGCT compared to RNSC and MCL. This signifies that the rate of 

increment in cluster size with increasing of graph size is much better for ACOGCT. RNSC is 

producing huge number of clusters compared to ACOGCT and MCL. RNSC is not giving 

meaningful clusters. MCL is behaving not well in producing clusters.  

 

Figure 6. Evaluation of Cluster Size with Increasing Graph Size 
 

The computed cluster size of MCL tells that MCL is not exploring the whole network 

properly. It can be concluded that ACOGCT is producing meaningful and significant clusters 

compared to RNSC and MCL. 

 

4.3 Evaluation on Synthetic Dataset 

The performance analysis is done on computer generated synthetic benchmark power-law 

distribution datasets. Power-law graphs are created by following the distribution principle 

which is mentioned before in eq (1). Basically the degree exponent  is dispersed in the range 

of 2.1 to 3 for generating the scale-free model. In this paper, we use two different types of 

model of power-law distribution graphs. First model which is following the standard value of 

degree exponent as  =2.5 and second model which is maintaining the degree exponent value 

( ln 3

ln 2
  ) of deterministic scale-free network. The deterministic scale free model is a 

hierarchical organization of hubs. 
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The performance measures are computed following the two model as two test cases.The 

results are shown for these two test cases as follows. 

 

4.3.1 Cost of Clustering: It is observed from both Figure 7 and Figure 8 that the cost is 

increased with increasing of graph size. The cost of clustering is low always of ACOGCT for 

both the test case compared to RNSC and MCL. MCL is more costly that is shown in both the 

figure. RNSC is less costly compared to MCL for both the test cases. MCL is performing 

worst for the first test case. For the second test case, there is an acceptable balance of cost 

difference of the graph clustering algorithms whereas the first test case is not giving certain 

balance. 

 

Figure 7. Cost of Clustering on Power-law Graph with Increasing Graph Size 
 

 

Figure 8. Cost of Clustering on Deterministic Power-law Graph with Increasing 
Graph Size 

 

It can be concluded that ACOGCT is producing lower cost clustering for both the test 

cases compared to RNSC and MCL. 

 

4.3.2 Modularity Index: Modularity is an important measurement technique which is used to 

justify the correctness of the clustering. It is observed from Figure 9 and Figure 10 that for 

both the two test cases ACOGCT is performing better compared to RNSC and MCL. RNSC 

is behaving more inferior compared to MCL for the two cases whereas MCL is performing 

well compared to RNSC.  
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Figure 9. Modularity Index of Clustering Results on Power-law Graph 

 

Figure 10. Modularity Index of Clustering Results on Deterministic Power-law 
 

For the second test case, there is a high decrease in the modularity value for all the 

algorithms compared to the first test case. It can be determined that ACOGCT is more 

modular compared to RNSC and MCL for all the test cases. 

 

4.3.3 Cluster Size: It can be easily understandable by detecting the cluster size that whether 

the clusters are good or bad. The cluster size estimation of both the Figures 11-12 shows that 

ACOGCT is producing good quality clusters compared to RNSC and MCL. RNSC is giving 

more number of clusters compared to ACOGCT and MCL. RNSC is not accurate in 

producing clusters. It can determine by seeing the MCL’S performance that MCL is not 

exploring the network properly for both the two test cases. For the second test case, cluster 

size curve for all the algorithms is not showing correct results compared to first test case. 

 

 

Figure 11. Cluster Size Estimation with Increasing Graph Size of Power-law 
Graphs 
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Figure 12. Cluster Size Estimation with Increasing Graph Size of Deterministic 
Power-law Graphs 

 

There is a significant improvement in the cluster size prediction by ACOGCT compared 

to RNSC and MCL for all the test cases. ACOGCT is giving meaningful clusters compared to 

RNSC and MCL. 

 

4.4 NMI Value on Real Power-law Distribution Graph 

NMI is a significant approach which determines the quality of clusters of different graph 

clustering algorithms. The quality is measured in terms of optimality and it is basically 

obtained through the information passing between clustering results of a graph clustering 

algorithm. It is act as an information theoretic measure and shows the value of mutual 

information sharing between two clusterings of an algorithm. 

 

 

Figure 13. Estimation of NMI Value with mu 
 

It is observed from Figure 13 that NMI value is highest in case of ACOGCT compared to 

RNSC and MCL. ACOGCT produces better quality clusters compared to RNSC and MCL 

whereas the clusters obtained from MCL clustering are not accurate. RNSC is giving optimal 

clusters compared to MCL. The Figure 13 is plotted using NMI value and mixing parameter 

(mu) of network with the range of 0.1 to 0.9. After 300, 500, 700 runs with using real large-

scale power-law graph (Prot. Dom. [46]), NMI value is evaluated in case of ACOGCT and 

RNSC and in case of MCL; experiments are conducted by changing the inflation value as I= 

{2.5, 3.5, 4.5}. The NMI value curve shows that the optimality in increased with increasing of 

mu when mu>=0.4 the NMI is increasing gradually and it is very close to 1 in case of 

ACOGCT. RNSC and MCL are not showing that type of behaviour. It can be established that 
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the mutual information sharing between clusterings is more effective for ACOGCT whereas 

MCL can’t provide good quality clusters due to the less NMI value. MCL is not giving 

accuracy in producing optimal clusters compared to RNSC also. It can be concluded that 

ACOGCT is producing meaningful clusters compared to RNSC and MCL. ACOGCT is more 

optimal compared to RNSC and MCL. 

 

4.5 Visualization of Real and Synthetic Power-law Graph and Clustering  

Figure 14 shows the visual representation of real power-law network software with 1376 

nodes and huge interactions exist between the nodes following the power-law distribution. 

Figure 18 represents the visual presentation of deterministic power-law network with 1000 

nodes. The visualization of clustering results, produced by ACOGCT, RNSC and MCL on 

real power-law graphs as software, internet, router, internet, domain and deterministic power-

law network are represented in the following Figures 15, 17, 16. It can be resolved from the 

visualizations of clustering results that ACOGCT’s clusters are more expressive and 

meaningful compared to RNSC and MCL. RNSC is performing better in producing clusters 

compared to MCL for all the test cases. It can be clearly assumed from the entire MCL’s 

clustering that clusters are not properly visible and correct. RNSC is producing more optimal 

clusters compared to MCL. But the clusters, resulted from ACOGCT’s clustering, are more 

accurate and proper compared to RNSC and MCL. ACOGCT is generating more optimal 

clusters compared to RNSC. ACOGCT is achieving significant improvement in producing 

optimal clusters for real large networks. All the visualizations of networks and clusterings are 

modularity controlled as they are shown in the following figures. Modularity is capable of 

identifying nodes which are in the same cluster using the help of some similarity measures, 

i.e., basically determined using various properties of a complex network. It is perceived from 

fig 28 that clusters are marked appropriately by modularity approach in case of ACOGCT. 

RNSC and MCL are not responding well in that situation compared to ACOGCT. RNSC is 

behaving better compared to MCL in identification of clusters. The modularity approach is 

identifying the clusters, produced by ACOGCT accurately and the clusters are more 

expressive and significant compared to RNSC and MCL.    

 

 

 

 

 

 

 

 

 

  
Figure 14.  Visual 

representation of Software [43] 

 

Figure 15. Visualization of 
ACOGCT’s Clustering on Software 

[43]  
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Figure 17. Visualization of RNSC’s 

Clustering on Software [43] 
 

 
Figure 16. Visualization of MCL’s 

Clustering on Software [43] 

 
Figure 18. Visual representation of 

Deterministic Power-law Graph with 

1000 Nodes 

 
Figure 19. Visualization of ACOGCT’s 
clustering on Deterministic Power-law 

Graph 
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Figure 20. Visualization of RNSC’s 
clustering on Deterministic Power-

law Graph 
 

 
Figure 21. Visualization of MCL’s 

clustering on Deterministic 
Power-law Graph 

 

Figure 22. Visualization 
of ACOGCT’s clustering 

on internet, router [45] 

 

Figure 23. Visualization of 
RNSC’s clustering on internet, 

router [45] 
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Figure 25. Visualization of 
ACOGCT’s Clustering on 

Internet, Domain [45] 

 
 

Figure 26. Visualization of 
RNSC’s Clustering on Internet, 

Domain [45] 
 

 

 
 

Figure 27. Visualization of 
MCL’s Clustering on Internet, 

Domain [45] 
 

 
Figure 24. Visualization of MCL’s 

Clustering on Internet, Router [45] 
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Figure 28. Modularity based Clusters Identifying in ACOGCT’s Clustering on 
Internet, Router [45] 

 

 

Figure 29. Modularity based clusters identifying in MCL’s clustering on internet, 
router [45] 

 

 

 

Figure 30. Modularity based clusters identifying in RNSC’s clustering on 
internet, router [45] 
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5. Conclusions 

Graph clustering is a fundamental task in many fields of science and engineering. Cost-

efficient graph clustering algorithms are now-a-day a matter of investigation to satisfy some 

necessary aspects of real-world problems. In this paper, we present an aspiration criteria 

based graph clustering algorithm using the special effect of adaptive scaled cost function to 

detect high quality clusters in larger power-law networks. The scaled cost function, deduced 

by our algorithm ascertains the best (lower) cost clustering from large-scale networks 

compared with the baseline methods. The significance of an aspiration criterion based tabu 

search technique in our algorithm is to contribute an extra effort in achieving optimal cost 

clustering result from the set of clusterings of a network. Moreover it overcomes the 

shortcomings of optimality of clusters on the basis of NMI value that other graph clustering 

methods suffer from. Results on several synthetic and real benchmark power-law graphs 

highlight the utility of our approach when compared with RNSC and MCL on the basis of 

robustness and optimality. Scale cost evaluation is O (n) in RNSC. This can easily be done in 

O (1) time if the information about current node, and its cluster contribution are pre-computed 

and these features are incorporated in our algorithm. It can be further extended by a parallel 

move technique which will give better results in the case of run-time. 

 

References 
 
[1]  J. Han and M. Kamber, “Data Mining: Concepts and Techniques”, Morgan-Kaufman, San Francisco, (2006). 

[2]  A. Y. Ng, M. Jordan and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm”, Proc. 14th 

Advances in Neural Information Processing Systems (NIPS ’01), (2001). 

[3]  B. A. Huberman, “Growth dynamics of the World-Wide Web”, Nature, vol. 401, (1999), pp. 131. 

[4]  M. E. J. Newman, S. H. Strogatz and D. J. Watts, “Random graphs with arbitrary degree distributions and 

their applications”, Physical Review E 64:026118, (2001). 

[5]  W. Cai, S. Chen and D. Zhang, “Fast and robust fuzzy c-means clustering algorithms incorporating local 

information for image segmentation”, Pattern Recognition, vol. 40, (2007), pp. 825–838.  

[6]  Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clustering: theory and its application to 

image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, (1993), pp. 

1101–1113. 

[7]  A. K. Jain and R. C. Dubes, “Algorithms for Clustering Data”, Prentice-Hall, Englewood Cliffs, NJ (1988). 

[8]  Z. Yu, H.S. Wong and H. Wang, “Graph-based consensus clustering for class discovery from gene expression 

data”, Bioinformatics, vol. 23, (2007), pp. 2888–2896.   

[9]  S. Bandyopadhyay, A. Mukhopadhyay and U. Maulik, “An improved algorithm for clustering gene 

expression data”, Bioinformatics, vol. 23, (2007), pp. 2859–2865. 

[10]  S. Wasserman and K. Faust, “Social Network Analysis: Methods and Applications”, Cambridge University 

Press, (1994). 

[11]  R. Guimera and L. Amaral, “Functional cartography of complex metabolic networks”, Nature, vol. 433, no. 

7028, (2005), pp. 895–900. 

[12]  Y. Loewenstein, E. Portugaly, M. Fromer and M. Linial, “Efficient algorithms for accurate hierarchical 

clustering of huge datasets: tackling the entire protein space”, Bioinformatics, vol. 24, no. 13, (2008), pp. i41–

i49. 

[13]  Z. Chen, Y. He, P. Rosa-Neto, J. Germann and A. Evans, “Revealing modular architecture of human brain 

structural networks by using cortical thickness from MRI”, Cerebral Cortex, vol. 18, no. 10, (2008), pp. 

2374–2381. 

[14]  W. Crum, “Spectral Clustering and label fusion for 3D tissue classification: Sensitivity and consistency 

analysis”, in: Proceedings of Medical Image Understanding and Analysis, Dundee, Scotland (2008). 

[15]  A. K. Jain, R. P. W. Duin and J. Mao, “Statistical pattern recognition: a review”, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 22, no. 1, (2000), pp. 4–37. 

[16]  A. Y. Ng, M. I. Jordan and Y. Weiss, “On spectral clustering: analysis and an algorithm”, Advances in Neural 

Information Processing Systems vol. 14, MIT Press, Cambridge, MA, (2002). 



International Journal of Advanced Science and Technology 

Vol. 51, February, 2013 

 

 

37 

 

[17] A. K. Jain, M. N. Murty and P. J. Flynn, “Data clustering: a review”, ACM Computing Surveys, vol. 31, no. 3, 

(1999), pp. 264–323. 

[18]  R. Xu and D. Wunsch II, “Survey of clustering algorithms”, IEEE Transactions on Neural Networks, vol. 16, 

no. 3, (2005), pp. 645–678. 

[19]  A. D. King, “Graph Clustering with Restricted Neighbourhood Search”, M.S. Thesis, University of Toronto, 

(2004). 

[20]  S. M. van Dongen, “Graph Clustering by Flow Simulation”, PhD thesis, University of Utrecht, (2002). 

[21]  F. Glover, “Tabu search”, part I, ORSA Journal on Computing, vol. 1, no. 3, (1989) Summer, pp. 190-206. 

[22]  F. Glover, C. McMillan and B. Novick, “Interactive decision software and computer graphics for architectural 

and space planning”, Annals of Operations Research, vol. 5, (1985), pp. 557-573. 

[23]  F. Glover, “Tabu search”, part II, ORSA Journal on Computing, vol. 2, no. 1, (1990) Winter, pp. 4-32.  
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