
International Journal of Advanced Science and Technology

Vol. 47, October, 2012

13

String Matching Evaluation Methods for DNA Comparison

Izzat Alsmadi and Maryam Nuser

Computer Information Systems Dept. / Yarmouk University 21163

{ialsmadi, mnuser}@yu.edu.jo

Abstract

Studying patterns in DNA sequences has been for years the subject of many research

papers in bioinformatics. This paper evaluates two algorithms used for DNA comparison.

Those are: Longest Common Substring and Subsequence (LCS, LCSS). Evaluation is

performed based on the different code implementations for those two algorithms. Accuracy

and performance are the two major criteria that are used for the evaluation of algorithms’

implementation. Results showed that while those two algorithms are popular, their

implementations are not consistent through research papers or websites that use and

implement those algorithms for DNA sequence comparison.

Keywords: DNA similarity algorithms, string search, DNA sequence comparison, DNA

analysis, pattern recognition, Longest Common Substring, Longest Common Subsequence

1. Introduction

Most people share very similar gene sequences, while some regions of DNA sequences

vary from one person to another with high frequency. Comparing variation in these regions

allows scientists to answer the question of whether two different DNA samples come from the

same person. A DNA sequence represents the genetic code contained within an organism.

The genetic code is a set of sequences which define what proteins to build within the

organism.

This paper will focus on the subject of documents’ similarity algorithms in the scope of

using those similarity algorithms for DNA comparison. Despite the fact that similarity

algorithms and DNA comparison are existed and used for years through several simple and

complex free and commercial tools, there is a wide spectrum of applications for the usage of

DNA comparison, analysis, construction, etc.

On the theoretical side, some of the famous algorithms used in DNA comparison are:

Longest Common Substring (LCS) and Longest Common Sub Sequence (LCSS). We will

evaluate algorithms used to compute those algorithms in terms of performance and accuracy.

1.1 Techniques to Detect Documents Similarity

In this area, there are many methods to judge similarity between documents. A brute force

approach compares the subject document with investigated documents word by word.

However, in most cases, such approach is time and resources’ consuming. In addition, such

approach can be easily tricked through editing a small number of words in the document. A

more effective approach depends or is based on metrics related to the documents such as the

number of statements, paragraphs, punctuation, etc. [1, 2]. A similarity index is calculated to

measure the amount of similarity between documents based on those metrics. Comparing the

approach of taking the document word by word in comparison to statement or paragraph by

paragraph for example can have several contradicting tradeoffs. On one side, word by word

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

14

comparison can minimize the effect of changing one or a small number of words relative to

the total document. However, this can be time consuming and word to word document

similarity may not necessarily mean possible plagiarism especially if the algorithm did not

take the position of the words into consideration. Sentence or paragraph by paragraph

approach is also affected by several variances such as the difference in size between the

compared documents and the amount of words edited in those statements or paragraphs.

Hashing algorithms are also used to measure documents similarity. Hashing algorithms are

used originally in security to verify the integrity of an investigated disk drive and protect it

from being tampered. Hashing can be calculated for a word, a paragraph, a page, or a whole

document. Manber presented approximate index concept to measure similarity between

strings in different documents [3]. A tool called “Sif” is developed to find similar files in a

large file system. He proposed the concept of approximate index to measure the similarity of

character strings between documents, which was adopted later by many similar systems. The

tool we developed in this paper uses two different search algorithms. The first one searches

for possible similar documents for the subject document through a directory of files. The

other algorithm searches for similar documents through the Internet. Calculating similarity

between documents does not require in many cases similarity in cosmetic attributes such as

the file type, size, number of words, etc. The author defined a checksum algorithm called

“fingerprint” that is based on defining keywords in each document and parse a certain amount

of characters starting from those keywords to calculate similarity.

1.2. Why DNA Sequence Comparison?

In a DNA sequence, or a molecule of DNA, there are four nucleotide bases: Adenine,

Guanine, Cytosine, and Thymine. The knowledge of a DNA sequence and gene analysis can

be used in several biological, medicine and agriculture research fields such as: possible

disease or abnormality diagnoses, forensics, pattern matching, biotechnology, etc. The

analysis and comparison studies for DNA sequences connected information technology tools

and methods to accelerate findings and knowledge in biological related sciences.

DNA sequence analysis can be used to identify possible errors or abnormality in a DNA

sequence (e.g. in comparison with a normal one). It can be also used to predict the function of

a particular gene and compare it with other “similar” genes from same or different organisms.

If a new DNA sequence is discovered its functionality is specified based on its similarity

with known DNA sequences. Such technique is used in several medical applications and

research studies.

1.3. DNA Sequence Alignment

In DNA sequence alignment process, similarity between two or more sections of genetic

codes is studied in terms of quantity. Those comparisons can be used to discover information

such as: evolutionary divergence, the origins of disease, and ways to apply genetic codes from

one organism into another. In DNA sequence alignment, sequences are aligned and similar

characters between the two sequences are tagged (Figures 1 and 2).

Figure 1. A Simple Sequence Alignment Example

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

15

Figure 2. DNA Sequence Alignment Sample

1.4 DNA Comparison and Analysis Tools

For years, DNA comparison has been used in biology and forensics to discriminate and

compares genes or genomes. Those tools vary in size, complexity and functionality based on

several factors. Some small tools or websites are developed as free or open source for

research or experimental purposes. Examples of such small size limited purpose tools or

applications are: Double Act (http://www.hpa-bioinfotools.org.uk/pise/double_act.html),

Genomatix (http://www.genomatix.de), Mobyle (http://mobyle.pasteur.fr), ALIGN, FASTA,

etc. BLAST: (Basic Local Alignment Search Tool)[4] is an example of a larger scale. Most

of these algorithms uses Smith–Waterman algorithm for performing sequence alignment. This

algorithm which is also used in crimes’ forensic investigation does not use full DNA to DNA

sequence comparison. It rather selects several segments (e.g. eight segments) selected from

the different locations of the DNA. BLAST uses also dynamic programming and “seeding”

to find starts of possible matches. The goal is to accelerate the process of finding matches

between DNA sequences as this can take a significant amount of time and resources.

Another process that can be different from one tool to another is the ranking of the

different matches. This can particularly occur when more than a match is in the same size

(e.g. athe, tbcd, find, all are of size 4). Through the algorithms that we will evaluate and use,

we will see such difference where some algorithms use the first match; other algorithms use

the last match, etc. Figure 3 shows a sample of two DNA sequence comparisons where the

tool shows the areas of match between the two DNA sequences.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

16

Figure 3. A Sample Output of 2 DNA Sequences’ Comparison
[http://mobyle.pasteur.fr].

1.5 DNA Document Similarity Applications and Algorithms.

Longest common substring and subsequence (LCS, LCSS)

In addition to DNA matching applications, there are several types of applications that

implement exact string matching algorithms. Examples of such applications include: code,

document and exam plagiarism, automatic grading, file comparison, screen display, language

auto correct, translate, etc.

There are several metrics and algorithms used to decide and evaluate whether and how

much two DNA sequences are similar. In this paper, we will focus on evaluating two

algorithms: longest common substring and longest common subsequence. Those two

algorithms have been used for years in different string comparison. From now on, we will

differentiate the abbreviation for Longest Common Subsequence as (LCSS) in comparison to

LCS for Longest Common Substring. The main difference between LCS and LCSS is that

LCS considers only consecutive characters unlike LCSS.

1.5.1 LCS: In LCS, the algorithm searches for the longest possible string between two string

sequences or files. For example, LCS between the two strings:

1… This is the first string

2…. The second string

LCS is “string” and the longest string length is 6.

Some algorithms may consider it as 7 (taking the empty space before the string in

consideration). Text case is usually ignored. The second longest string can be 5: strin. Table 1

shows examples of different strings and their LCS values.

http://mobyle.pasteur.fr/

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

17

Table 1. LCS for Several String Examples

String1 String2 LCS

ABAZDC BACBAD BA

ABCDGH AEDFHR A

AGGTAB GXTXABYB AB

GCGCAATG GCCCTAGCG GCG

BC BCBD C E BCBD D

BCBD A

BCBD

cs106b Rocks C

Abcdef Thw “”

A dot plot (Figure 4) is usually used to visualize showing LCS on a small scale where the

longest continuous diagonal line represents LCS (after writing one of the strings vertically

and the other horizontally).

Figure 4. A Sample DNA Dot Plot

1.5.2 LCSS: A subsequence is a sequence that appears in the same relative order,

but not necessarily contiguous. For example, “abc”, “abg”, “bdf”, “aeg”, ‘”acefg”,

etc are subsequences of “abcdefg”. This means that a string of length n has 2n

different possible subsequences. The LCSS problem is to find a common

subsequence that is as long as possible. For example the LCSS of ggcaccacg and

acggcggatacg is: ggcaacg. Table 2 shows examples of different strings and their

LCSS values.

Table 2. LCSS for Several String Examples

String1 String2 LCSS

ABAZDC BACBAD ABAD

ABCDGH AEDFHR ADH

AGGTAB GXTXABYB GTAB

GCGCAATG GCCCTAGCG GCCCT

BC BCBD C E BCBD D

BCBD A

BCBD

cs106b Rocks Cs

Abcdef Thw “”

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

18

Other examples of DNA sequence similarity metrics

1. Percent of similarity. In some cases, maybe we are looking for a minimum cutoff

match in percentage between two DNA sequences. For example, we are looking for at least

70 % match between two DNAs. How we define that those two DNAs at least 70 % match or

common?

2. Longest Repeated Substring Problem (LRSP) or Exact String Matching (ESM).

These methods compare two DNA sequences for a possible identical match (e.g. forensic

investigation). Given a DNA, look through a DNA database for similarities. This is usually

used in computer crimes’ forensics where investigators are interested in finding the most

appropriate match for a particular DNA sequence. As a DNA complete sequence is very

large, several sections are taken from several locations. The matched DNA is considered as

the one which has all sections match that of the subject DNA sequence.

3. Finding Palindrome: In DNA a complemented palindrome is a sequence of base pairs

that reads the same backwards and forward across the double strand. The enzymes that cut

these specific sites are called restriction enzymes. Therefore by looking for complemented

palindromes we can identify the binding sites for restriction enzymes.

4. Minimal edit distance (aka Sequence alignment): Edit distance can be thought of as

the “difference” between two strings. The difference between two strings is measured by

counting the number of edit operations which must be performed, character by character, to

transform one string into another. These edit operations are: R = replace, I = insert, D =

delete, and M = match. For example, to transform the string “cat” to the string “chat” we can

insert (I) the character ‘h’ between the ‘c’ and ‘a’ of “cat”, yielding the string “chat”.

2. Related Work

Several methods were suggested to find sequence similarity. Some of these search for

exact matches between sequences with no alignment [5, 6, 7] while others allow for insertions

or deletions trying to find the best possible alignment [4].

The first description of a sequence similarity search method that allows insertions and

deletions was published in [8] where a computer program for finding similarities in the amino

acid sequences of two proteins was developed. .

Some similarity algorithms depend on the longest common subsequence (LCS) idea that is

commonly used in computer science to find the similarity between different sequences. In [9],

the authors introduced new variants of LCS problem and presented efficient algorithms to

solve them. They showed the ability of their algorithms to solve several molecular biology

problems.

Furthermore, a parallel version of the LCS algorithm that finds the alignment between

DNA and protein sequences was built in BLAST. The algorithm was tested and showed an

increase in the performance of about 24-30% than the serial LCS.

In [10], the authors used the LCS as a building block for their proposed algorithm that

searches for specific motifs in a DNA database. Then the algorithm was generalized to solve

the common sub-sequence problem from the computational aspect. Although the complexity

of the algorithm is exponential in general but it is polynomial when the threshold value (t) and

the length of the largest common subsequence (c) are sufficiently close.

Another efficient algorithm to solve the LCS problem was presented in [11]. A solution of

a variant of the algorithm namely constrained LCS that gets its motivation from

computational bio-informatics was also suggested.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

19

A search tool was developed in [12] that works on molecules with the SMILES format and

searches the database for the specified user’s query.

One area where DNA similarity algorithms are used is in compression techniques. The idea

is to find regions of repeated subsequences and write them once saving a space of repeating

these subsequences. This was applied in [10] where a ratio of 4.2% similarity was found

within the same sequence and reached 18% when comparing 16 chromosomal sequences.

In [13], two algorithms for similarity measure between sequential data were proposed.

Each algorithm uses a different data structure. The algorithms were tested on network data

intrusion detection and showed a linear running time in the sequence length. The algorithm

can be applied also in security and bioinformatics.

Biological sequences are very large in size and require algorithms that work with large

scale data. Therefore, the new technology should be utilized to speed up procedures.

Challenges still face researchers in integrating data exploration tools with a variety of

different architectural requirements and natural programming models. A case study that was

applied on DNA sequence analysis presents these challenges [14].

Several software tools were built to find the similarity between biological sequences. Basic

Local Alignment Search Tool (BLAST) [4] is one of the most commonly used web tools for

comparing primary biological sequence information whether proteins or DNA sequences.

One problem that may occur with web tools is the semantic type mismatch in scientific

workflows. This problem was tackled in [15] and a similarity search on DNA sequences was

applied that guarantee semantic type correctness in scientific workflows.

Another tool that is used for multiple sequence alignment is DIALIGN which combines

both local and global alignment features and uses dynamic programming in its algorithm [16].

An accelerator was built in hardware to improve the performance of this tool and experiments

show a clear progress in the retrieval of alignments for large biological sequences.

Several other tools were built whether for DNA sequences or proteins [17, 18, 19]. A study

that compares several tools was done experimentally in [20] which shows that new variations

of old algorithms were efficient in practice. In addition, the authors mentioned that the

algorithms efficiency depends on the processor and compiler.

3- Goals and Approaches

We can calculate DNA sequences similarity based on:

1. Number of string matches (strings of length above 2) to the total size of the DNA

sequences.

2. The number of characters in the maximum string match between the two DNA

sequences

LCS and LCSS are two popular metrics to measure the level of similarity between two

DNA sequences. We will evaluate different implementations for the algorithms LCS and

LCSS based on performance and accuracy.

It is noticed while surveying related research papers and articles that there are some

conflicting results in calculating LCS and LCSS. In this experiment, we tried to define the

different approaches used to develop those algorithms in order to compare their results in

terms of accuracy and performance.

All those algorithms are implemented in C# and Java programming languages. Some of

those codes are taken from research resources, while we developed other algorithms based on

either algorithmic description or pseudo codes described in the literature.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

20

In the following sections, we will describe in generic pseudo code the algorithms used to

evaluate both LCS and LCSS.

3.1 LCS Pseudo Codes

Research papers, websites and literature, have several methods to code the Longest

Common Substring (LCS) algorithm. Some of those methods use generic code of methods

and variables. Others utilize new types of data structure for fast access and information

retrieval. Dynamic programming is one of the techniques used to find the best solution in the

shortest time. Following is a description of the different algorithms used in the experiments as

a pseudo code. All algorithms use the same generic code shield structure for calling the two

DNA sequences to evaluate and then for saving the results and calculating the overall

required time.

• LCS 1

This first simple algorithm loops through all possible string combinations from the two

strings in comparison, tests and compares them to find the longest possible match. Such

algorithm assumes no previous knowledge of where the longest path can be and hence loops

thoroughly through the two strings to return the longest common string. In this algorithm one

string is set to be the reference and the other string to loop through. If there are several

longest common strings with the same length, a first or default can be defined. Other

approaches or versions of this code take the loop count as the length of the smaller string (e.g.

n = minimum (string1.Length, string2.Length). The algorithm may get seriously slow if the

length of both strings is large. Later on, LCS is calculated as:

Figure 5. LCS------Algorithm1

• LCS 2

This algorithm also uses a generic code similar to LCS1 with two loops. Figure 6 shows

the pseudo code for the algorithm.

Figure 6. LCS------Algorithm 2

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

21

• LCS 3

Similar to most traditional implementations of LCS, LCS 3 uses a two dimensional array

structure and two nested loops. In this specific implementation, three loops are used. The goal

of the third inner loop is to improve performance and reduce the number of cycles.

Figure 7. LCS------Algorithm 3

• LCS 4

This algorithm is also similar to the previous algorithm with minor changes. If there are

several possible matches (with the same length), the output can be different. This may explain

why popular tools that can measure LCS such as: Blast (www.ncbi.nlm.nih.gov/BLAST), MB

(http://www.molbiosoft.de/), Double Act (http://www.hpa-

bioinfotools.org.uk/pise/double_act.html), etc may show different results. The algorithm

shows that the last match is selected if there is more than one match.

Figure 8. LCS------Algorithm 4

• LCS 5

This variation aims to improve the performance of LCS4. Because the two nested loops in

LCS4 can be time consuming especially when the strings are long, the inner loop may loop in

a shorter cycle (j + k <= input2.Length) where k is an integer variable that counts the length

of the maximum LCS already found. This means that if we find a LCS of length 5, there is no

need to find or search for LCS that is less than 5.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

22

Figure 9. LCS------Algorithm 5

• LCS 6

In this algorithm, a two dimensional array that has the size of the two strings in comparison

is created. Each pair of parallel characters in the strings is compared. If the characters are not

equal, the array value in that location is set to zero, and if they are equal, the value is set to

zero in the first location which is incremented for each consecutive match. To retrieve LCS, a

variable is set to a default value (e.g. one) and compared with the values in the array to find

the largest value. This algorithm utilizes dynamic program method to look for the best

feasible solution. Figure 10 shows a sample output from LCS 6.

Figure 10. A Sample Output as a Result from LCS 6

Linear, integer, dynamic programming, etc are different levels of an operational research

or Artificial Intelligent (AI) field that set a matrix of input requirements and constraints for a

solution, and run a solution engine to find the best possible feasible solution that can achieve

all those requirements. The constraints in this case are that the LCS or the solution string

should be part of both input strings (i.e. LCS(string1, string2) is part of string1 and string2),

and its length should be more than 1 and less than the length of either string. The last

constraint is that this LCS should be the longest. This means that there can be several string

matches between those two strings and we are looking for the longest.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

23

Figure 11. LCS------Algorithm 6

• LCS 7

This algorithm utilizes also dynamic programming to find the best feasible solution. The

code is shown in figure 12.

Figure 12. LCS------Algorithm 7

3.2 LCSS Algorithms

Longest Common Sub Sequence (LCSS) algorithm is expected to take longer time to solve

and in some cases such method may consume all memory resources for long strings. LCSS

does not require matching strings to be in the exact same order and location in the two strings.

For example, between the two strings: "123456" and "1224533324", LCS is 2 (12) while

LCSS is 4 (1234).

• LCSS1

The first algorithm uses recursion to keep checking if there is a further match. As

mentioned earlier, solving LCSS requires longer time and resources in comparison to LCS.

Therefore, the algorithm was very slow especially for large strings.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

24

Figure 13. LCSS------Algorithm 1

• LCSS2

The idea of this algorithm was inspired from Wiki books (www.thefullwiki.org). The

algorithm first draws a table with the two strings in rows and columns (as characters). In each

character match between the two strings a number (e.g. number 1) is added. For each

consecutive match, the number is calculated. However, at this time, next (i.e. non

consecutive) matches are also counted. Figure 14 shows the algorithm.

Figure 14. LCSS------Algorithm 2

• LCSS3

LCSS 3 utilizes dynamic programming and uses partially similar approach to LCSS 2.

Figure 15 presents the algorithm where the strings in capital are "constants" which indicate a

direction in the backtracking array.

• LCSS4

LCSS4 algorithm represents another data structure approach for building a two

dimensional array. Through the two nested loops, a backtrack process is applied whenever

there is a two-character match between the two strings. Figure 16 explains the steps.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

25

Figure 15. LCSS------Algorithm 3

Figure 16. LCSS------Algorithm 4

• LCSS5

LCSS5 is another example or version of the dynamic programming approach that uses that

back track process whenever a match is found between two characters. The pseudo code of

the algorithm is shown in figure17.

• LCSS6

This algorithm is also somewhat similar to algorithm 4. The code is shown in Figure 18.

In order to evaluate LCS and LCSS algorithms in terms of accuracy and performance, a

dataset of relatively large DNA sequences is selected. Following is a brief description of the

selected dataset.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

26

Figure 17. LCSS------Algorithm 5

Figure 18. LCSS------Algorithm 6

4. Case Study

To evaluate LCS and LCSS algorithms a dataset of DNA sequences is selected. The DNA

sequences’ dataset is taken from NCBI Viral Genomes

(http://www.ncbi.nlm.nih.gov/genomes). Sequences are randomly selected from different

genome sequences. Sequence datasets are truncated to a specific length (K) and a number of

sequences (N). The dataset include sequences of lengths 100, 500, and 1000. Figure 19 below

shows the names of those DNA sequences where the name reflects the number of sequences

(N) and the length (K).

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

27

Figure 19. The DNA Sequences used in the Experiment

5. Analysis and Comparison

In this part, LCS and LCSS algorithms are compared each in a separate section.

Algorithms are going to be compared for accuracy and performance.

1. LCS Accuracy Comparison

Before using the experimental datasets mentioned earlier and in order to visually verify

reliability, there is a need to check results manually. We will first select small size strings and

compare results from all algorithms with expected results. We will use the same examples

described earlier. Table 3 shows a sample result from LCS accuracy comparison on simple

examples.

Table 3. LCS Accuracy Comparison

Strings Exp. Algorithms

1 2 1 2 3

ABAZ

DC

BACBA

D

BA BA BA BA

ABCD

GH

AEDFH

R

A D A A

AGGT

AB

GXTXA

BYB

AB AB A AB

GCGC

AATG

GCCCT

AGCG

GC

G

GC

G

GCG GC

BCBC

BDC

EBCBD

DBCBA

BC

BD

BC

BD

BCB

D

BC

BD

cs106b

bbc

rocksbbc bbc bbc bb Bb

Abcdef Thw “” “” “” “”

ABAZ

DC

BACBA

D

Alg

4

Alg

5

Alg 6 Alg

7

ABCD

GH

AEDFH

R

BA BA BA BA

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

28

AGGT

AB

GXTXA

BYB

A A A A

GCGC

AATG

GCCCT

AGCG

AB AB AB AB

BCBC

BDC

EBCBD

DBCBA

GC

G

GC

G

GCG GC

G

cs106b

bbc

rocksbbc BC

BD

BC

BD

BCB

D

BC

BD

Abcdef Thw bbc Bbc bbc bbc

ABAZ

DC

BACBA

D

wh

T

“” “” “”

Results show that the majority of the algorithms have consistent accurate results in

comparison with the manual verification of the results. For the second example (table 3, 2cnd

row), Algorithm 1 is the only algorithm that shows “D” as the match instead of “A”. This is

not an error and it depends on the default selection once more than one match is found. Note

that all algorithms select the first match while algorithm one selects the last match.

Algorithms two, three and four have errors in rows: 4, 6 and 7. For this small testing dataset,

we can say that in terms of reliability or accuracy of results, we can trust algorithms: 1, 5, 6

and 7 as they showed consistent expected results in all tested rows or examples.

Accuracy testing is also applied to the experimental dataset. Due to size and visualization

limitations, we will show here only a small portion of the dataset. Table 4 shows accuracy test

results on a sample of the experimental dataset.

Table 4. Accuracy Test for a Sample of the Experimental Dataset

Algorithms

1 2 3 4 5 6 7

TCGTTC

CGA

TCGTT

CCGA

TCGTTCC

GA

TCGTT

CCGA

TCGTT

CCGA

TCGTT

CCGA

TCGTT

CCGA

GCTTTC

G

GCTTT

CG

TCCGAT

A

TCCGA

TA

TCCGA

TA

TCCGA

TA

TCCGA

TA

AATAA

AAT

AATAA

AAT

CCGAAA

AA

CCGAA

AAA

CCGAA

AAA

CCGAA

AAA

CCGAA

AAA

AAAAT

ATT

AAAAT

ATT

GTTACT

AA

GTTAC

TAA

GTTAC

TAA

GTTAC

TAA

GTTAC

TAA

The small sample in the previous Table shows that different LCS algorithms may show

different accurate results when the size of the compared strings are the same. As explained

earlier, this depends on what is the default string to display as an output if there is more than a

match with the same size. Some algorithms concentrate in finding the size of the LCS only; in

that case, table4 will have the same value for all its entries.

2. LCS Performance Comparison

Table 5 below shows a summary of selected results from applying all LCS algorithms on

the experimental dataset. Results showed that specific algorithms such as: Algorithms 1 and

5, are significantly slow relative to the other algorithms that are somewhat similar and fast.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

29

Table 5. Performance Test for a Sample of the Experimental Dataset

3. LCSS Accuracy Comparison

Similar to LCS, to evaluate accuracy on LCSS, we first used simple examples that can be

evaluated visually. Table 6 shows the results of this initial accuracy test on LCSS algorithms.

Table 6. LCSS Accuracy Comparison on Initial Examples

Strings Algorithms

1 2 Expected 1 2 3 4 5 6

ABA

ZDC

BACB

AD

ABAD

ABA

D

AB

AD

ABA

D

DABC

AB

ABA

D

ABA

D

ABC

DGH

AEDF

HR

ADH ADH A ADH RHFD

EA

ADH ADH

AGG

TAB

GXTX

ABYB

GTAB GTA

B

AB GTA

B

BYBA

XTXG

GTA

B

GTA

B

GCGC

AA

TG

GCCC

TAGC

G

GCCTG,

GCGC,

GCCAG

GCC

TG

GG

CG

GCC

AG

GCGA

TCCC

G

GCC

TG

GCG

CG

BCBC

BDC

EBCB

DDBC

BA

BCBC

B

BCB

DC

B BCB

CB

ABCB

DDBC

BE

BCB

DC

BCB

CB

cs106

bbbc

Rocks

bbc

Csbbc csbbc csb

bc

Csbb

c

ccbbsk

cor

csbbc csbb

c

Abcde

f

Thw “” “” “” “” whT “” “”

LCSS accuracy evaluation in the previous table shows that algorithm four has a serious

accuracy problem in almost all examples, and algorithm two has also some accuracy

problems in some examples. It should be mentioned that there are no relations between LCS

and LCSS algorithms developed in this paper although algorithm four in both cases is shown

to be inaccurate. For LCSS accuracy purposes, we will discard algorithms two and four and

consider only the rest. It is possible that the implementation of those algorithms (2 and 4)

needs tuning. However, since this is not consistent in most cases, debugging such algorithms

can be time consuming.

Strings Algorithms

1 2 1 2-

3

4-

5

6-

7
N K N K Time in seconds-

average for several

selections

100 100 100 100 12 6 6 6

100 100 100 500 17 6 5 6

100 100 500 100 23 6 7 6

100 100 500 500 20 6 6 6

100 100 1000 100 20 9 6 6

100 100 1000 500 19 7 6 5

100 500 100 500 27 5 6 5

500 100 500 100 24 5 12 6

500 500 500 500 25 7 11 6

1000 100 1000 100 27 5 81 6

1000 500 1000 500 25 6 70 6

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

30

4. LCSS Performance Comparison

Table 7 shows the results of evaluating the performance of LCSS algorithms.

Table 7. Performance Test for a Sample of the Experimental Dataset

Results from Table 7 above show that as expected LCSS calculation takes longer time in

comparison to LCS. Algorithm one was very slow and in some cases time either expands to

hours or exhausts system memory and causes a crash and hence their values were excluded.

Algorithm two is then relatively slower than the other algorithms. Another finding is that time

is not perfectly increasing with the increase in the size of the sequence.

6. Conclusion

In this paper, we evaluated the code implementation of two widely popular DNA sequence

comparison algorithms: Longest common substring and longest common subsequence. A

survey of those widely used algorithms in bioinformatics and DNA sequence comparison

showed that they have different implementations. In addition, evaluating the same DNA

sequences on different tools may show different results. While some of the differences are

shown to be expected and are part of the different default considerations or interpretations of

those algorithms, other results showed that implementations for the same algorithm are

somewhat different and inconsistent. Using new programming data structures and algorithms

showed significant improvement in terms of the efficiency in finding the solution. Further,

reduction algorithms and techniques should be used to reduce the calculation speed.

References

[1] S. Grier, “A tool that detects plagiarism in Pascal programs”, ACM SIGCSE Bulletin, vol. 13, no. 1, (1981),

pp. 15-20.

[2] J. A. W. Faidhi and S. K. Robinson, “An empirical approach for detecting program similarity within a

university programming environment”, Computers & Education, vol. 11, no. 1, (1987), pp. 11-19.

[3] U. Manber, “Finding similar files in a large file system[C/OL]”, In: Proceedings of the Winter USENIX

Conference, (1994), pp. 1-10.

[4] BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi, (2011) September.

[5] G. Huang, H. Zhou, Y. Li and L. Xu, “Alignment-free comparison of genome sequences by a new numerical

characterization”, Journal of Theoretical Biology, vol. 281, no. 1, (2011), pp. 107-112.

Strings Algorithms

1 2 2 3 4 5 6
N K N K Time in seconds-

average for several

selections

100 100 100 100 7 7 7 7 7

100 100 100 500 6 6 5 5 6

100 100 500 100 18 7 6 9 6

100 100 500 500 8 6 6 6 5

100 100 1000 100 7 7 6 6 6

100 100 1000 500 8 8 5 6 6

100 500 100 500 11 5 5 4 5

500 100 500 100 22 5 6 5 7

500 500 500 500 21 8 5 5 4

1000 100 1000 100 65 8 6 5 5

1000 500 1000 500 68 9 6 32 9

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

31

[6] C. Yu, S.-Y. Cheng, R. L. He and S. S. -T. Yau, “Protein map: An alignment-free sequence comparison

method based on various properties of amino acids”, Gene, vol. 486, (2011), pp. 110-118.

[7] Y. Guo and T. -m. Wang, “A new method to analyze the similarity of the DNA sequences”, Journal of

Molecular Structure: THEOCHEM, vol. 853, (2008), pp. 62–67.

[8] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino

acid sequence of two proteins”, Journal of Molecular Biology, vol. 48, no. 3, (1970), pp. 443–53.

doi:10.1016/0022-2836(70)90057-4. PMID 5420325, http://linkinghub.elsevier.com/retrieve/pii/0022-

2836(70)90057-4.

[9] C. S. Iliopoulos and M. S. Rahman, “Algorithms for Computing Variants of the Longest Common

Subsequence Problem”, Theoretical Computer Science archive Journal, vol. 395, no. 2-3, (2008), pp. 255-

267.

[10] C. -P. P. Wu, N. -F. Law and W. -C. Siu, “Cross chromosomal similarity for DNA sequence compression”,

Bioinformation, vol. 2, no. 9, (2008), pp. 412-416.

[11] C. S. Iliopoulos and M. S. Rahman, “New Efficient Algorithms for LCS and Constrained LCS Problem”, In

Proceedings of the Third ACiD Workshop Durham, UK, vol. 9 of Texts in Algorithmics. King's College

London, (2007), pp. 83-94.

[12] A. F. Klaib, Z. Zainol, N. H. Ahamed, R. Ahmad and W. Hussin, “Application of Exact String Matching

Algorithms towards SMILES Representation of Chemical Structure”, International journal of computer and

information science and engineering, (2007), pp. 497-501.

[13] K. Rieck, P. Laskov and K. -R. M¨uller, “Efficient Algorithms for Similarity Measures over Sequential Data:

A Look Beyond Kernels”, DAGM 2006, LNCS 4174, (2006), pp. 374–383.

[14] G. Fox, X. Qiu, S. Beason, J. Y. Choi, M. Rho, H. Tang, N. Devadasan and G. Liu, “Case Studies in Data

Intensive Computing”, Large Scale DNA Sequence Analysis as the Million Sequence Challenge and

Biomedical Computing, (2009).

[15] K. Derouiche and D. A. Nicole, “Semantically Resolving Type Mismatches in Scientific Workflows”, OTM

2007 Workshops, Part I, LNCS 4805, (2007), pp. 125–135, Springer-Verlag Berlin Heidelberg 2007.

[16] DIALIGN, http://dialign.gobics.de/, (2011) September.

[17] D. Rose, J. Hertel, K. Reiche, P. F. Stadler and J. Hackermüller, “NcDNAlign: Plausible multiple alignments

of non-protein-coding genomic Sequences”, Genomics, vol. 92, no. 1, (2008), pp. 65-74.

[18] E. Dong, J. Smith, S. Heinze, N. Alexander and J. Meiler, “BCL::Align—Sequence alignment and fold

recognition with a custom scoring function online”, Gene, vol. 422, no. 1-2, (2008), pp. 41-46.

[19] B. Vishnepolsky and M. Pirtskhalava, “ALIGN MTX—An optimal pairwise textual sequence alignment

program, adapted for using in sequence-structure alignment”, Computational Biology and Chemistry, vol. 33,

no. 3, (2009), pp. 235-238.

[20] P. Kalsi, H. Peltola and J. Tarhio, “Comparison of Exact String Matching Algorithms for Biological

Sequences”, In: Proc. BIRD ’08, 2nd International Conference on Bioinformatics Research and Development

(ed. M. Elloumi et al.). Communications in Computer and Information Science 13, Springer (2008), pp. 417-

426.

Authors

Izzat M. Alsmadi

Izzat Alsmadi is an associate professor in the department of computer

information systems at Yarmouk University in Jordan. He obtained his

Ph.D degree in software engineering from NDSU (USA), his second

master in software engineering from NDSU (USA) and his first master in

CIS from University of Phoenix (USA). He had a B.sc degree in

telecommunication engineering from Mutah university in Jordan. He has

several published books, journals and conference articles largely in

software engineering and information retrieval fields.

International Journal of Advanced Science and Technology

Vol. 47, October, 2012

32

Maryam S. Muser

Maryam Nuser is an assistant professor in the department of computer

Information Systems at Yarmouk University Jordan. She received a BSc

degree in Computer Science from Yarmouk University in 1995, Msc

degree from the University of Arkansas, USA in 2002, and a PhD degree

from the University of Arkansas in 2004 with the same major.

She worked as a dept. Head for the CIS dept. at Yarmouk University

during the period 2006-2008. She has several publications in

international and local journals, conferences, and books.

.

