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Abstract 

Current Floating-point divisor architectures have low frequency, larger area and high 

latency in nature. With advent of more graphic, scientific and medical applications, floating 

point dividers have become indispensable and increasingly important. However, most of these 

modern applications need higher frequency or low latency of operations with minimal area 

occupancy. In this work, highly optimized pipelined architecture of an IEEE-754 standard 

double precision floating point divider is designed to achieve high frequency on FPGAs. By 

using secondary clock to perform mantissa division the overall latency of the divisor is 

reduced to 30 clock cycles, i.e. 52% less compared to conventional divisors. This design is 

mapped onto a Virtex-6 FPGA and an operating frequency of 452.69 MHz is achieved. The 

proposed design also handles all the IEEE specified four rounding modes, overflow, 

underflow and various exception conditions. 
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1. Introduction 

Floating point arithmetic is widely used in many scientific and signal processing 

applications. Implementing arithmetic operations for floating point numbers in hardware is 

very challenging. Among the operations (add, subtract, multiply, divide), division is generally 

the most difficult to implement in hardware. In recent floating point units (FPUs), the 

designer’s concentration has been placed more on designing ever-faster adders and 

multipliers compared to division. The typical range for addition latency is two to four 

machine cycles and the range for multiplication is two to eight machine cycles. In contrast, 

the latency for double precision division ranges about 61 cycles and square root is often far 

larger. As the performance gap widened between these operations and division, floating-point 

algorithms and applications have been slowly rewritten to account for this gap by mitigating 

the use of division. Thus current applications and benchmarks are usually written assuming 

that division is an inherently slow operation and should be used sparingly [1]. 

Efficiency of addition and multiplication were much developed but division stood back [2] 

and the performance of the system that used floating point divider was greatly affected [7]. 

Formerly division was less frequently used and hence not much development had taken place 

in its field. But with the advent of new technology applications floating point division also 

became important. Therefore a new algorithm for efficient implementation of division also 
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became necessary. As such many algorithms (functional iteration, very high radix, table look-

up & variable latency) were put forth [3]. The throughput of a divider can be increased by 

using a high radix SRT algorithm [8] and add-multiply infrastructure [4].  

The challenge in FPGAs is a right trade-off   between clock speed, latency, throughput, 

and area [5]. Double precision floating point divider can be implemented based on SRT 

division algorithm. This algorithm depends on the radix and the redundancy factor. At each 

iteration, the SRT algorithm performs a multiplication by the quotient digit. So at each 

iteration SRT needs a multiplier. To overcome this quotient digit is decomposing into two or 

three terms multiples of 2. Radix-8 with a maximum redundancy factor gives the best 

performance [6]. 

Double precision floating point divider can be implemented based on partial and full 

unrolling of the iterations in low radix digit recurrence and inserting pipeline registers in 

between the dividing unit results in increasing the throughput [9, 10].    

With advent of more graphic, scientific and medical applications, floating point division 

has become indispensable and increasingly important. However, most of these modern 

applications need higher frequency or low latency of operations with minimal area occupancy. 

As such many algorithms were developed for divider which includes binomial expansion [11]. 

Subtractive method and functional iterations uses multipliers and algorithms for faster 

computation of division like high radix algorithm. But most of these algorithms require 

multipliers and thus consumed large area and power. The digit recurrence algorithm [13] 

which uses subtractive method for computation could be used as it consumes much less area 

when compared with other algorithms. 

The double precision floating point divider presented here is based on IEEE -754 binary 

floating point standard. Having a standard ensures that all compliant machines will produce 

the same outputs for the same program. 

We have designed a digit recurrence double precision floating point divider with 

secondary clock to calculate mantissa so as to achieve a low latency. Also, we have 

incorporated more pipeline stages to achieve high frequency and throughput. The design is 

implemented in Xilinx Virtex-6 FPGA and it is verified that this design requires minimal area 

and also it operates at a very high frequency of 452.69MHz compared to a frequency of 

100.70 MHz using methods like non-iterative designs based on high radix numbers, 

sequential and pipelined designs [10]. 
 

2. Double Precision Floating Point Divider Based on IEEE-754 Binary 

Floating Point Standard 

Floating point divider relies on IEEE-754 binary floating point standard. The IEEE-754 

standard defines how double precision floating point numbers are represented. 64 bits are 

used to represent this number. The double precision floating point format is shown in Figure 1. 

 

 

Figure 1. The Double Precision Floating Point Format 
 

The sign bit occupies bit 63. ‘1’ signifies a negative number and ‘0’ a positive number. The 

exponent field is 11 bits long, occupying bits 62-52. The value in this 11-bit field is offset by 

1023, so the actual exponent used to calculate the value of the number is 2^(e-1023). The 
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mantissa is 52 bits long and occupies bits 51-0. There is a leading ‘1’ that is not included in 

the mantissa, but it is part of the value of the number for all double precision floating point 

numbers with a value in the exponent field greater than 0. A 0 in the exponent field 

corresponds to a de-normalized number, which is explained in the next section. The actual 

value of the double precision floating point number is  

 

 

The IEEE standard specifies four rounding modes; round to nearest, round to zero, round 

to positive infinity, and round to negative infinity. The representation of the special cases in 

floating point double precision numbers is shown in Figure 2. 

 

 

 

Figure 2. Special Cases in Representing Floating Point Double Precision 
Numbers 

 

3. Proposed Architecture 
 

3.1. Base Architecture for Divider 

The divider receives two 64-bit floating point numbers. First these numbers are unpacked 

by separating the numbers into sign, exponent, and mantissa bits. The sign logic is a simple 

XOR. The exponents of the two numbers are subtracted and then added with a bias number 

i.e., 1023. Mantissa division block performs division using digit recurrence algorithm. It takes 

more than 55 clock cycles. After this the output of mantissa division is normalized, i.e., if the 

MSB of the result obtained is not 1, then it is left shifted to make the MSB 1. If changes are 

made by shifting then corresponding changes has to be made in exponent also [1]. 
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After mantissa division the output is 55 bit long. But we require only 53 bit mantissa. So 

after normalization the 55 bit output is passed on to the rounding control. Here rounding 

decision is made based on the mode selected by the user. This mode decides whether 

rounding has to be performed - round to nearest (code = 00), round to zero (code = 01), round 

to positive infinity (code = 10), and round to negative infinity (code = 11).  Based on the 

rounding changes to the mantissa corresponding changes has to be made in the exponent part 

also.  

For round to nearest mode, if the first extra remainder bit is a ‘1’, and the LSB of the 

mantissa is a ‘1’, then this will trigger rounding.  For round to zero mode, no rounding is 

performed, unless the output is positive or negative infinity. This is due to how each operation 

is performed. For multiply and divide, the remainder is left of the mantissa, and so in essence, 

the operation is already rounding to zero even before the result of the operation is passed to 

the rounding module.  For round to positive infinity mode, the two extra remainder bits are 

checked, and if there is a ‘1’ in either bit, or the sign bit is ‘0’, then the rounding amount will 

be triggered. Likewise, for round to negative infinity mode, the two extra remainder bits are 

checked, and if there is a ‘1’ in both bits, and the sign bit is ‘1’, then the rounding amount will 

be triggered. 

Normalized mantissa will be checked for any exceptions, where all of the special cases are 

checked. The special cases are  

1. Divide by 0 – result is infinity, positive or negative, depending on the sign of operand 

A. 

2. Divide 0 by 0 – result is SNaN, and the invalid signal will be asserted. 

3. Divide infinity by infinity - result is SNaN, and the invalid signal will be asserted. 

4. Divide by infinity – result is 0, positive or negative, depending on the sign of operand 

A and the underflow signal will be asserted. 

5. Divide overflow – result is infinity, and the overflow signal will be asserted. 

6. Divide underflow – result is 0, and the underflow signal will be asserted. 

7. One or both inputs are QNaN – output is QNaN. 

8. One or both inputs are SNaN – output is QNaN, and the invalid signal will be 

asserted. 

If any of the above cases occurs, the exception signal will be asserted. If the output is 

positive infinity, and the rounding mode is round to zero or round to negative infinity, then 

the output will be rounded down to the largest positive number (exponent = 2046 and 

mantissa is all 1’s). Likewise, if the output is negative infinity, and the rounding mode is 

round to zero or round to positive infinity, then the output will be rounded down to the largest 

negative number. The rounding of infinity occurs in the exceptions module, not in the 

rounding module.  

QNaN is defined as Quiet Not a Number. SNaN is defined as Signaling Not a Number. If 

either input is a SNaN, then the operation is invalid. The output in that case will be a QNaN. 

For all other invalid operations, the output will be a SNaN. If either input is a QNaN, the 

operation will not be performed, and the output will be a QNaN. If both inputs are QNaNs, 

the output will be the QNaN in operand A. The use of Not a Number is consistent with the 

IEEE-754 standard. 

Finally all the outputs from the sign, exponent and mantissa are concatenated to produce 

the final quotient. The whole operation takes about 62 clock cycles. 
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3.2. Reducing the Latency using Secondary Clock  

The latency of the divider is reduced by using a secondary clock for mantissa division 

alone. The frequency of the secondary clock is twice larger than the primary clock. The 

primary clock is applied to all other parts of the divider unit. This is done because mantissa 

division is the slowest part and it requires more than 55 clock cycles for mantissa 

computation. So, using double the clock frequency for   mantissa calculation effectively 

reduces the overall latency of the divider to 30 cycles. 
 

3.3 Increasing the Frequency of Divider using Pipelining  

For increasing the frequency or throughput of the circuit the division step is unrolled and 

then several pipelining stages are inserted in between each minor operation. 

     The area of a pipeline design can be expressed as [1]        Apipe = nc + [n/m]r 

  

 where c is the combinational area of a single iteration, r is the number of bit registers 

required for a single pipeline stage, d is the execution delay of a single iteration, and n is the 

number of iterations in the sequential design. 
 

 

Figure 3.  Proposed Architecture for Floating Point Double Precision Divisor 
 

The final proposed architecture with secondary clock and pipelining stages is shown in 

Figure 3.The Figure 4 shows the black box view of floating point double precision divisor. 
 

 

Figure 4.  Black Box View of Floating Point Double Precision Divisor 
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4. Results 

The divider circuit based on digit recurrence algorithm was simulated in Modelsim 6.6c 

and synthesized using Xilinx ISE 13.1i which was mapped on to Virtex-6 FPGA. The 

simulation results of 64-bit floating point double precision divisor are shown in figure 5. The 

‘opa’ and ‘opb’ are the inputs and ‘out’ is the output. The figure 6 gives the timing summary 

which indicates the operating frequency of 452.69MHz. Table 1 summarizes the device 

utilization for implementing the circuit on Virtex-6 FPGA. The number of slices required is 

841. Table 2 gives the comparison of existing method [1] and the proposed method in terms 

of latency and operating frequency. 
 

 

Figure 5. Simulation Results of Floating Point Double Precision Divisor 
 

 

Figure 6.  Timing Summary of Floating Point Double Precision Divisor 
 

 

Table 1. Device Utilization Summary (Selected device   6vlx75tff484-3) of 
Floating Point Double Precision Divisor 

Slice Logic Utilization Used 

Number of  Slice Registers(Flip-Flops) 1,992 

Number of Slice LUTs 2,211 

Number of occupied slices 841 

Number of bonded IOBs 204 
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Table 2.  Performance Comparison of Floating Point Double Precision Divisor  

           Parameter Existing  

Method [1] 

Proposed 

Method 

No. of slices required 678 841 

Frequency (MHz) 265 452.69 

Latency (Clock cycles) 53 30 

 

5. Conclusion 

This paper presents the enhanced version of digit recurrence algorithm which offers 52% 

and 44 % less latency compared to conventional divisors and existing method [1] respectively. 

It can also be operated at a higher frequency of 452.69MHz. The design presented here can 

produce better performance as compared to non-iterative designs based on number 

representations of higher radices. The iterative design of the divider requires less area. Since 

the pipelining of our iterative design is intended to accelerate compute-intensive applications 

on FPGA chips, full unrolling of these designs is highly desirable to achieve maximum 

performance.  

The latency can be further reduced by using a cache (block) memory which can be used to 

store the quotient values of the data with high probability of occurrence. By doing so the 

latency can be reduced up to 6 clock cycles [1]. 

An asynchronous double precision floating point divider can be designed for reusability of 

the divider unit in various systems operating at different frequencies. Also power 

consumption and clock skew problem can be reduced by removing the global clock. 
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