
International Journal of Advanced Science and Technology

Vol. 47, October, 2012

101

A Controlled Knowledge Base Evolution Approach for Query Hits

Merging in P2P Systems

Rim Mghirbi
1,2

, Hanen Majdoub
1
, Khedija Arour

1
 and Bruno Defude

2

1
Faculty of Sciences of Tunis, Computer Science Department, Tunis, Tunisia

2
Institute of Telecom and Management SudParis,

Computer Science department, Every, France

rim.mghirbi@laposte.net, mejdoubhanen@gmail.com, khedija.arour@issatm.rnu.tn,

Bruno.Defude@telecom-sudparis.eu

Abstract

Merging query-hits in large scale systems, like P2P, is challenging and potentially

complex because results have to be ranked with respect to each other while sources are

heterogeneous and with no centralized control. To solve this problem, we advocated in [10] a

knowledge-based approach relying on users’ profiles. A user profile includes information

about past interests derived from the user past actions as well as information about peers

from which results were obtained in the past for similar queries. Using a knowledge base can

lead to the system obsolescence unless an effective approach is proposed to evolve this

learned knowledge. Most used approaches for knowledge update are periodic and cannot

react on user needs changes at the appropriate time. For this reason, we propose, in this

paper, a controlled and distributed mechanism for knowledge evolution based on need

observers. A need detector aims to detect the user new needs expressed in his queries, as well

as the new resources. Experiments show a clear improvement of the system performance with

our controlled mechanism.

Keywords: IR, P2P systems, results merging, user profiles, KB evolution, update utility,

Need detectors

1. Introduction

In large scale systems such as the case of Peer-To-Peer systems (P2P), Information

Retrieval (IR) is considered as an old problem that needs new issues to join the effectiveness

of search to its efficiency. This latter factor concerns mainly the communication’s cost that

should be minimized in order to allow scaling and avoid the overhead in such systems. Two

main problems have to be solved in P2PIR systems, the selection of the most relevant peers to

answer a given query and the global ranking of all results returned by selected peers.

Global ranking is particularly challenging due to possible heterogeneity of peers in terms

of collection size or IR model. For this reason, we have proposed in [10] a solution for global

ranking based on the construction and use of a local knowledge-base (KB) on each peer. The

solution aims to replace the use of peers’ statistics by taking advantage of the user’s past

experience. It is worth mentioning that our knowledge base has the specific feature to be built

automatically on each peer, and in a fully decentralized manner from the user behavior (non

central coordination is needed). This latter is captured implicitly from the peers’ log files and

is processed to build knowledge. Our experiments show the effectiveness of this approach if

the system is stables (no addition or deletion of resources, no changes in users’ behavior). Of

course in general, P2P systems are not stable at all and there is an inherent need to update the

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

102

KB. Most existing approaches for knowledge updating are periodic and so cannot guaranty

that the KB evolves in a synchronous way relatively to the system evolution.

Based on these problems, our main goal in this paper is to define a controlled mechanism

for the knowledge base evolution. This mechanism is based on need observers, located on

each peer, observing user’s queries and system answers and able to decide when a local KB

has to evolve.

The main contributions of this paper are (i) a decentralized architecture for knowledge

evolution, (ii) the definition of need observers and associated decision algorithms and (iii) a

set of experiments validating our approach.

The remainder of this paper is organized as follows. Section 2 aims to position the problem

in the context of information retrieval on large scale systems and focuses on semantic

approaches using some king of knowledge base. In section 3, we review the main existing

approaches for knowledge updating. We detail in Section 4 our proposal. We present the

system architecture and several algorithms for this goal. An experimental validation is

provided in section 5.

2. Problem Statement

Distributed Information Retrieval systems and more specifically P2P IR systems had

specific problems. When the user issues his query on such a system, a selection phase is then

to choose relevant peers that can be solicited to answer the query. Thus, each selected peer

contributes to solve the query by sending a ranked results list to the initiator peer.

All these lists have to be merged into one final ranked list. This merging task is

challenging due to the big heterogeneity of peers regarding their collection (type and size),

their IR model and to the lack of reliable and global statistics.

Ideally, contributed systems should send content about their collections to allow ranking

documents in a uniform manner. However, this strategy leads to a system overhead due to the

communication’s cost it incurs and does not respect autonomy of peers. In order to avoid this

problem, we have proposed in [10], a profile-based merging algorithm (PBA) that aims to

replace the use of global system’s statistics by local information learned from user’s behavior

when he interacts with past queries’ hits (see Figure 1).

Figure 1. Knowledge Based Merging Approach

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

103

A user profile is deduced from the association between queries terms, contributed peers

and documents. Formally, a profile Pr can be represented as a tuple: Pr= {Qt,Cp, Cd} where

Qt={q1, q2,…, qm}, is a set of queries terms shared between similar Contributed Peers Cp

and similar Contributed documents Cd. The set of all profiles stored in a peer is called a

knowledge base. Thus, our merging algorithm can recommend the ranking of returned

documents in the positions that best fit the user’s need. However, the knowledge base may

provide obsolete recommendation if the system or the user’s need evolve.

Here, we give some realistic scenarios for the observed inconsistency between the system

evolution and the user need on one side and the KB state on the other side. We recall that a

peer’s knowledge base is created when a user asks questions and chooses answers by

clicking, accessing or downloading documents. A user often poses needs that are semantically

close during a given period, either to refine his query or to consult close needs of interest.

Exampley posing queries with the theme RID, P2P, the IR process, the distribution

problems... the KB, therefore, includes themes that are close and complementary. The

documents set in the database are, from the user perspective, the most interesting for his

queries.

If a user asks questions again about a theme already seen, the aggregation program may

recommend him, starting from the results returned, those that interested him in the recent

past: the KB will help to guide towards documents that are viewed or downloaded for this

theme, this allows classifying these results in the first positions.

Once the user enters a query”car purchase” for example, we notice that the searched

themes cut with what has been learned comparing to the learned terms. Hence, the query is

considered as a new need that requires a new learning effort. If the peer continues to run

queries of the same theme, the utility of regenerating the KB while including these new needs

becomes insistent. Indeed, without prior knowledge, the classification will be randomly done

and there is no way to exploit some knowledge.

A second situation that requires a use of learning is that when a user posing a learned query

receives by one of the contributor peers an answer that doesn’t appear among the previous

similar queries answers. This situation can be interpreted by the accommodation of new

documents that may interest the user while they are not learned. If the needs to this document

increase when submitting other queries, this document must be included in the KB.

From the cited example, we notice that an important challenge in this context is to keep the

KB data up-to-date with respect to the system evolution and the user need. The KB evolution

goal is to enhance the retrieval effectiveness and this without paying high maintenance costs.

Hence, any system using a KB has an incentive to update it as frequently as possible to

increase the degree of freshness and efficiency of served results.

Unfortunately, given the large size of the knowledge base, it may take a long time to be

updated at any time. However, as the user’s needs evolve, there is a need to validate

knowledge base and to enhance results quality with respect to this need. One trivial way of

achieving freshness is having indicators that give notice whenever the knowledge base is

updated.

For these reasons we aim to set a mechanism for knowledge base evolution based on the

detection of users’ needs changes. The proposed solution prioritizes the knowledge base

‘entries to refresh according to a heuristic (updating Utility) that combines the rate new

needs’ changes and the rate of new queries and without need of any cooperation. To do this, it

seems important to ask three main questions:

• Which changes are concerned with the update?

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

104

• Who is responsible for the knowledge base update decision? Is there any centralized

authority that decides to globally update the network, or may this decision be local?

• Is the monitoring of network changes done in a real-time or changes are rather

perennial?

Before answering these questions that will guide our proposal, we review some approaches

for knowledge update.

3. Related Works

The main title (on the first page) should begin 1 3/16 inches (7 picas) from the top edge of

the page, centered, and in Times New Roman 14-point, boldface type. Capitalize the first

letter of nouns, pronouns, verbs, adjectives, and adverbs; do not capitalize articles, coordinate

conjunctions, or prepositions (unless the title begins with such a word). Please initially

capitalize only the first word in other titles, including section titles and first, second, and

third-order headings (for example, “Titles and headings” — as in these guidelines). Leave

two blank lines after the title.

A literature review shows that the knowledge update problem was often treated based on

push approaches [8, 5, 15, 2]. Push policy is specific to real-time systems where usually a

centralized server updates the knowledge bases in a uniform manner and periodically [11, 3].

The problem with push approaches and periodic updates is that of considering the user as a

passive entity whereas these updates are especially user-centered. Besides, the problem with a

periodic update is twofold:

• Rebuilding the knowledge base while the system has not evolved;

• Spending some (possible large) periods without update while data are stale.

Moreover, adopting centralized server update imposes a server overhead and seems to be

not suitable for our prior choices of scaling [10]. Intuitively, it is obvious that this cannot be

efficient and effective in large scale systems due to the amount of data that would have to be

transferred.

More recently pull approaches [4, 5] have been proposed and run the update on users’

demands. Adopting a pull approach requires the user to directly ask for update, which

Moreover, adopting centralized server update imposes a server overhead and seems to be not

suitable for our prior choices of scaling [10]. Intuitively, it is obvious that this cannot be

efficient and effective in large scale systems due to the amount of data that would have to be

transferred.

More recently pull approaches [4, 5] have been proposed and run the update on users’

demands. Adopting a pull approach requires the user to directly ask for update, which

imposes on the one hand a cognitive overhead in addition to his service usage, and the

recourse to some heuristics for estimate the next update on the other hand. The estimation

task is generally judged as not evident.

In this work, we first argue that the real problem in semantic aggregation for large scale

information retrieval is the ability to cope with changes to the KB in the presence of dynamic

user behavior and data updates. For these reasons, many applications try to study the user

behavior to understand from his specific intensions when to refresh. Based on this

assumption, we propose new algorithms for controlled evolution mechanism that guides the

next update at the suitable moment and this, in a completely decentralized manner.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

105

4. A Controlled Knowledge Evolution Mechanism

4.1. Overview

To present the main features of our proposed solution, we begin by answering the

questions asked in Section 2. As concerns the changes to detect, it is important to know that

in our context of P2PIR systems, three kind of changes can be observed: changes in users

‘queries and in system resources (peers or documents). For any kind of changes, the KB has

to be updated. Peers join and leave the system frequently; their relative documents are

naturally added or removed from the system. Besides, new documents can be added or

removed from existing peers while the knowledge base is not refreshed to capture these

changes. These peers and documents can be useful to the user and can suit his needs while

they are not yet learned in his knowledge base.

Updating a knowledge base may rely on a centralized authority [11] which is able to

decide what and when updating. However, using a centralized authority to update a system of

many hundred of peers will incur a system overhead and does not respect peer’s autonomy.

For this reason, we have chosen a decentralized solution. Therefore a local decision is

runon each peer to update its knowledge base. However, it is worth remarking, that being

local, the peer’s decision to evolve its KB is not antagonistic with others peers’ decisions.

Indeed, a peer that evolves its KB evolves indirectly changes in the system. Thus, the main

contribution of this paper is the incremental aspect of the system refresh based on

decentralized decisions to run local updates.

The third answer concerns the update delay. This latter should take into account the nature

of changes. It would be ineffective to make updates continuously even for small changes. To

ensure system stability, we do not use a real-time approach. One can notice that update will

be done in an off-line manner.

4.2. Proposed Architecture

Figure2. Knowledge base Update Module

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

106

Figure 2 presents the architecture of the controlled evolution mechanism run on a given

peer. This architecture is based on an activity diagram that describes the main steps

performed for refreshing the knowledge base. It is obvious from the Figure that the process is

run since the user had received the results of his submitted query from several contributor

peers. A set of need Detectors (depending on the kind of need), running on the application

background, as a daemon, try to evaluate three kinds of needs (topics, documents and peers)

against information stored in the knowledge base (or profiles base). Need detectors use Flags

to claim that the need is ”new” compared to the KB state (so it’s set to 1) or already learned

(flag value =0) as presented in Algorithm 1 and 3 for respectively topics and resources.

When a Need Flag is set to 1, the need utility will be computed as presented later in

Algorithm 4. In this step, automatically the query (with its hits) and utility scores are added to

an utility list.

When the utility score reaches a fixed threshold U, a warning is turned on and the KB can

be regenerated with respect to the new needs.

4.3. Updating Process

This section presents the main steps to perform a KB evolution. Several algorithms will be

presented to detect new queries and resources in the P2P system (Documents and/or nodes),

to compute the utility and to update the KB. In all these algorithms we will consider the

following notation table:

Table1. Notation Table

4.3.1: New queries detection: Algorithm 1 gives the main steps to detect that a query q is a

new need compared to the KB’s state. Therefore, a coherence score between the system and

the KB’s state is computed (see Algorithm 2). If the score is below a similarity threshold £, a

detector Flag for q is set to 1, the query is then considered as a new need.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

107

4.3.2. New Resources Detection: The main goal of this detection is to check whether new

resources (R) (peers or documents) join the system. This detection will be based on

progressive comparison between the new queries’ answers and the answers in the KB for

similar queries. The notion of similarity between new queries’ terms and terms in the profiles

PR from KB is based on Slaton’s semantic similarity, given in Algorithm 2. Algorithm 3 sets

a detector Flag to 1for each resource that not exist in the Profiles of the query q and so

decides that R is a new need compared to the KB’s state.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

108

4.3.3. Update Utility Computing: The controlled evolution of our knowledge Base is based,

as already cited, on default needs’ detection (or new needs) represented by Flags. However, to

run the update, it’s not sufficient that a Need is considered as new. In fact, the decision of

running the updating step is related to an utility value for each kind of need. This utility

depends on which detector is used, or on all of them (the query, or resource detector). In fact,

we consider one utility by each kind of need (QU, DU and PU) and needs whose utility value

is higher than 1, are added to the Needslist (see Algorithm 4). A complete trace of the needs

(resources and submitted queries) and their respective utilities is injected in the NeedsList.

4.3.4. The Knowledge Base refresh: The utility score computing for each need, as presented

in Algorithm 4, is the necessary condition for performing the update. Indeed, when utility

score is above a given utility threshold (see Algorithm 5), the update can be realized. We

consider here one utility score (of the query or the resources) depending to the kind of the

used flag. When all Flags are used, the maximum utility of the three is compared to the utility

threshold.

To refresh the KB, two approaches can be used: the complete or the incremental refresh

approach. In our case, we choose to achieve a complete update by the regeneration of

information gathered from the NeedsList and the knowledge base as presented in Algorithm

5. It is important to notice here that even a complete refresh is done in a purely local manner

with respect to the initiator peer.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

109

Algorithm 5 presents the different steps for the complete KB refresh and determines the

conditions to trigger it.

5. Experiments

5.1. Simulation Environment and Parameters

To validate our approach, we have developed a peer-to-peer simulator based on XML files

describing the system peers and the documents they contain, as well as queries which will be

launched on the system. Our simulator uses a module for data distribution and replication

(uniform, random, etc.), the Benchmarking Framework for P2PIR [16], developed in our

team. This framework is configurable, it allows user to define some parameters such as the

system size, the documents and queries’ distribution methods and replication rate, etc. In the

present study, we used a centralized dataset which is a selected subset of the DMOZ [6] web

directory. It contains over 28182 documents and 4246 topics.

This subset of documents is obtained from 810 sites which share more than 10 documents.

During simulations, each site is considered as a peer. Queries follow a zipF law distribution

[1] and are replicated three times. Documents in our experiment are distributed based on a

classification method i.e. the documents distribution is done in a way that springs naturally

from the collection via document URL [9]. URL domain is the data relied upon by the

classification. No replication is considered within documents to consider our approach

performances in the worst case.

For evaluation metrics, we use the same metrics presented in [10], i.e the precision at a

given document cutoff (p@k) [13], the Mean Average Precision (MAP) calculated by

averaging the precision p@rank(d) at the cutoff rank(d) for all relevant documents, the

Relative precision (RP) proposed in [14] that traduces the probability of relevance of a

document estimated as inverse rank in reference ranking and the SimilarPositions@k,

developed in the context of our work [10] and aiming to compute the percentage of positions

left in their place, compared to the centralized rank list.

In this set of experiments, we applied the Profile-based aggregation algorithm (PBA) [10]

to conduct our global ranking model. We compare the results obtained by our approach to

those obtained by a centralized IR system. It’s worth mentioning that our simulator considers

both global and local similarities to rank, instead of using only global similarities. Global

similarities are those used by the centralized collection, while local similarities are relative to

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

110

the contributor peers. It implies that the values we get for the different IR metrics are relative

ones and not absolute ones (for example a precision of 1 indicates that our approach gives the

same result than a centralized one).

In these experiments, we do not introduce heterogeneity in IR models. We only use cosine

distance between queries and documents either in global or local similarities. The evaluation

of the proposed approach for knowledge base evolution is based on the use of PBA with and

without updated knowledge base. To evaluate our updating method for the PBA algorithm,

we first focused on the learning step. We reserved 1/3 of the queries in each peer for training.

Moreover, we consider the training only for 450 peers and not for all of the 810 peers. This

allows the simulator to send as query hits new resources that are not learned to see our

potential to observe queries defaults as well as resources defaults.

During the training phase, profiles are extracted from logs and constructed using formal

concept analysis (more precisely using the Godin’s algorithm [7]), implemented in the

platform Galicia V 3 [12].

5.2. Test Scenarios

Different test scenarios can be achieved to detect a knowledge default: we cite in the

following:

 S1 Arrival of new queries: We consider in this case the change of users’ needs.

More precisely, we need to detect the change of users’ interests. We know that users’

interests change over time. The need of updating the knowledge base is necessary.

Hence, our goal is to dynamically track their changes as the user interacts with the

system.

 S2 Arrival of new documents: In this case, we suppose that the system is enhanced

by new documents

 S3 Arrival of new peers: In this case, we suppose that new peers have joined the

system currently, we only simulate and evaluate the change of users’ needs

which is associated directly to him (so only the query Flag is used). PBA

algorithm starts in any peer with the simulation parameters described in the

following table:

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

111

Two conditions for update are considered:

• The threshold ℑ=50% is the condition to decide that a query is a new need.

• The utility threshold >= 30% of all submitted queries number in a given peer is the

condition to recommend the update.

5.3. Experimental Results

We begin with the test T0 described in the table 2 where we launch 1100 queries from 450

peers. The first step of this experiment is to evaluate the capability of our approach to detect

defaults. The algorithms 1 and 2 for queries defaults detection is run on T0 and T0z and

provides the results depicted in Figures 3, 4 and 5. Figure 3 presents an overview of the

average non-satisfaction rate of the queries aggregated at the system level, and shows that the

number of default queries (which present a non satisfaction rate greater than the threshold) is

ascending over the time.

In order to track the reason of this failure, we proceed by doing a zoom on some peers.

More precisely we focus on the first 10 peers in the system (see Figure 4). We notice from the

results depicted in Figure 4 that 6 peers among the ten present a knowledge default since their

non satisfaction rate exceeds the fixed threshold.

We followed the same strategy to see more precisely the reason of the failure in these peers

and we focus on the queries launched from these peers. At this level, Figure 5, shows that in

each peer, the number of default queries is more than 30% of the peers queries. By this

condition we simulate that our default stack is full and then we can start the update. At this

step, we run the update on each peer in failure. This update is based on the complete refresh

approach and we present as follows the system performance improvement when updating the

base by injecting the queries that present knowledge defaults. To detect the system

improvement when applying the PBA, we run a test phase T0z before and after the update i.e

on B0 and on B2 which is the updated base with respect to B1 (the set of injected failed

queries). The test aims to see the system improvement when we submit among others, learned

queries. Results of this test are depicted in Figures 6, 8 and 9.

All metrics show a clear improvement when PBA is run with update. However these

results are individuals (relative to single peers), that is why we tried to have an overall view

on the system performance when considering the MAP of all peers as presented in Figure 10.

The result showed in this Figure confirms that the individual decision for knowledge update

driven from each peer is not antagonistic and they contribute to improve obviously the overall

system performance.

The last question we want to answer throw this experiment is to see the impact of the

knowledge update on the performance of new queries in the system. This is the goal of test

T1. The result of this test for the MAP metric is depicted in Figure 11 which presents the

initial system performance with the initial base B0 and how this performance was improved

when the knowledge based is updated.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

112

6. Conclusion

We proposed in this paper, a new approach for knowledge base updating based on

detecting system evolution. Detection is made by local need detectors that look at three kinds

of changes that are respectively changes on user topics, new added peers, and new

documents. Architecture and several algorithms have been proposed for this purpose.

The main advantage of this approach is that it allows controlling knowledge evolution at a

peer level since it is able to detect peers that have to evolve and when to update. Experimental

results validate our approach and show that a fully decentralized decision to update

independent bases can ensure a better behavior of the updated peers and of the entire system.

Even if our proposal has been validated on the global ranking of results, it can be also

interesting for other process manipulating a knowledge base (selection of relevant peers to

route queries for example). In the same manner, it can also be applied to other type of

knowledge base (one just need to define new observers, depending on the structure and the

content of the KB).

Moreover, we think that the proposed approach can be an interesting issue for another

important problem in semantic P2P systems, that is the initial construction of the KBs. In

fact, all semantic approaches need a learning step as preliminary. In our case, the evolution

mechanism may allow to reduce this step or to allow a self-adaptation of a predefined KB

used to initialize new peers.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

113

References

[1] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet”, Glottometrics, vol. 3, (2002), pp. 143–150.

[2] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham and P. Shenoy, “Adaptive push-pull:

Disseminating dynamic web data”, IEEE Trans. Comput., vol. 51, no. 6, (2002) June, pp. 652–668.

[3] L. Bright and L. Raschid, “Using latency-recency profiles for data delivery on the web”, In Proceedings of

the 28th international conference on Very Large Data Bases, VLDB ’02, VLDB Endowment, (2002), pp.

550–561.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

114

[4] V. Cate, “Alex – a global filesystem”, In Proceeding of the 1992 usenix file system workshop, (1992), pp. 1–

12, 1992.

[5] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham and P. Shenoy, “Adaptive push-pull:

Disseminating dynamic web data”, In WWW10, (2001), pp. 265–274.

[6] DMOZ, “DMOZ Open Directory Project”, http://olc.ijs.si/dmozReadme.html, (2011).

[7] R. Godin, R. Missaoui and H. Alaoui, “Incremental concept formation algorithms based on Galois (concept)

Lattices”, Computational Intelligence, vol. 11, no. 2, (1995) May, pp. 246–267.

[8] C. Liu and P. Cao, “Maintaining strong cache consistency in the world-wide web”, In Proceedings of the

Seventeenth International Conference on Distributed Computing Systems, (1998), pp. 445–457.

[9] J. Lu and J. P. Callan, “Content-based retrieval in hybrid peer-to-peer networks”, In CIKM, (2003), pp. 199–

206.

[10] R. Mghirbi, K. Arour, Y. Slimani and B. Defude, “A profile-based aggregation model in a peer-to-peer

information retrieval system”, In Proceedings of the Third international conference on Data management in

grid and peer-to-peer systems, Globe’10, Berlin, Heidelberg, (2010), Springer-Verlag, pp. 148–159.

[11] D. Theodoratos and M. Bouzeghoub, “Data currency quality factors in data warehouse design”, In Proc. of

the Int. Workshop on Design and Management of Data Warehouses (DMDW’99), Heidelberg, Germany.,

Heidelberg, Germany, (1999).

[12] P. Valtchev, D. Grosser, C. Roume and M. R. Hacene, “Galicia: an open platform for lattices”, In Using

Conceptual Structures: Contributions to the 11th Intl. Conference on Conceptual Structures (ICCS’03),

Shaker Verlag, (2003), pp. 241–254.

[13] E. M. Voorhees and D. K. Harman, “TREC: experiment and evaluation in information retrieval”, The MIT

Press, (2005).

[14] H. F. Witschel, “Global and Local Resources for Peer-to-Peer Text Retrieval”, PhD thesis, Der Fakultat fr

Mathematik und Informatik der Universitat Leipzig eingereichte, (2008).

[15] J. Yin, L. Alvisi, M. Dahlin and A. Iyengar, “Engineering server-driven consistency for large scale dynamic

web services”, In Proceedings of the 10th international conference on World Wide Web, WWW ’01, New

York, NY, USA, (2001), pp. 45–57, ACM.

[16] S. Zammali and K. Arour, “P2PIRB: Benchmarking framework for p2pir”, In Proceedings of the Third

international conference on Data management in grid and peer-to-peer systems, Globe’10, Berlin, Heidelberg,

2010, Springer-Verlag, pp. 100–111.

