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Abstract 

Studying patterns in DNA sequences has been for years the subject of many research 

papers in bioinformatics. This paper evaluates two algorithms used for DNA comparison. 

Those are: Longest Common Substring and Subsequence (LCS, LCSS). Evaluation is 

performed based on the different code implementations for those two algorithms. Accuracy 

and performance are the two major criteria that are used for the evaluation of algorithms’ 

implementation. Results showed that while those two algorithms are popular, their 

implementations are not consistent through research papers or websites that use and 

implement those algorithms for DNA sequence comparison. 

 

Keywords: DNA similarity algorithms, string search, DNA sequence comparison, DNA 

analysis, pattern recognition, Longest Common Substring, Longest Common Subsequence 
 

1. Introduction 

Most people share very similar gene sequences, while some regions of DNA sequences 

vary from one person to another with high frequency. Comparing variation in these regions 

allows scientists to answer the question of whether two different DNA samples come from the 

same person. A DNA sequence represents the genetic code contained within an organism. 

The genetic code is a set of sequences which define what proteins to build within the 

organism. 

This paper will focus on the subject of documents’ similarity algorithms in the scope of 

using those similarity algorithms for DNA comparison. Despite the fact that similarity 

algorithms and DNA comparison are existed and used for years through several simple and 

complex free and commercial tools, there is a wide spectrum of applications for the usage of 

DNA comparison, analysis, construction, etc. 

On the theoretical side, some of the famous algorithms used in DNA comparison are: 

Longest Common Substring (LCS) and Longest Common Sub Sequence (LCSS). We will 

evaluate algorithms used to compute those algorithms in terms of performance and accuracy. 

 

1.1 Techniques to Detect Documents Similarity 

In this area, there are many methods to judge similarity between documents. A brute force 

approach compares the subject document with investigated documents word by word. 

However, in most cases, such approach is time and resources’ consuming. In addition, such 

approach can be easily tricked through editing a small number of words in the document. A 

more effective approach depends or is based on metrics related to the documents such as the 

number of statements, paragraphs, punctuation, etc. [1, 2]. A similarity index is calculated to 

measure the amount of similarity between documents based on those metrics. Comparing the 

approach of taking the document word by word in comparison to statement or paragraph by 

paragraph for example can have several contradicting tradeoffs. On one side, word by word 
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comparison can minimize the effect of changing one or a small number of words relative to 

the total document. However, this can be time consuming and word to word document 

similarity may not necessarily mean possible plagiarism especially if the algorithm did not 

take the position of the words into consideration. Sentence or paragraph by paragraph 

approach is also affected by several variances such as the difference in size between the 

compared documents and the amount of words edited in those statements or paragraphs. 

Hashing algorithms are also used to measure documents similarity. Hashing algorithms are 

used originally in security to verify the integrity of an investigated disk drive and protect it 

from being tampered. Hashing can be calculated for a word, a paragraph, a page, or a whole 

document. Manber presented approximate index concept to measure similarity between 

strings in different documents [3]. A tool called “Sif” is developed to find similar files in a 

large file system. He proposed the concept of approximate index to measure the similarity of 

character strings between documents, which was adopted later by many similar systems. The 

tool we developed in this paper uses two different search algorithms. The first one searches 

for possible similar documents for the subject document through a directory of files. The 

other algorithm searches for similar documents through the Internet. Calculating similarity 

between documents does not require in many cases similarity in cosmetic attributes such as 

the file type, size, number of words, etc. The author defined a checksum algorithm called 

“fingerprint” that is based on defining keywords in each document and parse a certain amount 

of characters starting from those keywords to calculate similarity. 

 

1.2. Why DNA Sequence Comparison? 

In a DNA sequence, or a molecule of DNA, there are four nucleotide bases: Adenine, 

Guanine, Cytosine, and Thymine. The knowledge of a DNA sequence and gene analysis can 

be used in several biological, medicine and agriculture research fields such as: possible 

disease or abnormality diagnoses, forensics, pattern matching, biotechnology, etc. The 

analysis and comparison studies for DNA sequences connected information technology tools 

and methods to accelerate findings and knowledge in biological related sciences.  

DNA sequence analysis can be used to identify possible errors or abnormality in a DNA 

sequence (e.g. in comparison with a normal one). It can be also used to predict the function of 

a particular gene and compare it with other “similar” genes from same or different organisms. 

If a new DNA sequence is discovered its functionality is specified based on its similarity 

with known DNA sequences. Such technique is used in several medical applications and 

research studies. 
 

1.3. DNA Sequence Alignment 

In DNA sequence alignment process, similarity between two or more sections of genetic 

codes is studied in terms of quantity. Those comparisons can be used to discover information 

such as: evolutionary divergence, the origins of disease, and ways to apply genetic codes from 

one organism into another.  In DNA sequence alignment, sequences are aligned and similar 

characters between the two sequences are tagged (Figures 1 and 2). 
 

 

Figure 1. A Simple Sequence Alignment Example 
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Figure 2. DNA Sequence Alignment Sample 
 

1.4 DNA Comparison and Analysis Tools 

For years, DNA comparison has been used in biology and forensics to discriminate and 

compares genes or genomes. Those tools vary in size, complexity and functionality based on 

several factors. Some small tools or websites are developed as free or open source for 

research or experimental purposes. Examples of such small size limited purpose tools or 

applications are: Double Act (http://www.hpa-bioinfotools.org.uk/pise/double_act.html), 

Genomatix (http://www.genomatix.de), Mobyle (http://mobyle.pasteur.fr), ALIGN, FASTA, 

etc. BLAST: (Basic Local Alignment Search Tool)[4] is an example of a larger scale.  Most 

of these algorithms uses Smith–Waterman algorithm for performing sequence alignment. This 

algorithm which is also used in crimes’ forensic investigation does not use full DNA to DNA 

sequence comparison. It rather selects several segments (e.g. eight segments) selected from 

the different locations of the DNA.  BLAST uses also dynamic programming and “seeding” 

to find starts of possible matches. The goal is to accelerate the process of finding matches 

between DNA sequences as this can take a significant amount of time and resources.  

Another process that can be different from one tool to another is the ranking of the 

different matches. This can particularly occur when more than a match is in the same size 

(e.g. athe, tbcd, find, all are of size 4). Through the algorithms that we will evaluate and use, 

we will see such difference where some algorithms use the first match; other algorithms use 

the last match, etc. Figure 3 shows a sample of two DNA sequence comparisons where the 

tool shows the areas of match between the two DNA sequences. 
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Figure 3. A Sample Output of 2 DNA Sequences’ Comparison 
[http://mobyle.pasteur.fr]. 

 
1.5 DNA Document Similarity Applications and Algorithms. 

Longest common substring and subsequence (LCS, LCSS) 

In addition to DNA matching applications, there are several types of applications that 

implement exact string matching algorithms. Examples of such applications include: code, 

document and exam plagiarism, automatic grading, file comparison, screen display, language 

auto correct, translate, etc. 

There are several metrics and algorithms used to decide and evaluate whether and how 

much two DNA sequences are similar. In this paper, we will focus on evaluating two 

algorithms: longest common substring and longest common subsequence. Those two 

algorithms have been used for years in different string comparison. From now on, we will 

differentiate the abbreviation for Longest Common Subsequence as (LCSS) in comparison to 

LCS for Longest Common Substring. The main difference between LCS and LCSS is that 

LCS considers only consecutive characters unlike LCSS. 

1.5.1 LCS: In LCS, the algorithm searches for the longest possible string between two string 

sequences or files. For example, LCS between the two strings: 

1…    This is the first string 

2….    The second string 

LCS is   “string” and the longest string length is 6.  

Some algorithms may consider it as 7 (taking the empty space before the string in 

consideration). Text case is usually ignored. The second longest string can be 5: strin. Table 1 

shows examples of different strings and their LCS values. 

 

http://mobyle.pasteur.fr/
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Table 1. LCS for Several String Examples 

String1 String2 LCS 

ABAZDC BACBAD BA 

ABCDGH AEDFHR A 

AGGTAB GXTXABYB AB 

GCGCAATG GCCCTAGCG GCG 

BC BCBD C E BCBD D 

BCBD A 

BCBD 

cs106b Rocks C 

Abcdef Thw “” 

 

A dot plot (Figure 4) is usually used to visualize showing LCS on a small scale where the 

longest continuous diagonal line represents LCS (after writing one of the strings vertically 

and the other horizontally). 

 

 

Figure 4. A Sample DNA Dot Plot 
 

1.5.2 LCSS: A subsequence is a sequence that appears in the same relative order, 

but not necessarily contiguous. For example, “abc”, “abg”, “bdf”, “aeg”, ‘”acefg”, 

etc are subsequences of “abcdefg”. This means that a string of length n has 2n 

different possible subsequences. The LCSS problem is to find a common 

subsequence that is as long as possible. For example the LCSS of ggcaccacg and 

acggcggatacg is: ggcaacg. Table 2 shows examples of different strings and their 

LCSS values.  

 
Table 2. LCSS for Several String Examples 

String1 String2 LCSS 

ABAZDC BACBAD ABAD 

ABCDGH AEDFHR ADH 

AGGTAB GXTXABYB GTAB 

GCGCAATG GCCCTAGCG GCCCT 

BC BCBD C E BCBD D 

BCBD A 

BCBD 

cs106b Rocks Cs 

Abcdef Thw “” 
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Other examples of DNA sequence similarity metrics 

1. Percent of similarity. In some cases, maybe we are looking for a minimum cutoff 

match in percentage between two DNA sequences. For example, we are looking for at least 

70 % match between two DNAs. How we define that those two DNAs at least 70 % match or 

common? 

2. Longest Repeated Substring Problem (LRSP) or Exact String Matching (ESM).  

These methods compare two DNA sequences for a possible identical match (e.g. forensic 

investigation). Given a DNA, look through a DNA database for similarities. This is usually 

used in computer crimes’ forensics where investigators are interested in finding the most 

appropriate match for a particular DNA sequence. As a DNA complete sequence is very 

large, several sections are taken from several locations. The matched DNA is considered as 

the one which has all sections match that of the subject DNA sequence.   

3. Finding Palindrome: In DNA a complemented palindrome is a sequence of base pairs 

that reads the same backwards and forward across the double strand. The enzymes that cut 

these specific sites are called restriction enzymes. Therefore by looking for complemented 

palindromes we can identify the binding sites for restriction enzymes. 

4. Minimal edit distance (aka Sequence alignment): Edit distance can be thought of as 

the “difference” between two strings. The difference between two strings is measured by 

counting the number of edit operations which must be performed, character by character, to 

transform one string into another. These edit operations are: R = replace, I = insert, D = 

delete, and M = match. For example, to transform the string “cat” to the string “chat” we can 

insert (I) the character ‘h’ between the ‘c’ and ‘a’ of “cat”, yielding the string “chat”. 

 

2. Related Work 

Several methods were suggested to find sequence similarity. Some of these search for 

exact matches between sequences with no alignment [5, 6, 7] while others allow for insertions 

or deletions trying to find the best possible alignment [4]. 

The first description of a sequence similarity search method that allows insertions and 

deletions was published in [8] where a computer program for finding similarities in the amino 

acid sequences of two proteins was developed. .  

Some similarity algorithms depend on the longest common subsequence (LCS) idea that is 

commonly used in computer science to find the similarity between different sequences. In [9], 

the authors introduced new variants of LCS problem and presented efficient algorithms to 

solve them. They showed the ability of their algorithms to solve several molecular biology 

problems.   

Furthermore, a parallel version of the LCS algorithm that finds the alignment between 

DNA and protein sequences was built in BLAST. The algorithm was tested and showed an 

increase in the performance of about 24-30% than the serial LCS. 

In [10], the authors used the LCS as a building block for their proposed algorithm that 

searches for specific motifs in a DNA database. Then the algorithm was generalized to solve 

the common sub-sequence problem from the computational aspect. Although the complexity 

of the algorithm is exponential in general but it is polynomial when the threshold value (t) and 

the length of the largest common subsequence (c) are sufficiently close. 

Another efficient algorithm to solve the LCS problem was presented in [11]. A solution of 

a variant of the algorithm namely constrained LCS that gets its motivation from 

computational bio-informatics was also suggested. 
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A search tool was developed in [12] that works on molecules with the SMILES format and 

searches the database for the specified user’s query. 

One area where DNA similarity algorithms are used is in compression techniques. The idea 

is to find regions of repeated subsequences and write them once saving a space of repeating 

these subsequences. This was applied in [10] where a ratio of 4.2% similarity was found 

within the same sequence and reached 18% when comparing 16 chromosomal sequences.  

In [13], two algorithms for similarity measure between sequential data were proposed. 

Each algorithm uses a different data structure. The algorithms were tested on network data 

intrusion detection and showed a linear running time in the sequence length. The algorithm 

can be applied also in security and bioinformatics. 

Biological sequences are very large in size and require algorithms that work with large 

scale data. Therefore, the new technology should be utilized to speed up procedures. 

Challenges still face researchers in integrating data exploration tools with a variety of 

different architectural requirements and natural programming models. A case study that was 

applied on DNA sequence analysis presents these challenges [14]. 

Several software tools were built to find the similarity between biological sequences. Basic 

Local Alignment Search Tool (BLAST) [4] is one of the most commonly used web tools for 

comparing primary biological sequence information whether proteins or DNA sequences. 

One problem that may occur with web tools is the semantic type mismatch in scientific 

workflows. This problem was tackled in [15] and a similarity search on DNA sequences was 

applied that guarantee semantic type correctness in scientific workflows.  

Another tool that is used for multiple sequence alignment is DIALIGN which combines 

both local and global alignment features and uses dynamic programming in its algorithm [16]. 

An accelerator was built in hardware to improve the performance of this tool and experiments 

show a clear progress in the retrieval of alignments for large biological sequences.  

Several other tools were built whether for DNA sequences or proteins [17, 18, 19]. A study 

that compares several tools was done experimentally in [20] which shows that new variations 

of old algorithms were efficient in practice. In addition, the authors mentioned that the 

algorithms efficiency depends on the processor and compiler.   
 

3- Goals and Approaches 

We can calculate DNA sequences similarity based on: 

1. Number of string matches (strings of length above 2) to the total size of the DNA 

sequences.  

2. The number of characters in the maximum string match between the two DNA 

sequences 

LCS and LCSS are two popular metrics to measure the level of similarity between two 

DNA sequences. We will evaluate different implementations for the algorithms LCS and 

LCSS based on performance and accuracy. 

It is noticed while surveying related research papers and articles that there are some 

conflicting results in calculating LCS and LCSS. In this experiment, we tried to define the 

different approaches used to develop those algorithms in order to compare their results in 

terms of accuracy and performance. 

All those algorithms are implemented in C# and Java programming languages. Some of 

those codes are taken from research resources, while we developed other algorithms based on 

either algorithmic description or pseudo codes described in the literature. 
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In the following sections, we will describe in generic pseudo code the algorithms used to 

evaluate both LCS and LCSS. 

 
3.1 LCS Pseudo Codes 

Research papers, websites and literature, have several methods to code the Longest 

Common Substring (LCS) algorithm. Some of those methods use generic code of methods 

and variables. Others utilize new types of data structure for fast access and information 

retrieval. Dynamic programming is one of the techniques used to find the best solution in the 

shortest time. Following is a description of the different algorithms used in the experiments as 

a pseudo code. All algorithms use the same generic code shield structure for calling the two 

DNA sequences to evaluate and then for saving the results and calculating the overall 

required time. 

 

•  LCS 1 

This first simple algorithm loops through all possible string combinations from the two 

strings in comparison, tests and compares them to find the longest possible match. Such 

algorithm assumes no previous knowledge of where the longest path can be and hence loops 

thoroughly through the two strings to return the longest common string. In this algorithm one 

string is set to be the reference and the other string to loop through. If there are several 

longest common strings with the same length, a first or default can be defined. Other 

approaches or versions of this code take the loop count as the length of the smaller string (e.g. 

n = minimum (string1.Length, string2.Length). The algorithm may get seriously slow if the 

length of both strings is large. Later on, LCS is calculated as: 

 

 

Figure 5.  LCS------Algorithm1 
 

• LCS 2  

This algorithm also uses a generic code similar to LCS1 with two loops. Figure 6 shows 

the pseudo code for the algorithm. 

 

 

Figure 6. LCS------Algorithm 2 
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• LCS 3  

Similar to most traditional implementations of LCS, LCS 3 uses a two dimensional array 

structure and two nested loops. In this specific implementation, three loops are used. The goal 

of the third inner loop is to improve performance and reduce the number of cycles. 

 

 

Figure 7. LCS------Algorithm 3 

 

• LCS 4 

This algorithm is also similar to the previous algorithm with minor changes. If there are 

several possible matches (with the same length), the output can be different. This may explain 

why popular tools that can measure LCS such as: Blast (www.ncbi.nlm.nih.gov/BLAST), MB 

(http://www.molbiosoft.de/), Double Act (http://www.hpa-

bioinfotools.org.uk/pise/double_act.html), etc may show different results. The algorithm 

shows that the last match is selected if there is more than one match. 

 

 

Figure 8. LCS------Algorithm 4 
 

• LCS 5 

This variation aims to improve the performance of LCS4. Because the two nested loops in 

LCS4 can be time consuming especially when the strings are long, the inner loop may loop in 

a shorter cycle (j + k <= input2.Length) where k is an integer variable that counts the length 

of the maximum LCS already found. This means that if we find a LCS of length 5, there is no 

need to find or search for LCS that is less than 5. 
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Figure 9. LCS------Algorithm 5 
 

• LCS 6 

In this algorithm, a two dimensional array that has the size of the two strings in comparison 

is created. Each pair of parallel characters in the strings is compared. If the characters are not 

equal, the array value in that location is set to zero, and if they are equal, the value is set to 

zero in the first location which is incremented for each consecutive match. To retrieve LCS, a 

variable is set to a default value (e.g. one) and compared with the values in the array to find 

the largest value. This algorithm utilizes dynamic program method to look for the best 

feasible solution. Figure 10 shows a sample output from LCS 6. 

  

 

Figure 10. A Sample Output as a Result from LCS 6 
 

Linear, integer, dynamic programming, etc are different levels of an operational research 

or Artificial Intelligent (AI) field that set a matrix of input requirements and constraints for a 

solution, and run a solution engine to find the best possible feasible solution that can achieve 

all those requirements. The constraints in this case are that the LCS or the solution string 

should be part of both input strings (i.e. LCS(string1, string2) is part of string1 and string2), 

and its length should be more than 1 and less than the length of either string. The last 

constraint is that this LCS should be the longest. This means that there can be several string 

matches between those two strings and we are looking for the longest. 
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Figure 11. LCS------Algorithm 6 

 
• LCS 7 

This algorithm utilizes also dynamic programming to find the best feasible solution. The 

code is shown in figure 12. 

 

 

Figure 12. LCS------Algorithm 7 

 
3.2 LCSS Algorithms 

Longest Common Sub Sequence (LCSS) algorithm is expected to take longer time to solve 

and in some cases such method may consume all memory resources for long strings. LCSS 

does not require matching strings to be in the exact same order and location in the two strings. 

For example, between the two strings: "123456" and "1224533324", LCS is 2 (12) while 

LCSS is 4 (1234). 

 

• LCSS1 

The first algorithm uses recursion to keep checking if there is a further match. As 

mentioned earlier, solving LCSS requires longer time and resources in comparison to LCS. 

Therefore, the algorithm was very slow especially for large strings. 
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Figure 13. LCSS------Algorithm 1 
 
• LCSS2 

The idea of this algorithm was inspired from Wiki books (www.thefullwiki.org). The 

algorithm first draws a table with the two strings in rows and columns (as characters). In each 

character match between the two strings a number (e.g. number 1) is added. For each 

consecutive match, the number is calculated. However, at this time, next (i.e. non 

consecutive) matches are also counted. Figure 14 shows the algorithm. 
 

 

Figure 14. LCSS------Algorithm 2 

 
• LCSS3 

LCSS 3 utilizes dynamic programming and uses partially similar approach to LCSS 2. 

Figure 15 presents the algorithm where the strings in capital are "constants" which indicate a 

direction in the backtracking array.  

 
• LCSS4 

LCSS4 algorithm represents another data structure approach for building a two 

dimensional array. Through the two nested loops, a backtrack process is applied whenever 

there is a two-character match between the two strings. Figure 16 explains the steps.  
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Figure 15. LCSS------Algorithm 3 

 

 

 

Figure 16. LCSS------Algorithm 4 
 
• LCSS5 

LCSS5 is another example or version of the dynamic programming approach that uses that 

back track process whenever a match is found between two characters. The pseudo code of 

the algorithm is shown in figure17. 

 
• LCSS6 

This algorithm is also somewhat similar to algorithm 4. The code is shown in Figure 18. 

In order to evaluate LCS and LCSS algorithms in terms of accuracy and performance, a 

dataset of relatively large DNA sequences is selected. Following is a brief description of the 

selected dataset.  
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Figure 17. LCSS------Algorithm 5 

 

 

 

Figure 18. LCSS------Algorithm 6 

 

4. Case Study 

To evaluate LCS and LCSS algorithms a dataset of DNA sequences is selected. The DNA 

sequences’ dataset is taken from NCBI Viral Genomes 

(http://www.ncbi.nlm.nih.gov/genomes).  Sequences are randomly selected from different 

genome sequences. Sequence datasets are truncated to a specific length (K) and a number of 

sequences (N). The dataset include sequences of lengths 100, 500, and 1000. Figure 19 below 

shows the names of those DNA sequences where the name reflects the number of sequences 

(N) and the length (K).  
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Figure 19. The DNA Sequences used in the Experiment 

 

5. Analysis and Comparison 

In this part, LCS and LCSS algorithms are compared each in a separate section. 

Algorithms are going to be compared for accuracy and performance. 

 

1. LCS Accuracy Comparison 

Before using the experimental datasets mentioned earlier and in order to visually verify 

reliability, there is a need to check results manually. We will first select small size strings and 

compare results from all algorithms with expected results. We will use the same examples 

described earlier. Table 3 shows a sample result from LCS accuracy comparison on simple 

examples. 

 

Table 3. LCS Accuracy Comparison 

Strings Exp. Algorithms 

1 2 1 2 3 

ABAZ

DC 

BACBA

D 

BA BA BA BA 

ABCD

GH 

AEDFH

R 

A D A A 

AGGT

AB 

GXTXA

BYB 

AB AB A AB 

GCGC

AATG 

GCCCT

AGCG 

GC

G 

GC

G 

GCG GC 

BCBC

BDC 

EBCBD

DBCBA 

BC

BD 

BC

BD 

BCB

D 

BC

BD 

cs106b

bbc 

rocksbbc bbc bbc bb Bb 

Abcdef Thw “” “” “” “” 

ABAZ

DC 

BACBA

D 

Alg 

4 

Alg 

5 

Alg 6 Alg 

7 

ABCD

GH 

AEDFH

R 

BA BA BA BA 
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AGGT

AB 

GXTXA

BYB 

A A A A 

GCGC

AATG 

GCCCT

AGCG 

AB AB AB AB 

BCBC

BDC 

EBCBD

DBCBA 

GC

G 

GC

G 

GCG GC

G 

cs106b

bbc 

rocksbbc BC

BD 

BC

BD 

BCB

D 

BC

BD 

Abcdef Thw bbc Bbc bbc bbc 

ABAZ

DC 

BACBA

D 

wh

T 

“” “” “” 

 

Results show that the majority of the algorithms have consistent accurate results in 

comparison with the manual verification of the results. For the second example (table 3, 2cnd 

row), Algorithm 1 is the only algorithm that shows “D” as the match instead of “A”. This is 

not an error and it depends on the default selection once more than one match is found. Note 

that all algorithms select the first match while algorithm one selects the last match. 

Algorithms two, three and four have errors in rows: 4, 6 and 7. For this small testing dataset, 

we can say that in terms of reliability or accuracy of results, we can trust algorithms: 1, 5, 6 

and 7 as they showed consistent expected results in all tested rows or examples.  

Accuracy testing is also applied to the experimental dataset. Due to size and visualization 

limitations, we will show here only a small portion of the dataset. Table 4 shows accuracy test 

results on a sample of the experimental dataset. 

 

Table 4. Accuracy Test for a Sample of the Experimental Dataset 

Algorithms 

1 2 3 4 5 6 7 

TCGTTC

CGA 

TCGTT

CCGA 

TCGTTCC

GA 

TCGTT

CCGA 

TCGTT

CCGA 

TCGTT

CCGA 

TCGTT

CCGA 

GCTTTC

G 

GCTTT

CG 

TCCGAT

A 

TCCGA

TA 

TCCGA

TA 

TCCGA

TA 

TCCGA

TA 

AATAA

AAT 

AATAA

AAT 

CCGAAA

AA 

CCGAA

AAA 

CCGAA

AAA 

CCGAA

AAA 

CCGAA

AAA 

AAAAT

ATT 

AAAAT

ATT 

GTTACT

AA 

GTTAC

TAA 

GTTAC

TAA 

GTTAC

TAA 

GTTAC

TAA 

 

The small sample in the previous Table shows that different LCS algorithms may show 

different accurate results when the size of the compared strings are the same. As explained 

earlier, this depends on what is the default string to display as an output if there is more than a 

match with the same size. Some algorithms concentrate in finding the size of the LCS only; in 

that case, table4 will have the same value for all its entries.  

 

2. LCS Performance Comparison 

Table 5 below shows a summary of selected results from applying all LCS algorithms on 

the experimental dataset. Results showed that specific algorithms such as: Algorithms 1 and 

5, are significantly slow relative to the other algorithms that are somewhat similar and fast.  
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Table 5. Performance Test for a Sample of the Experimental Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3. LCSS Accuracy Comparison 

Similar to LCS, to evaluate accuracy on LCSS, we first used simple examples that can be 

evaluated visually. Table 6 shows the results of this initial accuracy test on LCSS algorithms. 

 

Table 6. LCSS Accuracy Comparison on Initial Examples 

Strings Algorithms 

1 2 Expected 1 2 3 4 5 6 

ABA

ZDC 

BACB

AD 

ABAD 

 

ABA

D 

 

AB

AD 

ABA

D 

DABC

AB 

ABA

D 

ABA

D 

ABC

DGH 

AEDF

HR 

ADH ADH A ADH RHFD

EA 

ADH ADH 

AGG

TAB 

GXTX

ABYB 

GTAB GTA

B 

AB GTA

B 

BYBA

XTXG 

GTA

B 

GTA

B 

GCGC

AA

TG 

GCCC

TAGC

G 

GCCTG, 

GCGC,  

GCCAG 

GCC

TG 

GG

CG 

GCC

AG 

GCGA

TCCC

G 

GCC

TG 

GCG

CG 

BCBC

BDC 

EBCB

DDBC

BA 

BCBC

B 

BCB

DC 

B BCB

CB 

ABCB

DDBC

BE 

BCB

DC 

BCB

CB 

cs106

bbbc 

Rocks

bbc 

Csbbc csbbc csb

bc 

Csbb

c 

ccbbsk

cor 

csbbc csbb

c 

Abcde

f 
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LCSS accuracy evaluation in the previous table shows that algorithm four has a serious 

accuracy problem in almost all examples, and algorithm two has also some accuracy 

problems in some examples. It should be mentioned that there are no relations between LCS 

and LCSS algorithms developed in this paper although algorithm four in both cases is shown 

to be inaccurate. For LCSS accuracy purposes, we will discard algorithms two and four and 

consider only the rest. It is possible that the implementation of those algorithms (2 and 4) 

needs tuning. However, since this is not consistent in most cases, debugging such algorithms 

can be time consuming. 

Strings Algorithms 

1 2 1 2-

3 

4-

5 

6-

7 
N K N K Time in seconds- 

average for several 

selections 

100 100 100 100 12 6 6 6 

100 100 100 500 17 6 5 6 

100 100 500 100 23 6 7 6 

100 100 500 500 20 6 6 6 

100 100 1000 100 20 9 6 6 

100 100 1000 500 19 7 6 5 

100 500 100 500 27 5 6 5 

500 100 500 100 24 5 12 6 

500 500 500 500 25 7 11 6 

1000 100 1000 100 27 5 81 6 

1000 500 1000 500 25 6 70 6 
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4. LCSS Performance Comparison 

Table 7 shows the results of evaluating the performance of LCSS algorithms. 

 

Table 7. Performance Test for a Sample of the Experimental Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 
Results from Table 7 above show that as expected LCSS calculation takes longer time in 

comparison to LCS. Algorithm one was very slow and in some cases time either expands to 

hours or exhausts system memory and causes a crash and hence their values were excluded. 

Algorithm two is then relatively slower than the other algorithms. Another finding is that time 

is not perfectly increasing with the increase in the size of the sequence. 

 

6. Conclusion 

In this paper, we evaluated the code implementation of two widely popular DNA sequence 

comparison algorithms: Longest common substring and longest common subsequence. A 

survey of those widely used algorithms in bioinformatics and DNA sequence comparison 

showed that they have different implementations. In addition, evaluating the same DNA 

sequences on different tools may show different results. While some of the differences are 

shown to be expected and are part of the different default considerations or interpretations of 

those algorithms, other results showed that implementations for the same algorithm are 

somewhat different and inconsistent. Using new programming data structures and algorithms 

showed significant improvement in terms of the efficiency in finding the solution. Further, 

reduction algorithms and techniques should be used to reduce the calculation speed. 
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