
Knapsack Problems involving dimensions, demands and multiple
choice constraints: generalization and transformations between

formulations

Amine Lamine, Mahdi Khemakhem and Habib Chabchoub
Higher Institute of Industrial Management

University of Sfax, 3018 Sfax , Tunisia
amine.lamine@yahoo.fr, mahdi.khemakhem@isecs.rnu.tn, habib.chabchoub@fsegs.rnu.tn

Abstract

In this paper we studied a set of knapsack problems involving the notion of dimensions, demands
and multiple choice constraints. Specifically, we defined a new problem called the multiple demand
multidimensional multiple choice knapsack problem and we showed it as a generalization of other
related problems. Moreover, we presented a set of transformations between the different integer lin-
ear programs of the studied problems. Using these transformations, we showed that any algorithm
able to solve the generalized problem can definitely solve its related problems. Then, we tested
the new integer linear programs on different sets of benchmarks using the commercial software
Cplex 9.0 . Computational results highlighted the ability of the generated formulations to produce
a reasonable CPU time value compared with the original ones.

Keywords: Modeling, generalization of knapsack problem, multiple demand multidimensional
multiple choice constraints, integer linear programs transformations

1 Introduction

Extensions of knapsack problem [7, 12] play a significant role in the study of discrete math-
ematics. These extensions concern many practical problems in the real life as the service level
agreement, the model of allocation resources, computer systems design, project selection, cutting
stock and cargo-loading.

In the literature, large specific algorithms are developed to solve extensions of the knapsack
problem. Although there is a relation between many knapsack problems, many existing algorithms
must be redeveloped to solve other extensions. To be appropriate to the problem, the redevelopment
of these algorithms is very difficult in general and can lose its specifications.

In this context, we define a new problem called the multiple demand multidimensional multi-
ple choice knapsack problem (MDMMKP) which is considered as a generalization of its related
problems. Using a set of transformations, we show that any algorithm able to solve the generalized
problem can definitely solve its related problems. Therefore the redevelopment of algorithms in
this case is not considered.

The outline of this paper is as follows. In Section 2, we define the concepts and the preliminaries
of our work. In section 3, a definition of knapsack problems is given. In section 4, we present
a set of transformations between integer linear programs of the knapsack problems. In Section 5,
computational results are given to validate these transformations. Finally, in Section 6, we conclude
and outline our future directions.
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2 Preliminaries

2.1 Integer linear program

Integer linear programming refers to mathematical programming with discrete variables and lin-
earities in the objective function and constraints.

The general form of an integer linear program (ILP) is (see Figure 1)

Figure 1. A general form of an integer linear program
maximize cTx

subject to
Ax ≤ b
x ∈ X Integer

where c is a n-vector, A is an m × n matrix and b is an m-vector. x is the decision variables
required to be integer valued. X is bounding-box-type restrictions on the variable. We refer to [3]
for more information about ILP fundamentals.

2.2 Knapsack problem constraints

The knapsack problem (KP) [7, 12] is an integer linear program comprising binary variables, a
single constraint with positive coefficients and binary restrictions on the variables. It can be defined
by a set of items, each having a profit and a weight. The problem consists in choosing a subset of
the items such that their overall profit is maximized so that the overall weight does not exceed a
given limit (knapsack capacity).

The KP has been used to model various decision making processes and finds a variety of real
world applications: resource allocation problems, cutting stock, capital budgeting, project selection
and processor allocation in distributed computing systems. Industrial applications find the need for
satisfying additional constraints such as multidimensional knapsack constraints, demand constraints
and multiple choice constraints. These constraints can be defined as follows:

• Knapsack constraint : The knapsack constraint is to choose a subset of items set such that
their overall weight does not exceed a knapsack capacity. In case when the knapsack has a set
of dimensions, the constraint is called multidimensional knapsack constraint in which each
dimension is called a knapsack constraint.

• Demand constraint : The demand constraint is to choose a subset of items set such that
their overall weight must exceed a demand capacity. As the previous constraint, the demand
constraint can be multidimensional.

• Multiple choice constraint : When items are distributed on a set of disjointed sets then the
multiple choice constraint is to choose an item of each set.

These necessities (additional constraints) lead to many extensions and variants of knapsack prob-
lems such as the multidimensional knapsack problem (MKP) [5], the multiple demand knapsack
problem (MDMKP) [2], the multiple choice knapsack problem (MCKP) [14], the multidimensional
multiple choice knapsack problem (MMKP) [13, 8] and multidimensional knapsack problems with
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generalized upper bound constraints (GUBMKP) [10, 11]. In Table 1, we characterize the problems
that will be defined in the following according to the type of constraints.

Table 1. Knapsack problems according to the type of constraints
Type of constraint

Problem knapsack multidimensional knapsack multiple demand multiple choice
KP X
MKP X
MDMKP X X
MCKP X X
MMKP X X
GUBMKP X X
MDMMKP X X X

MDMMKP is an abbreviation of the multiple demand multidimensional multiple choice knap-
sack problem that we define in the next section and mentioned as the most general problem of all
these problems.

In order to give a more intuitive presentation, let us define and denote the following terms (see
Table 2).

Table 2. Notation of knapsack terms
N the number of items
pj the profit of item j
wj the weight of item j
c the capacity of a single knapsack
m the number of knapsack constraints
wk
j the weight of item j in knapsack k

ck the capacity of knapsack k
q the number of demand constraints
n the number of groups
G = {G1, ..., Gn} the set of groups
|Gi| the number of items of group Gi

pij the profit of item j of group Gi

wk
ij the weight of item j of group Gi in knapsack k

2.3 Reduction, generalization and problems transformation

• Reduction and generalization
Of any two related problems, such as A and B, we say that the problem A is a generalization
of the problem B (marked B→ A) if and only if:

– every solution to problem A is also a solution to problem B; and

– there are solutions to problem B which are not solutions to problem A.

Note that the reduction is the symmetric relationship of the generalization then the problem
B is a reduction of problem A.
Also it is obvious that the generalization and the reduction are a transitive relation. For
example if B→ A and C→ B then C→ A.
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• Problem transformation
We define a problem transformation as the operation that takes a problem and generates it
into another problem in accordance with a set of rules without losing specifications.

3 The Knapsack Problem Family involving the notion of dimen-

sions, demands and sets

3.1 The knapsack problem

The knapsack problem (KP) can be defined by a set of N items; each item j has a profit pj
and a weight wj . The problem is to choose a subset of the items such that their overall profit is
maximized, while the overall weight does not exceed the knapsack capacity c. It may be formulated
as the following integer linear program (see Figure 2)

Figure 2. An integer linear program of the knapsack problem
maximize

∑N
j=1 pjxj (1)

subject to ∑N
j=1wjxj ≤ c (2)

xj ∈ {0, 1} (j = 1, . . . , N) (3)

where Equation (1) provides the total profit of selecting items and Equation (2) ensures that the
knapsack constraint is satisfied. The binary decision variables xj are used to indicate whether item
j is included in the knapsack or not.

There follows (Figure 3) a small illustrative problem which will be used throughout the paper.
For this problem the number of items N is equal to 8.

3.2 The multidimensional knapsack problem

The multidimensional knapsack problem (MKP) [5] is considered as an extension of the classical
knapsack problem in which knapsack has a set of dimensions. Each dimension is called a knapsack
constraint.

The MKP can be defined by a set of N items and a knapsack with m dimensions. The knapsack
has a limited capacity in each dimension k denoted by ck. Each item j has a profit pj and a weight
in each dimension, denoted by wk

j . The goal is to select a subset of items with maximum total profit,
see Equation (4). Chosen items must, however, not exceed knapsack constraints, see Equation (5).
The 0-1 decision variables xj indicate which items are selected.

Figure 5 represents an extended example of the knapsack problem to present the multidimen-
sional knapsack problem where the number of dimensions m is equal to 2.

3.3 The multiple demand multidimensional knapsack problem

The multiple demand multidimensional knapsack problem (MDMKP) [2] is considered as an
extension of the multidimensional knapsack problem in which there are greater-than-or-equal-to
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Figure 3. An instance example of the knapsack problem
Input:
N ← 8

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wj 5 20 25 35 40 45 55 60

→ Capacity →
c 150

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 1 0 0 0 1 1 0 1 value 200

Figure 4. An integer linear program of the multidimensional knapsack problem
maximize

∑N
j=1 pjxj (4)

subject to ∑N
j=1w

k
j xj ≤ ck (k = 1, . . . ,m) (5)

xj ∈ {0, 1} (j = 1, . . . , N) (6)

inequalities called demand constraints, in addition to the standard less-than-or-equal-to inequali-
ties. Formally the problem can be stated as integer linear program as shown in Figure 6.

Each of the m constraints of family Equation (8) represents a knapsack constraint, while each of
the q constraints of family Equation (9) represents a demand constraint.

Figure 7 represents an example of the MDMKP which can be considered as an extension of the
MKP example with two demand constraints (q = 2).

3.4 The multiple choice knapsack problem

The multiple choice knapsack problem (MCKP) [14] is considered as a an extension of the
classical knapsack problem in which items are distributed on n disjointed groups G = (G1 ∪G2 ∪
... ∪Gn) (see Equation 11).

The MCKP consists in selecting one and only one item of each group without violating the
knapsack capacity c in order to maximize the total profit of the selected items. The MCKP can be
modeled as an integer linear program as shown in Figure 8.

The variable xij is equal to 1 when the item j of the group Gi is selected, 0 otherwise. The ob-
jective function Equation (12) represents the total profit to be maximized. The knapsack constraint
is presented in Equation (13) and the n multiple choice constraints are presented in Equation (14).
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Figure 5. An instance example of the multidimensional knapsack problem
Input:
N ← 8 m← 2

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wk
j 5 20 25 35 40 45 55 60

90 120 70 110 90 65 80 150
→ Capacity →

ck 150 300
Constraints:

5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
90x1 + 120x2 + 70x3 + 110x4 + 90x5 + 65x6 + 80x7 + 150x8 ≤ 300
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 0 0 1 0 0 0 1 1 value 180

Figure 6. An integer linear program of the multiple demand multidimensional knap-
sack problem

maximize
∑N

j=1 pjxj (7)

subject to ∑N
j=1w

k
j xj ≤ ck (k = 1, . . . ,m) (8)∑N

j=1w
k
j xj ≥ ck (k = 1 + m, . . . , (m + q)) (9)

xj ∈ {0, 1} (j = 1, . . . , N) (10)

To avoid unsolvable situations we assume that the sum of the minimum weight of items in each
group is smaller than the knapsack capacity c.

Figure 9 represents an example of MCKP where items are subdivided into n = 3 groups, the
cardinality of G1 = 3, G2 = 2 and G3 = 3.

3.5 The multidimensional multiple choice knapsack problem

The multidimensional multiple choice knapsack problem (MMKP) [13, 8] is a particular variant
of the knapsack problem. It can be viewed as a combination of aspects of the multidimensional
knapsack problem (MKP) and the multiple choice knapsack problem (MCKP). The MMKP is a an
extension of the MCKP in which one item is selected from each group. However, in the MMKP,
the knapsack is multidimensional, i.e., the knapsack consists of multiple resource constraints si-
multaneously satisfied. The MMKP problem can be stated as an integer linear program as shown
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Figure 7. An instance example of the multiple demand multidimensional knapsack
problem

Input:
N ← 8 m← 2 q ← 2

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wk
j 5 20 25 35 40 45 55 60

90 120 70 110 90 65 80 150
5 20 100 35 60 45 50 60
90 60 70 110 90 45 20 10

→ Capacity →
ck 150 300 80 200

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
90x1 + 120x2 + 70x3 + 110x4 + 90x5 + 65x6 + 80x7 + 150x8 ≤ 300
5x1 + 20x2 + 100x3 + 35x4 + 60x5 + 45x6 + 50x7 + 60x8 ≥ 80
90x1 + 60x2 + 70x3 + 110x4 + 90x5 + 45x6 + 20x7 + 10x8 ≥ 200
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 0 0 0 1 1 0 1 0 value 160

∀ (p, q) , p 6= q, p ≤ n , q ≤ n, Gp ∩Gq = ∅ and
⋃n

i=1Gi = G (11)

in Figure 10
Equation (16) provides the profit of selecting items, a value to be maximized. Equation (17)

ensures the resource capacity of knapsack k is not exceeded while Equation (18) ensures selecting
a single item from each of the Gi groups. Equation (19) is the binary selection requirement on
decision variable xij such that xij is equal to 1 if the item j of the group Gi is selected, 0 otherwise.

Figure 11 represents an extended example of the multiple choice knapsack problem to present the
multidimensional multiple choice knapsack problem where the number of dimensions m is equal
to 2.

3.6 The multidimensional knapsack problems with generalized upper bound constraints

The multidimensional knapsack problems with generalized upper bound constraints (GUBMKP)
[10, 11] is defined as a multidimensional knapsack problem (MKP) with mutually exclusive gener-
alized upper-bound(GUB) constraints where all GUBs are fixed at 1. It can be viewed as a reduction
of the MMKP, in which it is required that at most one item per group can be chosen. The GUBMKP
problem is formulated as an integer linear program as shown in Figure 12.
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Figure 8. An integer linear program of the multiple choice knapsack problem

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (12)

subject to ∑n
i=1

∑|Gi|
j=1wijxij ≤ c (13)∑|Gi|

j=1 xij = 1 (i = 1, . . . , n) (14)
xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (15)

Figure 9. An instance example of the multiple choice knapsack problem
Input:
N ← 8 n← 3

→ Profits→
pij 10 20 30︸ ︷︷ ︸

G1

40 50︸ ︷︷ ︸
G2

60 70 80︸ ︷︷ ︸
G3

→Weights→
wij 5 20 25︸ ︷︷ ︸

G1

35 40︸ ︷︷ ︸
G2

45 55 60︸ ︷︷ ︸
G3

→ Capacities→
c 130

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
x11 + x12 + x13 = 1
x21 + x22 = 1
x31 + x32 + x33 = 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 1 0︸ ︷︷ ︸

G1

0 1︸︷︷︸
G2

0 0 1︸ ︷︷ ︸
G3

value 150

Equation (20) represents the total profit to be maximized. Equation (21) ensures the knapsack
capacities are not exceeded while Equation (22) ensures selecting at most one item from each of the
n disjoint groups. Equation (23) is the binary selection requirement on decision variable xij such
that xij is equal to 1 when the item j of the group Gi is selected, 0 otherwise.

Since the structure and the specification of the GUBMKP is similar to the MMKP, we use the
same input of the latter to present an example of the GUBMKP (see Figure 13)

3.7 The multiple demand multidimensional multiple choice knapsack problem

We define the multiple demand multidimensional multiple choice knapsack problem (MDMMKP)
as a combination of aspects of the multidimensional knapsack constraint, multiple demand con-
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Figure 10. An integer linear program of the multidimensional multiple choice knap-
sack problem

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (16)

subject to ∑n
i=1

∑|Gi|
j=1w

k
ijxij ≤ ck (k = 1, . . . ,m) (17)∑|Gi|

j=1 xij = 1 (i = 1, . . . , n) (18)
xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (19)

Figure 11. An instance example of the multidimensional multiple choice knapsack
problem

Input:
N ← 8 n← 3 m← 2

→ Profits→
pij 10 20 30︸ ︷︷ ︸

G1

40 50︸ ︷︷ ︸
G2

60 70 80︸ ︷︷ ︸
G3

→Weights→
wij 5 20 25 35 40 45 55 60

90 120 70︸ ︷︷ ︸
G1

110 90︸ ︷︷ ︸
G2

65 80 150︸ ︷︷ ︸
G3

→ Capacities→
ck 130 230

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
90x11 + 120x12 + 70x13 + 110x21 + 90x22 + 65x31 + 80x32 + 150x33 ≤ 230
x11 + x12 + x13 = 1
x21 + x22 = 1
x31 + x32 + x33 = 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 0 1︸ ︷︷ ︸

G1

0 1︸︷︷︸
G2

1 0 0︸ ︷︷ ︸
G3

value 140

straint and multiple choice constraint. It is considered as an extension of the multidimensional
multiple choice knapsack problem (MMKP) in which there are greater-than-or-equal-to inequali-
ties, in addition to the standard less-than-or-equal-to inequalities. The integer linear program of the
MDMMKP can be stated in Figure 14.

The variable xij is equal to 1 when the item j of the group Gi is selected, 0 otherwise. The ob-
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Figure 12. An integer linear program of the multidimensional knapsack problems
with generalized upper bound constraints

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (20)

subject to ∑n
i=1

∑|Gi|
j=1w

k
ijxij ≤ ck (k = 1, . . . ,m) (21)∑|Gi|

j=1 xij ≤ 1 (i = 1, . . . , n) (22)
xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (23)

Figure 13. An instance example of the multidimensional knapsack problems with
generalized upper bound constraints

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
90x11 + 120x12 + 70x13 + 110x21 + 90x22 + 65x31 + 80x32 + 150x33 ≤ 230
x11 + x12 + x13 ≤ 1
x21 + x22 ≤ 1
x31 + x32 + x33 ≤ 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 0 1︸ ︷︷ ︸

G1

0 1︸︷︷︸
G2

1 0 0︸ ︷︷ ︸
G3

value 140

Figure 14. An integer linear program of the multidimensional multiple demand mul-
tiple choice knapsack problem

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (24)

subject to ∑n
i=1

∑|Gi|
j=1w

k
ijxij ≤ ck (k = 1, . . . ,m) (25)∑n

i=1

∑|Gi|
j=1w

k
ijxj ≥ ck (k = 1 + m, . . . , (m + q)) (26)∑|Gi|

j=1 xij = 1 (i = 1, . . . , n) (27)
xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (28)

jective function equation (24) represents the total profit to be maximized. The knapsack constraints
are presented in equation (25) and the demand constraints are presented in equation (26). Equation
(27) represents the n multiple choice constraints.
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There follows an illustrative example that represents an extension of the MMKP example with
q = 2 demand constraints.

Figure 15. An instance example of the multidimensional multiple demand multiple
choice knapsack problem

Input:
N ← 8 n← 3 m← 2

→ Profits→
pij 10 20 30︸ ︷︷ ︸

G1

40 50︸ ︷︷ ︸
G2

60 70 80︸ ︷︷ ︸
G3

→Weights→
wij 5 20 25 35 40 45 55 60

90 120 70 110 90 65 80 150
5 20 100 35 60 45 50 60

90 60 70︸ ︷︷ ︸
G1

110 90︸ ︷︷ ︸
G2

45 20 10︸ ︷︷ ︸
G3

→ Capacities→
ck 130 230 80 200

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
90x11 + 120x12 + 70x13 + 110x21 + 90x22 + 65x31 + 80x32 + 150x33 ≤ 230
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≥ 80
90x11 + 60x12 + 70x13 + 110x21 + 90x22 + 45x31 + 20x32 + 10x33 ≥ 200
x11 + x12 + x13 = 1
x21 + x22 = 1
x31 + x32 + x33 = 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 0 1︸ ︷︷ ︸

G1

0 1︸︷︷︸
G2

1 0 0︸ ︷︷ ︸
G3

value 140

3.8 Relation schema between problems

Figure 16 shows a set of possible generalizations between the problems mentioned above where
each arrow represents a generalization between a target problem and a destination problem. In fact:

• The problems in which knapsack constraint is multidimensional are a generalization of prob-
lems with one dimension. Among these problems the MKP and the MMKP that are consid-
ered as a generalization of KP and MCKP respectively.

• The problems with demand constraints are a generalization of the problems without demand
constraints. It is apparent that the MDMKP and the MDMMKP are considered as a general-
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ization of the MKP MMKP respectively.

• The problems that have a notion of groups such as MCKP, MMKP and MDMMKP are a
generalization of problems without groups such as KP, MKP and MDMKP respectively.

• The GUBMKP is a generalization of MKP and a reduction of MMKP.

Figure 16. Relation between knapsack problems

According to the transitivity characteristics of the generalization between problems we consider
the MDMMKP as the most generalized problem.

4 Transformations between Integer Linear Programs

In this section, we present a set of transformations between the different integer linear programs
of the knapsack problems mentioned above. These transformations are summarized in Figure 17.
Each arrow indicates that the transformation between the linked problems is proved.

Figure 17. Transformation between ILPs of KPs
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4.1 Transformation of the GUBMKP into the MMKP

The GUBMKP can be easily transformed into the MMKP. The formulation of the MMKP can be
built by substituting the inequality (≤) by the strict equality (=) for equation (22) in the GUBMKP
formulation. Variables in each of the multiple choice constraints sum to 1 exactly. This modification
is obtained by adding a dummy item into each group (GUB constraint) in which its consumption
and its profit are zero. Indeed, selecting any item in the original GUBMKP formulation is simi-
lar to selecting the dummy item in the generated MMKP formulation. Therefore, the GUBMKP
formulation mentioned above can be transformed into the MMKP formulation as shown in Figure
18.

Figure 18. An integer linear program of GUBMKP based on the MMKP formulation

maximize
∑n

i=1

∑|Gi|+1
j=1 pijxij (29)

subject to ∑n
i=1

∑|Gi|+1
j=1 wk

ijxij ≤ ck (k = 1, . . . ,m) (30)∑|Gi|+1
j=1 xij = 1 (i = 1, . . . , n) (31)

xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|+ 1) (32)

where pi(|Gi|+1) = 0 and wi(|Gi|+1) = 0 (i = 1, . . . , n).
The instance example of the GUBMKP (Figure 13) is moved to an MMKP instance (see Figure

19)

4.2 Transformation of the MKP into the MMKP

To explain this part let us take the ILP of the MKP mentioned above to show the transformation
of the MKP into the MMKP. We can transform an MKP instance into an MMKP instance by the
creation of a set of n groups each of which each contains two items. The first item represents an
item of the items set of the MKP and the second item presents a dummy item whose weight and
profit are zero. Then, each group Gj (j = 1, . . . , n) contain two items where:

pj1 = pj , pj2 = 0, wk
j1 = wk

j , w
k
j2 = 0 (j = 1, . . . , n) (k = 1, . . . ,m)

For example in case when the item is not selected in the original formulation of MKP, it is similar
to select the dummy item belonging to the same set in the MMKP formulation.

The integer linear program of the MKP can be transformed into an integer linear program of the
MMKP as shown in Figure 20.

The instance example of the MKP (Figure 5) is moved to an MMKP instance (see Figure 21)
Note that we will use the same principle to move the MDMKP into the MDMMKP and the KP

into the MCKP.

4.3 Transformation of the GUBMKP into the MKP

In this part we are going to transform the GUBMKP into the MKP. Let us define the following
terms N =

∑n
i=1 |Gi|, Nh =

∑h
i=1 |Gi|, ∀h ∈ (1, . . . , n) and N0 = 0, and rename the following

terms xij = yl and wk
ij = wk

l where l = Ni−1 + j.
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Figure 19. An instance example of the GUBMKP based on the MMKP formulation
Input:
N ← 11 n← 3 m← 2

→ Profits→
pij 10 20 30 0︸ ︷︷ ︸

G1

40 50 0︸ ︷︷ ︸
G2

60 70 80 0︸ ︷︷ ︸
G3

→Weights→
wij 5 20 25 0 35 40 0 45 55 60 0

90 120 70 0︸ ︷︷ ︸
G1

110 90 0︸ ︷︷ ︸
G2

65 80 150 0︸ ︷︷ ︸
G3

→ Capacities→
ck 130 230

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
90x11 + 120x12 + 70x13 + 110x21 + 90x22 + 65x31 + 80x32 + 150x33 ≤ 230
x11 + x12 + x13 + x14 = 1
x21 + x22 + x23 = 1
x31 + x32 + x33 + x34 = 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 0 1 0︸ ︷︷ ︸

G1

0 1 0︸ ︷︷ ︸
G2

1 0 0 0︸ ︷︷ ︸
G3

value 140

Figure 20. An integer linear program of MKP based on the MMKP formulation
maximize

∑N
i=1

∑2
j=1 pijxij (33)

subject to ∑N
i=1

∑2
j=1w

k
ijxij ≤ ck ((k = 1, . . . ,m) (34)∑2

j=1 xij = 1 (i = 1, . . . , N) (35)
xij ∈ {0, 1} (i = 1, . . . , N), (j = 1, 2) (36)

The idea in this part is to view each GUB constraint as a knapsack constraint. So we add to the
classical m knapsack constraints a new n constraints by substituting the n GUB constraints to n
equivalent knapsack constraints. In fact the ILP of the GUBMKP can be reformulated to an ILP of
the MKP in this manner:

The n GUBMKP constraints
∑|Gi|

j=1 xij ≤ 1, ∀i ∈ (1, . . . , n) are transformed into
∑N

l=1w
k
l yl ≤

ck,∀k ∈ (m+1, . . . ,m+n) where ck = 1 ∀k ∈ (m+1, . . . ,m+n) and for each k+m knapsack
constraint ∀k ∈ (1, . . . , n)
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Figure 21. An instance example of the MKP based on the MMKP formulation
Input:
N ← 16 m← 2

→ Profits→
pj 10 0︸︷︷︸

G1

20 0︸︷︷︸
G2

30 0︸︷︷︸
G3

40 0︸︷︷︸
G4

50 0︸︷︷︸
G5

60 0︸︷︷︸
G6

70 0︸︷︷︸
G7

80 0︸︷︷︸
G8

→Weights→
wk
j 5 0 20 0 25 0 35 0 40 0 45 0 55 0 60 0

90 0︸︷︷︸
G1

120 0︸ ︷︷ ︸
G2

70 0︸︷︷︸
G3

110 0︸ ︷︷ ︸
G4

90 0︸︷︷︸
G5

65 0︸︷︷︸
G6

80 0︸︷︷︸
G7

150 0︸ ︷︷ ︸
G8

→ Capacity →
ck 150 300

Constraints:
5x11 + 20x21 + 25x31 + 35x41 + 40x51 + 45x61 + 55x71 + 60x81 ≤ 150
90x11 + 120x21 + 70x31 + 110x41 + 90x51 + 65x61 + 80x71 + 150x81 ≤ 300
x11 + x12 = 1
x21 + x22 = 1
x31 + x32 = 1
x41 + x42 = 1
x51 + x52 = 1
x61 + x62 = 1
x71 + x72 = 1
x81 + x82 = 1
xij ∈ {0, 1} (i = 1, . . . , 8) (j = {1, 2})

Objective:
maximize 10x11 + 20x21 + 30x31 + 40x41 + 50x51 + 60x61 + 70x71 + 80x81

Optimal solution:
0 1︸︷︷︸
G1

0 1︸︷︷︸
G2

1 0︸︷︷︸
G3

0 1︸︷︷︸
G4

0 1︸︷︷︸
G5

0 1︸︷︷︸
G6

1 0︸︷︷︸
G7

1 0︸︷︷︸
G8

value 180

Figure 22. An integer linear program of MKP based on the MMKP formulation
maximize

∑N
l=1 plyl (37)

subject to ∑N
l=1w

k
l yl ≤ ck (k = 1, . . . ,m + n) (38)

yl ∈ {0, 1} ( (l = 1, . . . , N) (39)

wk+m
l =

{
1 ,∀l ∈ (1 + Nk−1, . . . , Nk)
0, otherwise.

}

The instance example of the GUBMKP (Figure 13) is moved to an MKP instance (see Figure
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23)

Figure 23. An instance example of the GUBMKP based on the MKP formulation
Input:
N ← 8 m← 5

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wk
j 5 20 25 35 40 45 55 60

90 120 70 110 90 65 80 150
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

→ Capacity →
ck 150 300 1 1 1

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
90x1 + 120x2 + 70x3 + 110x4 + 90x5 + 65x6 + 80x7 + 150x8 ≤ 300
x1 + x2 + x3 ≤ 1
x4 + x5 ≤ 1
x6 + x7 + x8 ≤ 1
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 0 0 1 0 1 1 0 0 value 140

4.4 Transformation of the MMKP into the MDMKP

The n multiple choice constraints of the MMKP can be subdivided into two kinds of constraints
n less-than-or-equal-to and n greater-than-or-equal-to inequalities. Indeed, the MMKP is modeled
as shown in Figure 24.

And using the same principle to transform the GUBMKP into the MKP mentioned above, we
can view the MMKP program as an MDMKP program as shown in Figure 25.

where ck = 1∀k ∈ (m + 1, . . . ,m + n,m + n + 1, . . . ,m + 2n).
The instance example of the MMKP (Figure 11) is moved to an MDMKP instance (see Figure

26)

4.5 Transformation of the MCKP into the GUBMKP

The MCKP can be transformed into an equivalent GUBMKP. The transformation is done by
eliminating one of the items from each group. We mark this item j∗ where xij∗ is the variable
with wij∗ = min{w1

ij ∀j ∈ (1, . . . , |Gi|)}, ∀i ∈ (1, . . . , n). To facilitate the removal of items,
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Figure 24. A second integer linear program of MMKP

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (40)

subject to ∑n
i=1

∑|Gi|
j=1w

k
ijxij ≤ ck ((k = 1, . . . ,m) (41)∑|Gi|

j=1 xij ≤ 1 (i = 1, . . . , n) (42)∑|Gi|
j=1 xij ≥ 1 (i = 1, . . . , n) (43)

xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (44)

Figure 25. An integer linear program of MMKP based on the MDMKP formulation
maximize

∑N
l=1 plyl (45)

subject to ∑N
l=1w

k
l yl ≤ ck (k = 1, . . . ,m + n) (46)∑N

l=1w
k
l yl ≥ ck, (k = m + n + 1, . . . ,m + 2n) (47)

yl ∈ {0, 1} (l = 1, . . . , N) (48)

we modify the index of items in order that the index j∗ of each group Gi is equal to = |Gi|
∀i ∈ (1, . . . , n). Then the MCKP can be modeled as shown in Figure 27.

where v̄ =
∑n

i=1 pij∗ . This value presents a lower bound of the MCKP, c′ = c −
∑n

i=1w
1
ij∗ ,

p′ij = pij − pij∗ and w′ij = w1
ij − w1

ij∗ .
With this kind of modeling, we are sure that at most one item is selected by group. This item

represents the item which has the smallest weight for each group marked by j∗. So if any item of
group Gi is selected on the GUBMKP formulation, we are sure that the item j∗ is selected.

The instance example of the MCKP (Figure 9) is moved to a GUBMKP instance (see Figure 28)

4.6 Algorithms of MDMMKP are able to solve the other problems

Given that any algorithm can solve the MDMMKP, based on the transitivity characteristics of the
generalization and the set of transformations, this algorithm is able to solve all the other problems.
In fact, we can easily transform their instances into the MDMMKP ones which can be solved
directly by the considered algorithm.

5 Experimental results

This section is aimed at:

• validating experimentally the transformations between problems.

• answering the following questions: Are the generated problems using the transformations
able to produce a reasonable CPU time value compared with the original formulations?
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Figure 26. An instance example of the MMKP based on the MDMKP formulation
Input:
N ← 8 m← 5 q ← 3

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wk
j 5 20 25 35 40 45 55 60

90 120 70 110 90 65 80 150
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

→ Capacity →
ck 150 300 1 1 1 1 1 1

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
90x1 + 120x2 + 70x3 + 110x4 + 90x5 + 65x6 + 80x7 + 150x8 ≤ 300
x1 + x2 + x3 ≤ 1
x4 + x5 ≤ 1
x6 + x7 + x8 ≤ 1
x1 + x2 + x3 ≥ 1
x4 + x5 ≥ 1
x6 + x7 + x8 ≥ 1
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 0 0 1 0 1 1 0 0 value 140

Figure 27. An integer linear program of MCKP based on the GUBMKP formulation

maximize v̄ +
∑n

i=1

∑|Gi|−1
j=1 p′ijxij (49)

subject to ∑n
i=1

∑|Gi|−1
j=1 w′ijxij ≤ c′ (50)∑|Gi|−1

j=1 xij ≤ 1 (i = 1, . . . , n) (51)
xij ∈ {0, 1} (i = 1, . . . , n) (j = 1, . . . , |Gi| − 1) (52)

Note that the computational platform used to solve the test problems is consisted as the CPLEX
Solver version 9.0 on a Windows XP with 2.50 GHz and 2 GB of shared memory. We modeled the
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Figure 28. An instance example of the MCKP based on the GUBMKP formulation
Input:
N ← 8 n← 3

→ Profits→
pij 10 20︸ ︷︷ ︸

G1

10︸︷︷︸
G2

10 20︸ ︷︷ ︸
G3

→Weights→
wij 15 20︸ ︷︷ ︸

G1

5︸︷︷︸
G2

10 15︸ ︷︷ ︸
G3

→ Capacities→
c 45 = 130− (5 + 35 + 45)

Constraints:
15x11 + 20x12 + 5x21 + 10x31 + 15x32 ≤ 45
x11 + x12 ≤ 1
x21 ≤ 1
x31 + x32 ≤ 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 110 = (10 + 40 + 60) + 10x11 + 20x12 + 10x21 + 10x31 + 20x32

Optimal solution:
1 0︸︷︷︸
G1

1︸︷︷︸
G2

0 1︸︷︷︸
G3

value 150

MKP, MDKP, MMKP, GUBMKP and MDMMKP into CPLEX.

5.1 Instances details

To test the transformation mentioned in the last section we use a set of benchmarks available
in OR-LIBRARY [1] maintained by Beasley. The proposed transformation of the MKP into the
MMKP is tested on sets of MKP instances. Indeed, these instances are available at OR-LIBRARY
and results have been published by [4]. The problem instances that we considered are summarized
in Table 3, where each instance set mknapcb for i = (1, . . . , 6) contains 30 instances. The headers
Set, N and m1 indicates respectively the name of the set, the number of items in each instance and
the number of knapsack constraints.

Table 3. Test MKP instances details
Set N m1

mknapcb1 100 5
mknapcb2 250 5
mknapcb3 500 5
mknapcb4 100 10
mknapcb5 250 10
mknapcb6 500 10

For the MDMKP, we use the benchmarks proposed by [2]. These instances are generated by
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properly modifying the MKP instances solved in [4]. Given an MKP instance with m1 knapsack
constraints, 6 MDMKP instances are generated, one for each combination of profits type (either
positive or mixed) and number of constraints (m2 = 1, m2 = m1/2 and m2 = m respectively).

We test the first six instances sets where each set mdmkp ct for i = (1, . . . , 6) contains 90
instances. The MDKP instances are reported in Table 4 where the headers Set, N , m1 and m2

indicates respectively the name of the set, the number of items in each set, the number of knapsack
constraints, and the number of demand constraints.

Table 4. Test MDMKP instances details
Set N m1 m2

mdmkp ct1 100 5 1 2 5
mdmkp ct2 250 5 1 2 5
mdmkp ct3 500 5 1 2 10
mdmkp ct4 100 10 1 5 10
mdmkp ct5 250 10 1 5 10
mdmkp ct6 500 10 1 5 10

For the MMKP, the instances set is summarized in Table 5. The header Instance, n, ni
∑

ni and
m1 indicates respectively the name of the instance, the number of the groups, the number of the
items of each group, the number of the total items, and the number of knapsack constraints. This
instances set contains 13 instances (marked I01, . . . , I13) varying from small to large-scale size
ones. These instances are given by [9].

Table 5. Test MMKP instances details
Instance n ni

∑
ni m1

I01 5 5 25 5
I02 10 5 50 5
I03 15 10 150 10
I04 20 10 200 10
I05 25 10 250 10
I06 30 10 300 10
I07 100 10 1000 10
I08 150 10 1500 10
I09 200 10 2000 10
I10 250 10 2500 10
I11 300 10 3000 10
I12 350 10 3500 10
I13 400 10 4000 10

Because the unavailability of the instances of MCKP and GUBMKP, we used the weakly corre-
lated procedure proposed by [6] to generate instances.

For the GUBMKP, we range the instances into four sets and we vary the number of items between
2500 and 15000. For each set, we generate 30 instances and on total we generate 120 instances.
The instances sets are reported in Table 6 in which the headers Set, n, ni, m1 and

∑
ni respectively

indicates the name of the sets, the number of the groups, the number of the items of each group, the
number of the total items, and the number of knapsack constraints.

Table 7 shows the MCKP instances in which the headers Set, n, ni and
∑

ni respectively indi-
cates the name of the set, the number of the groups, the number of the items of each group, and the
number of the total items. Note that each set mckp for i = (1, . . . , 3) contains 30 instances.
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Table 6. Test GUBMKP problem details
Set n ni

∑
ni m1

gubmkp1 10 250 2500 5
gubmkp2 10 500 5000 5
gubmkp3 10 1000 10000 5
gubmkp4 10 1500 15000 5

Table 7. Test MCKP instances details
Set n ni

∑
ni

mckp1 1000 1000 1000000
mckp2 1500 1000 1500000
mckp3 2000 1000 2000000

5.2 Evaluation of the transformation

In this section, we give the results obtained by applying the different transformations between
problems mentioned above. To compare between the generated problems with the original ones,
we use the percentage of deviation marked Dev which is calculated by the following way Dev =
T2
T1 × 100. T1 and T2 represent respectively the CPU time value of the solution of the classical
formulation marked model1 and the CPU time value of the solution of the generated problem based
on the transformation marked model2. First of all, all the results obtained validate the transforma-
tion between problems and reach the same values of optimality. Also the generated problems are
able to give a reasonable computing time. We report, in Table 8, the overall results obtained by
both formulations over the all set problems. The columns marked mT1 and mT2 represent the av-
erage of computation time of model1 and model2 respectively, and Dev represents the percentage
of deviation.

For the transformation of the GUBMKP into the MMKP, we notice that the generated formula-
tions (model2 ) use less time than the original ones (model1 ) for all sets and the average of the Dev
is equal to 84, 1%.

Also, we notice the same thing for the transformation of the MDKP into the MDMMKP and the
transformation of the MCKP into the GUBMKP which values of the average of the Dev are equal
to 96, 4% and 89% respectively.

For the transformation of the MKP into the MMKP, we notice that all the values reached by the
two formulations are very close and the average of the deviation of CPU time value Dev is equal to
99, 5%.

For the transformation of the MMKP into the MDMKP, we remark that the generated formula-
tions (model2 ) use less time than the original ones model1 except the instance I11. We note that
the average of the Dev for the whole instances is equal to 85, 9%.

We do not test the transformation of the GUBMKP into the MKP because the similarity of the lp
file of CPLEX for both formulations because CPLEX does not show the zero multipliers in the lp
file.

6 Conclusion and future research direction

This paper presented a set of knapsack problems involving dimensions, demands and multi-
ple choice constraints among which are the MKP, the MDMKP, the MCKP, the MMKP and the
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Table 8. Performances comparison of the transformation between different ILPs
Set mT1 mT2 Dev

GUBMKP→ MMKP
gubmkp1 1,8 1,3 71,2%
gubmkp2 2,8 2,3 82,6%
gubmkp3 5,0 4,3 84,7%
gubmkp4 8,4 8,2 98,0%

MKP→ MMKP
mknapcb1 3,0 2,9 98,7%
mknapcb2 129,0 126,1 97,7%
mknapcb3 1743,8 1753,2 100,5%
mknapcb4 23,9 24,0 100,1%
mknapcb5 3088,2 3078,6 99,7%
mknapcb6 1952,1 1958,8 100,3%

MDMKP→ MDMMKP
mdmkp ct1 48,3 48,2 99,9%
mdmkp ct2 2437,4 2431,9 99,8%
mdmkp ct3 2394,0 1939,1 81,0%
mdmkp ct4 1414,5 1408,3 99,6%
mdmkp ct5 2509,8 2501,5 99,7%
mdmkp ct6 3282,7 3238,4 98,6%

MMKP→ MDMKP
I1 0 0 –
I2 0 0 –
I3 2 2 100,0%
I4 54 26 48,1%
I5 0 0 –
I6 0 0 –
I7 4771 4739 99,3%
I8 6052 4933 81,5%
I9 4735 4287 90,5%
I10 5411 4736 87,5%
I11 4517 4544 100,6%
I12 5494 4904 89,3%
I13 6700 5096 76,1%

MCKP→ GUBMKP
mckp1 21,8 21,0 96,0%
mckp2 43,5 32,2 73,9%
mckp3 44,8 43,5 97,1%

GUBMKP. Specifically, we defined the multiple demand multidimensional multiple choice knap-
sack problem (MDMMKP) as a generalization of these problems. Moreover, we applied a set of
transformations between the different integer linear programs of knapsack extensions..

Using these transformations, we showed that any algorithm able to solve the generalized problem
can definitely solve its related problems mentioned above. Computational results indicate that
solving the new formulations using the transformations is able to generate reasonable computing
time compared with the original ones.

Another interesting aspect of the current work is to show the importance of the transformations
between formulations using heuristics. In fact, the transformations may very well prove to be useful
in using heuristics already developed. For example the MKP is extensively studied in the literature
comparing it with the GUBMKP, so it is very interesting to use methods of the MKP to solve the
GUBMKP.
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