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Abstract 

Nowadays, various mechanical, electrical systems or combination of both systems are used 

tohelp or ease human beings either during the daily life activity or during the worst condition 

faced by them. The system that can be used to increase human life quality are such as in 

military operations, pipeline survey, agricultural operations and border patrol. The worst 

condition that normally faced by human are such as earthquake, flood, nuclear reactors 

explosion and etc. One of the combinations of both systems is unmanned hovercraft system 

which is still not thoroughly explored and designed. Hovercraft is a machine that can move 

on the land surface or water and it is supported by cushion that has high compressed air 

inside. The cushion is a close canvas and better known as a skirt. A hovercraft moves on most 

of surfaces either in rough, soft or slippery condition will be developed. The main idea for 

this project is to develop a dynamic modelling and controller for autonomous hovercraft. The 

model of the hovercraft will be initially calculated using Euler Lagrange method. The model 

of the hovercraft is derived using Maple software. The model that is developed then needs to 

be tested with open loop simulation in the MATLAB/Simulink environment. The LQR 

controller to regulate the small scale autonomous hovercraft then will be developed and 

tested with MATLAB. 
 

Keywords: Autonomous, Hovercraft, Dynamic Modelling, LQR regulator 
 

1. Introduction 

Hovercraft is a transport that can travel to other places where it can move on the water 

surface or land surface. The hovercraft consists of fans and cushion. There is air pressure 

inside the cushion to enable the hovercraft to float and move smoothly in any land surface. 

The pressure inside the cushion needs to be maintained at all time while the lift fan capable to 

operate in the long duration to ensure the hovercraft can move forward at certain speed. The 

advantages of unmanned hovercrafts are; the hovercrafts able to operate in all types of 

climates such as in Arctic, in the Tropics and Asian climates. Furthermore, the unmanned 

hovercraft has less friction compared to other land or water transportation due to the air 

pressure inside the hovercraft’s cushion. This air reduces the friction between land or water 

surface that has direct contact with the hovercraft’s skirt. This system also can be launched 

from ship or any places where a larger vehicle cannot reach these certain places. The 

disadvantages using hovercraft are; they require a lot of air and has quite loud noise due to 

fans or propellers rotation during the operation. In addition, the hovercraft also has potential 
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of damage on its skirt or cushion. There are various type of hovercrafts projects that have 

been constructed from small scale science projects to racing quality hovercrafts. 
 

2. Literature Survey 

The previous studies conducted by several researchers focused on a few types of hovercraft 

ranging from the human driven hovercraft till the remotely control hovercraft. 

In the paper done by [1], the vehicle used LCAC-1 Navy Assault Hovercraft as his case 

study. This vehicle was designed to be used to transport U.S Marine fighting forces from 

naval ships off-shore to inland combat position. The journal dismissed a few type of 

information such as how the driver regulated the surge, sway and the angular velocities of this 

vehicle. Two different control strategies had been adopted to stabilize the surge, sway and 

angular velocities with different controllers. The author used the surge force and the angular 

torque as inputs to the system. In addition, the mathematical model was derived based on 

Newton’s Second Law and Euler Lagrange Formulation. The controller that was used in the 

journal was based on Lyapunov controller. 

Next, the paper done by [2] focused on the hovercraft model namely as Caltech Multi-

Vehicle Wireless Testbed (MVVT). This vehicle was equipped by two high powered ducted 

fans where each fans can produce up to 4.5N of continuous thrust for forward motion. The 

software that was used in the experiment for position tracking control of an under actuated 

hovercraft is RHexLib. It was a module-based controller design environment where each 

module was given an initially fixed execution rate and a module manager performed a static 

scheduling of the set of modules. The software used by author consists of Lab Positioning 

System (LPS), Vision Module and Device Writer. The core MVWT modules were Vision 

Module, which processed broadcasts from the LPS while the controller executed the local 

control to determine the vehicle’s position, orientation and identity. In addition, the Device 

Writer was used to send the signals to command the fan forces. 

The paper [2] considered the position tracking control problem of an under-actuated 

hovercraft vehicle and used a nonlinear Lyapunov based control algorithm to obtain global 

stability and exponential convergence of the position tracking error. They mentioned two 

types of experiments have been conducted to ensure the hovercraft followed a circular desired 

trajectory.  

The hovercraft used by [3] consists of four propulsion motors and they were mounted 

parallel to the ground in each translational direction to ensure the hovercraft capable to move 

in any direction. A microcontroller acquired inputs data from the sensors and provided 

outputs signals to vary the speed of each motor and then perform the necessary stabilization. 

In the design, proportional integral derivative (PID) controller was selected to control the 

hovercraft. 

In the book written by [4], the author used Electro Cruiser, an amphibious hovercraft as his 

experimental model. An electric motor was used to drive both propellers and another one of 

the propeller to provide lift by keeping a low pressure air cavity inside the skirt. In order to 

analyze the hovercraft model, the author derived a dynamical model of the hovercraft with the 

Newton-Euler method. The author only conducted the simulation study and not tested the 

controller strategy with the real hardware. 

In the paper done by [5], the author used an amphibious hovercraft to study the nonlinear 

control of the hovercraft. Hovercraft was a nonlinear system and had variable parameters 

because hydrodynamics and aerodynamics coefficients with speed roll angle and sideslip 

angle. [5] introduced Multiple Model Approach (MMA) to acquire a linearized model of the 

hovercraft based on some work points of nonlinear process. Three elements of the MMA 

include multiple model sets, multiple controller sets and switch principles. According to 
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speed is the main factor caused the change of hydrodynamic and aerodynamic coefficient of 

hovercraft. [5] used PID controllers to control the multiple models of the hovercraft. The 

experiments results showed that MMA had better control effect with a smaller steady state 

error even though the hovercraft speed was varied. 

In [6], the authors studied a toy CD hovercraft to prove the lubrication theory described by 

the Stokes equation. The theories explored by using this toy CD hovercraft are such as 

measurements of the air flow value, the pressure in the balloon and of the thickness of the air 

film under the hovercraft which allowed them to evaluate the Reynolds number R*. 

Furthermore, they also explored the lifting force applied on the toy of hovercraft and 

calculated the pressure gradient in the air flow. They also mentioned that the results can be 

used at a larger scale hovercraft. 

In the reference [7], a simple triple hovercraft platform was equipped with fuzzy controller 

to control the hovercraft. The authors mentioned that the difficulties to control hovercraft 

arouse like the ability to maintain both manoeuvrability and controllability in any surface 

especially when the hovercraft starts to move. In the hovercraft development, they used a 

triangular Stryrofoam as the hovercraft’s frame, three model size airplane motors, three light 

weight model size airplane propellers, two sensors and interfacing cables. The three motors 

mounted in a triangular configuration on the Stryrofoam platform. They chose Styrofoam 

because this material is quite light enough to provide sufficient lift. They also mentioned that 

the advantage of using fuzzy logic control is the computer can make changes and implement 

any possible situations within micro-seconds. 

In the journal [8], a remote controlled hovercraft had two thrust fans and these lift fan 

provided two separate sources of input. The author developed mathematical model of the 

hovercraft using Newton’s Second Law where the hovercraft had two thrust fans and another 

one for lift fan. In addition, the hovercraft had two wires equally spaced from the center of the 

gravity. The model then transferred into Simulink for simulation to test open loop and closed 

loop behaviour of the system. The author mentioned that the mathematical model was 

successfully and accurately controlled. 

 

3. Dynamic Modeling of the System 

The small scale autonomous hovercraft in this paper is derived by using Euler Lagrange 

method. The Euler Lagrange differential equation is derived from the fundamental equation 

of calculus variations. It states that: 

                       
 

 

 (1) 

where:  

            (2) 

         (3) 

and q is differentiable,         and         while    is derivative of q, 

 
From the Equation (1) – (3) , The Euler Lagrange equation is elaborated further 

and shown in Equation (4): 
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(4) 

where: 

 Lx and Ly denote the partial derivatives of L with respect to the second and third 

arguments, respectively. 

 

In order to obtain equations of motion for a system with the Euler Lagrange, kinetic energy 

T, and the potential energy V need to be considered to get Langrangian L=T - V.  

The Euler Lagrange equation is shown in Equation (5): 
 

  
 
  

   
  

  

  
 (5) 

. 

Furthermore, by using Equation (5), the hovercraft model can be further elaborated based 

on the Figure 1. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 1. The Hovercraft Model 
 

From the Figure 1, the motion equation that involved the hovercraft can be expressed in the 

Equation (6) to Equation (8): 

 

                   (6) 

                   (7) 

     (8) 

 

 

where: 

u is surge velocity 

v is sway velocity  

r is yaw angular velocity 

 

The Euler-Lagrange equation for this system is derived based on the Equation (5) and 

shown in Equation (9) to Equation (11) where it is the combination of Kinetic Energy and 

Potential Energy. 
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The Lagrangian function is shown is Equation (9) and further elaborated in Equation (10) 

to Equation (12). 

  
 

 
    

 

 
    

 

 
    (9) 

         (10) 

         (11) 

       (12) 

where KE is kinetic energy which is the combination of translational kinetic energy (KT) and 

rotational kinetic energy (KR). PE in the Equation (12) is the Potential Energy for the 

hovercraft model. However, in this derivation, Potential Energy for system lifting is neglected 

and only focuses on the direction movement only. The reason for this assumption is to 

simplify the derivation. 

 

   
 

 
     

 

 
     (13) 

  
 

The equation of motion then further derived using Euler-Lagrange equation that includes 

the forces to control the motion. 

 

  
 
  

   
        

  

  
         (16) 

where: 

           , 

τ is torque input for the system. 

 Based on Equation (16), Equation (17) – Equation (25) can be generated. 
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         (25) 

 

where: 

    is acceleration in surge. 

    is acceleration in sway. 

    is angular acceleration in yaw. 

 

Equation (17) – Equation (25) then can be rearranged and shown in Equation (26). 

                                     (26) 

  
where: 

n is number of velocities parameters use where  u,v,and r. 

r is number of input torque where     when input torque are τu and τr. 

M(q) is a symmetric positive definite inertia matrix with dimension       

         is centripetal and coriolismatrix with dimension       

G(q) is the gravitational terms. 

   is bounded unknown disturbances including unstructured unmodeled dynamics 

E(q) is the input transformation matrix with      

   is the input vector with      

      is associated with the constraints and its dimension given by      

        is vector of constraint forces 

 
By using the Equation (26) , the Equation (27) can be obtained.  

 
         
         
         

  
  
  
  
   

   
   
   

  
 
 
 
   

  
  
  

   (27) 

where: 
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Property for M(q) should be symmetric and positive definite where the determinant (M(q)) 

should be not equal to 0. 

From the matrix M(q), the determinant is equal to: 

                               . 

By using weight of hovercraft is, m = 2.1kg and angle of rotation                   .  

From the parameters of m and angle, the matrix M(q) = 4.41 is larger than 0, then it is 

proved M(q) is positive definite. 

      
         
         
         

  (28) 

       
         
         
         

  (29) 

In order to test for symmetric, M(q) – M(q)
T
 = 0. 

            
   
   
   

  (30) 

Hence, from the Equation (30), it is proven that the M (q) is symmetric. 
The Equation (26) then reorganized to depict the non-linear equation for the system’s 

investigated and shown in Equation (31). 

 

              (31) 

           (32) 

          (33) 
where f(x) has 2n x1 matrix while B(x) has 2n x 1 matrix. 

      
  

                           
   

  

                
  

(34) 

        
         
         
         

  (35) 

where: 

    
 

                        
  

       

       

       

    
 

                        
  

       

        

    
 

 
  

and                    (36) 
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The Equation (31) can be shown as Equation (38) as below, 
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where: 

                                       
                       

 

    
 

                        
  

    
 

                        
  

    
 

 
  

and the torque to be applied and control  the system is shown in the Equation (41). 

   

  

 
  

  (41) 

 

where: 

   τu is torque in surge while τr is torque in yaw. 
 

Before the controller for the system is designed, the system needs to be linearized and 

linearized model is shown in the Equation (42). 
 

  
         (42) 

and A and B can be explained further in the Equation (43) to Equation(44).  



International Journal of Advanced Science and Technology 

Vol. 46, September, 2012 

 

 

103 

 

  

 
 
 
 
 
 
               

               
      
       
       
        

 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
  
   
 
 
 
 
 

 (43) 

  

 
 
 
 
 
 

   
   
   

     
     
     

 
 
 
 
 

 

  

 
  

  (44) 

                         (45) 

The system controllability is shown in the Equation (45) where if det(Z) > 0, this linearized 

system is controllable. 

  The parameters that are used in the equation are: 

   mass, m =2.1kg 

   angle,   t      
   and moment of inertia, I=0.000257kgm

2
 

The states are tested either controllable or not by using a matlab command as the 

following: 

  p = 30 

A = [0 0 0 -sin(p) 0 0 ; 0 0 0 0 cos(p) 0 ; 0 0 0 0 0 1 ; -1 0 0 0 0 0 ; 0 -1 0 0 0 0 ; 0 0 -1 

0 0 0] 

  B = [0 0 0 ; 0 0 0 ; 0 0 0 ; 1/2.1 0 0; 0 1/2.1 0 ; 0 0 -0.000257] 

  Co=ctrb(A,B) 

  unco = length(A)-rank(Co) 

If the result for the system shown unco = 0, the equation system is controllable. In this 

equation, this command has produced the following result: 

  unco =0  and the result shows that the equation is controllable. 

 

4. System Controller 

The system need to be controlled by certain controller so that it can follow certain 

trajectories. In this paper, Linear Quadratic Regulation (LQR) is chosen as the controller. 

Linear Quadratic Regulation (LQR) is a controller that provides control performance with 

respect to some initial setting condition. State space model is a model that relates input and 

output of a system using first order-vector differential equation as the following. 
 

  
         

        
where A is n x n matrix, B is a n x m matrix, C is a k x n matrix and D is k x m matrix.  

The matrix A and B are inserted into the state space block model in the Simulink / Matlab 

environment as shown in the Figure 2. 
 

 

Figure 2. State Space Model Block in Simulink Environment 
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It is assumed that the system have full state feedback by finding the vector K, where the 

feedback control law is determined. The placed command could be used to determine 

feedback is the desired closed loop poles are known. In addition, LQR also can be used using 

the LQR function with two parameters R and Q are chosen which will balance the relative 

importance of the input and state. 

The LQR method allows for control of many outputs where in this project are to control six 

outputs. The controller can be tuned by changing nonzero elements in the Q matrix to get 

desirable response.  The Q matrix needs to identify before the K matrix is determined to 

produce a good controller by running the m-file code in Matlab. From the coding in the M-

file with the changes in the Q matrix and K matrix, the response can be plotted so that 

changes can be made in the control and it can be automatically seen in the system output. 

In addition, by using the method mentioned previouspy, a LQR controller design with the 

position x, position y, position z, and velocities are considered. The equation inside the state 

space has been determined from the mathematical modelling using Euler Lagrange Method 

and the equation is linearized to get first order-vector differential equation. This problem can 

be solved using full state feedback and the schematic diagram of control system can be shown 

in Figure 3. 

 

 

Figure 3. Control Block Diagram 
 

There six states                 represent the positions and velocities of the hovercraft 

where LQR controller will be designed with three step inputs. After the linearization of 

mathematical model is done, the equation is tested in open loop to prove that the system is 

unstable in open loop.   

After the open loop is tested, the next step is to assume that the system have full state 

feedback by finding the vector gain K to determine the feedback control law.  In the feedback 

controller for the closed loop test, all the feedback states will multiply with the chosen gain K 

matrix. By running the coding in m-file, the step response simulation is plotted to compare 

with output open loop and to meet the requirements for the system.  The LQR controller can 

control a multi output system and control the linearized model. 
 

4.1 Open Loop Test 

The Figure 4 shows the model in Simulink environment to test the hovercraft system. 

There are three sine waves input on the left of the model where τu, τv and τr as input for the 

hovercraft system.  n the right of this  lock shows that outputs for the system where there 

are si  ouputs,   ,y, ,   ,y  ,    ]^T. When the simulation is run, the input sine will give signal to 

the system where the inputs connected to the mux and state space block. The output can be 

viewed at scopes on the right, which plot the state variable over time, and the figures created 

in Matlab once the variables are sent back into the workspace.  All the simulations run with 

this model are open loop where there is no feedback to alter the input variables. 
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Figure 4. Open Loop Diagram for Hovercraft Model Developed 
 

4.2 Close Loop Test  

The matrix gain K is used to place the poles of the closed loop system in the open left hand 

plane of the system using the Matlab command. The system was placed into the block 

diagram form shown in Figure 5.  The state space block holds the adjusted linear model in the 

matrix form. The linear model was used as a first step in the process to control the nonlinear 

hovercraft model.  

 

Figure 5. Close Loop Test for the Hovercraft Model 
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5. Results 
 

5.1 Open Loop Test 

A simple coding in m-file will define the state-space function to ensure the open loop test 

can be run and simulation is plotted. The coding such as the following: 

A = [0 0 0 -sin(30) 0 0 ; 0 0 0 0 cos(30) 0 ; 0 0 0 0 0 1 ; -1 0 0 0 0 0 ; 0 -1 0 0 0 0 ; 0 0 -1 0 0 

0] 

B = [0 0 0 ; 0 0 0 ; 0 0 0 ; 1/2.1 0 0; 0 1/2.1 0 ; 0 0 -0.000257] 

C = eye(6) 

D = eye(6,3) 

 

The Table 1 shows the information from simulation open loop test by utilizing the 

parameters that previously determined. 

 

Table 1. Result for Open Loop Test 

Graph 
Rise 

Time (s) 

Settling 

Time (s) 

Settling 

Max 
Overshoot Undershoot Peak Peak Time (s) 

x vs time -43.935 41.8168 100 0 0 100 41.1244 

y vs time 0.1417 11.9767 100 0 0 100 -0.0863 

z vs time 0.0192 -0.0275 100 0 0 100 

 

-0.0138 

 

xdot vs 

time 
-0.2255 21.0271 100 0 0 100 -23.5799 

ydot vs 

Time 
-0.1030 -30.7515 100 0 0 100 -43.7633 

pdot vs 

Time 
-0.0055 -0.0051 100 0 0 100 0.0147 

 

From the table 1, the results for open loop test of the model developed then are further 

depicted using the graphs.  

Figure 6 shows the position of the hovercraft system under the sine input within certain 

time. From the graph above, the position of the hovercraft in the surge, x position is from 0m 

to 51m. This shows that the hovercraft model is not in the stable position and always 

continues without certain stable position. 
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Figure 6. Surge Position x (m) versus Time (s) 
 

In another figure, Figure 7 shows the position in sway, y (m) vs time (s), where the model 

start at position 17m in sway at time,t= 0s. Then the model changes its position between -17m 

to 17m continuously when the time increases.  It shows that, the open loop test for the system 

is not stable in sway position because the hovercraft tends to move from left to right 

continuously and hardly maintains its position. The hovercraft model cannot be used if the 

position always changes. It shows that, the open loop are not stable in sway position because 

the hovercraft move from left to right continuously without maintaining its position. The 

hovercraft model cannot be use if the position always changes. 

 

 

Figure 7. Sway Position, y (m) versus Time (s) 
 

Next, Figure 8 elucidates the yaw position (m) versus time (s). From the graph yaw 

position in the Figure 8, the hovercraft model always rotate and it is not stable in yaw 

position.  The position is from zero to -0.03m in position z and it continuously.  The 

hovercraft model has little move only position z and because it focus the movement in surge 

or forward.  
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Figure 8. Graph yaw Position (m) versus Time (s) 

 
In the open loop test in order to find the behavior of the velocities of hovercraft model, the 

velocities graphs are plotted. Figure 9 shows the velocities of the hovercraft in surge (m/s) 

versus time (s) oscillates continuously from 30m/s to -30m/s. The velocity of the open loop 

hovercraft model is not stable because there is no feedback from the controller to maintain 

and to control the velocities of the model. The velocities always increase and decrease 

causing difficulty controlling forward or surge speed hovercraft. 

 

 

Figure 9. Surge Velocity (m/s) versus Time (s) 

 
In the Figure 10, the graph shows the response in the velocities sway versus time is 

sinusoidal and the range of the velocities is from 40m/s to -40m/s. It is continuous response 

and it shows the hovercraft movement is not stable because the velocities always increase and 

decrease. The open loop test is fail to control the velocity of hovercraft. 
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Figure 10. Sway Velocity (m/s ) versus Time (s) 

 
Figure 11 shows the angular velocity of yaw versus time (s) and the graph continuously 

oscillates in the range from -0.015 m/s until 0.015 m/s.  Based on the graph in the Figure 11, 

the hovercraft model does not spin very quickly even though the time difference is small and 

this is happen when the angular velocities near to zero. 

 

 

Figure 11. Angular Velocity, yaw (m/s) versus Time (s) 
 

5.2 Close Loop Test 

The system controller gain K can be determined by initially setting matrix Q and matrix R. 

The matrix value for Q can be set as: 

 

Matrix Q: 
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Matrix R: 

0.1 0 0 

0 0.1 0 

0 0 0.1 

 
By using the state space A and B founded previously, gain values K can be stated as: 

k1 = [7.0875 -0.0000 0.0000 7.0293 -0.0000 -0.0000] 

k2 = [0.0000 5.9256 0.0000 -0.0000 1.9593 0.0000] 

k3 = [0.0000 -0.0000 -0.0051 0.0000 -0.0000 -6.3246] 

From the gain values K, the gain values then are inserted into the Simulink block diagram. 

The information from the simulation run are summarized in the table 2: 

 

Table 2. Result Summary for the Close Loop Test 

Graph 
Rise 

Time (s) 

Settling 

Time (s) 

Settling 

Max   

Oversh

oot 

Unders

hoot 
Peak 

Peak Time 

(s) 

x vs 

time 
11.539 193.3733 100 0 0 100 193.3733 

y vs 

time 
-2.8706 

1.7783 

x10
-008

 
100 0 0 100 

1.1546e-

008 

z vs 

time 
 0.0243 -0.2844 100 0 0 100 -0.4070 

xdot vs 

time 
-3.8205 

1.1562 

x 10
012

 
100 0 0 100 

5.9538x10
-

013
 

ydot vs 

time 
3.9777 

-2.476 

x10
-008

 
100 0 0 100 

-1.6076x10
-

008
 

pdot vs 

time 
0.1252 -0.0838 100 0 0 100 0.0068 

 

From the Table 2, the performance of the controller is further elaborated through the graph 

plotted. Figure 12 shows the position of the hovercraft versus time is plotted. 

 

 

Figure 12. Surge Position x (m) vs Time (s) under LQR Controller 
 

From the graph in the Figure 12, the graph increases from 0m and maintain its position to 

193m when the time reaches t= 20s. The rise time for the graph is 11.54s. From this graph, 
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the surge position of hovercraft model has improved for the closed loop test using the LQR 

controller. By using this controller, it can be seen that the hovercraft can be stabilized in surge 

or when the hovercraft moves forward. The error happen in open loop can be reduced by 

using the LQR controller especially when the model moves forward.  

In another figure, Figure 13 elucidates the graph of y position (m) versus time, t(s) is 

plotted. 

 

 

Figure 13. Sway Position y (m) versus Time (s) under LQR Controller 
 

In the Figure 13 above, the graph decreases from 17m to zero position within time t=20s 

after the simulation of the hovercraft model is started. The rise time of the graph is in negative 

which is t=2.87s. This show that the hovercraft model position is reduced to become more 

stable in sway position.  The motion of the hovercraft in sway is more stable when it is under 

controller compared to motion of the hovercraft without using LQR controller. 

 

 

Figure 14. Yaw Position z (m) versus Time (s) under LQR Controller 
 

From the graph in Figure 14, the position of the hovercraft decreases with time and at time,  

t= 20s, the position is considered has stabilized and maintained its position. If the black line 

in the graph represent as the average value of the graph, then the value is -0.33m and it is fix 

in yaw position which is almost equal to zero position of the hovercraft model.  The LQR 

controller has improved the yaw position in closed loop test although it still has vibration 

similarly as the yaw position in open loop test. 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

Time(s)

P
o

st
io

n
 y

(m
) 

Position y(m) vs Time(s)

0 10 20 30 40 50 60 70 80 90 100
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Time (s)

P
o

si
ti

o
n

 z
 (

m
)

Position z vs Time 



International Journal of Advanced Science and Technology 

Vol. 46, September, 2012 

 

 

112 

 

In the next three figures, the surge velocity, sway velocity and yaw velocity will be clearly 

shown. In the Figure 15, the surge velocity versus time is plotted. 

 

 

Figure 15. Surge Velocity (m/s) versus Time (s) under LQR Controller 
 

The velocity in surge initially increases then goes down to reach and maintain at zero m/s. 

This behavior shows that the system is stable when the system is under controller and the 

controller can control the surge velocity. The velocity in surge is steady in the zero after 

time,t=20s. The LQR controller helps to stabilize the velocities in surge to ensure the 

hovercraft moves forward with certain surge velocities and no disturbance occur.  

 

 

Figure 16. Sway Velocity (m/s) versus Time (s) under LQR Controller 
 

Figure 16 shows the plotted graph of the sway velocity versus time for the model under the 

LQR controller. From the graph in Figure 16 above, the velocity for sway is equal to zero 

after time reaches t= 20s although it is initially decreased at the beginning of the graph. This 

behavior is due to the physical origin where two competing effects which are the fast 

dynamics and slow dynamic effects, collaborating to generate a negative response prior to 

starting recover the steps to resolve the steady state positive value based on (Wilkie et al, 

2005). Therefore, to avoid this, then a gain [-1] shall be placed on model output. 
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Figure 17. Yaw Velocity (m/s) versus Time (s) under LQR Controller 

 
The yaw velocity of the hovercraft model is depicted in Figure 17. From the graph , the 

angular velocity has a wide range from 0.1m/s to -0.1m/s until the final running time, t=100s  

Even though the velocity in yaw oscillates,  it is still better than the graph for angular 

velocities in open loop test. From the graph, it can be said that that yaw rotation is slow based 

on the angular velocity in yaw. This indicates that the model of the hovercraft does not 

experienced spinning movement from the original position.   
 

6. Conclusion 

After the completion the project, the linearized mathematical model is successfully derived 

by  using the Euler Lagrange method and suitable control method has been found to control 

the unmanned hovercraft. From the earlier discussion in the previous subtopic, it can be 

concluded the Linear Quadratic Regulator (LQR) is suitable controller method to control the 

hovercraft model for multi inputs and multi outputs of the model. Then, the model is tested in 

the Simulink/MATLAB software and the graphs are plotted to see the hovercraft model can 

be stabilized or not. Every controller responses are plotted and then summarized in table. It is 

found that the LQR is suitable to control the model compared to the open loop where the open 

loop cannot do the stabilization process. Although the LQR controller has successfully 

stabilized the system model, implementation of the mathematical algorithm into the real 

hardware is quite important since the this system is still under simulation study. Therefore 

implementation into real system will give great advantages to test the algorithm used in the 

project. The controller technique also needs to be improved in order to obtain a better robust 

controller and possess better response. 
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