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Abstract 

Genome contains vital genetic information. It becomes necessary to uncover vast genetic 

information that is hidden in genetic code. Different types of mathematical models have been 

evolved over the years but still a lot needs to be done. The regulatory function of genes can be 

modeled mathematically by using various types of polynomials and also by changing its 

degree, one can conclude whether increase of the degree of polynomial has any impact on 

predicate value.  In this paper, solution of differential equation for analysis of regulatory 

gene network using different functions has been studied. In section 2 and 3 related research 

work and mathematical formulation are discussed. In section 4and 5, model is solved using 

polynomial, circular function and rational polynomial. The degree of the polynomial also 

changes the influence of one gene on another gene in gene regulatory network which is non-

linear in nature the present study. The study shows that gene regulatory network can be 

expressed as polynomial and rational polynomials of degree two, three and four. The 

mathematical models are tested on four different organism i.e Yest, E.coli, drosophila and 

mycobacterium. The results shows that further increasing the degree does not improve the 

accuracy of prediction but by enlarge remains same in most of the cases. In case of rational 

polynomial when degree is changed from 2 to 3 accuracy deteriorates. 
 

Keywords: regulatory function, gene network, gene expression  
 

1. Introduction 

Genome contains vital genetic information. It becomes necessary to uncover vast genetic 

information that is hidden in genetic code. Different types of mathematical models have been 

evolved over the years but still lot needs to be done. The regulatory function of genes can be 

modeled mathematically by using various types of polynomials and also by changing the 

degree one can conclude whether increase of the degree of polynomial has any impact on 

predicate value.  

Gene Expression refers to the processes involved in converting genetic information from a 

DNA sequence into an amino acid sequence, or protein. Each gene encodes a protein and 

proteins are the functional units of life. Genes are present in every cell, but only a fraction of 

the genes are expressed at any time. Many diseases result from the interaction between genes. 

Researchers are trying to analyze gene expression data for finding relationship that exists 

between the genes using computational algorithms and which may be further corroborated 

with biological evidences [19]. In this paper we have tried to find out the regulatory effect of 

one gene on another. Gene regulatory networks help in understanding the interaction between 

the genes and their functions. The cell function and development are regulated by complex 

networks of genes, proteins and other components by means of their mutual interactions. 

These networks are called gene regulatory networks [20].  
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2. Related Work 

Gene regulatory network is intrinsically dynamic in nature and can be modeled by Boolean 

Network or differential equations. Stuart Kauffman et. al., [1] was amongst the first biologists 

to use Boolean networks to model genetic regulatory networks. Akutsu et. al., [2] gave an 

algorithmic analysis of the problem of identifying Boolean networks from data obtained by 

multiple gene disruption and gene over-expressions in regard to the number of experiments 

and the complexity of experiments. Ting Chen et. al., [3] has developed a linear transcription 

model for the gene expression and can be represented as a non-linear dynamic system.  J. 

Geber et. al., [5] has given a piece wise linear differential equation model to describe the 

regulation process within the cell. The m-RNA concentration model has been considered for 

modeling. F.B. Vilmaz et. al., [4] has given a differential equation model to represent the 

behavior of gene expression pattern and solved it by discrete approximation. Gene regulatory 

network from gene expression data with a state space description of the gene expression 

model was given by F.X. Wu et. al., [6]. He considered that in a cell genes can be treated as 

variables and its expression values depends upon internal state variables and external inputs. 

De Hoon et. al., [9] presented a differential equation model which is continuous in nature and 

solved the differential equation by using difference equation. Sakamoto and Iba [11] solved 

the differential equation as a sum of functions of genes and evaluated this function using 

genetic programming and estimated the parameter by least square method. Jing LIU et. al., 

[12] has given a model based on differential equation, to study gene regulatory network using 

Genetic Programming. This method is able to adjust to continuously external changes Fang-

Xiang Wu et. al., [13] has given a method for inferring sparse and stable gene regulatory 

networks from time course gene expression data. The results from computational experiments 

have shown that the proposed method can correctly find majority of connections in both 

small-size and large-size networks by using noise and short gene expression profiles. A. 

Darvish et. al., [14] has proposed a hierarchical model utilizing nonlinear factor analysis 

methods to analyze time-series DNA microarray data and identify the dynamic regulatory 

pathways, Yoshihiro Mori et. al., [15] has proposed a synthesis method of gene regulatory 

networks based on gene expression by network learning. Fang-Xiang Wu [16] et. al., has 

propose a method to estimate the parameters in the rational models of molecular biological 

systems they have  shown that the proposed method performs better than the general 

nonlinear optimization methods in terms of the running time, robustness. Haixin Wang et. al., 

[17] has studied the steady-state behaviors of the nonlinear GRN models. The authors have 

studied Solution of Differential Equation for Testing the Periodicity of Regulatory Gene 

Network using Transcendental Function [18]. 
 

3. Mathematical Formulation 

Many researchers have developed gene expression model using differential equation. Ting 

Chen et. al. [3] has given a linear transcription model for the gene expression in which 

transcription and translation processes were modeled. The gene expression has been 

represented as a non-linear dynamic system and is expressed in matrix form as  

ME
dt

dE
 ……………………………………………….(i) 

where E is the matrix of m-RNA and protein concentrations 

 and M is the transition matrix representing regulatory interactions for both protein and 

genes.  
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Sakamoto and Iba [13] further modified it as  

 jj

j

EEEEf
dt

dE
,......,, 210








 (j = 1, 2, ..., n)………(ii) 

where n being the number of genes and fj being a function of nEEEE ,......,, 210  

F.B.Vilmaz [4] et. al. represented the behavior of the gene expression patterns by a system 

of ordinary differential equation 

EEM
dt

dE
)( …………………………………………(iii) 

They considered  

dt

dE
= F (E)……………………………………………(iv) 

where 
T

nFFFFF )....,,( 321 consists
 
of the sum of the quadratic (constant, linear) functions

 

)(.....).........()()()( ,3,2,1, nijijijijj EfEfEfEfEF   ……………….(v)
 

In this paper model of F. B. Vilmaz [4] is assumed to be the base model and the regulatory 

pattern is modeled using polynomial, rational polynomial and circular function. 
 

4. Regulatory Function Approach 

The model of differential equation can be solved as a initial value problem [4].If the initial 

states )( 0tE
 
then  prediction is done for next state and so on , i.e. iterative state E(tk) ; k =1,2,3 

……..
 
can be obtained and  compare 1210 ,......,, lEEEE with approximated data 

 

EEM
dt

dE
)(  

        jknknjkjkjkj

j

k AMEfEfEfEf
dt

Ed
)()(.............)()()( ,33,22,11, 







   ………………(vi)  

jkE )(   denotes the concentration of gene j at the current state, functions )(, xf ij are 

the influence functions defined as a polynomial, rational polynomial and circular function. 

Some approximations have been inferred for the underlying regulatory network for 

representing the interactions between genes by polynomial, rational polynomial and circular 

function for genes },.....3,2,1{ nj and samples }1,.....3,2,1,0{  lk , and jkAM )(  is used 

for the approximation error, RRf ij :, denotes the influence of gene i to the transcription 

rate of gene j. 

The minimization problem can be separated into n sub problems. Each sub problem 

including l
 
approximated. 

For all j, the minimization of these approximation errors is worked out using least squares 

method. 
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 
2

1

0

)ˆ(ˆ
)ˆ(

min

































l

k j

k

jk

jj dt

Ed
AE

A
………………...…….(vii) 

where jÂ is a collection of Vandermonde matrices for polynomials, rational polynomial, 

circular function. 

 

Case-I:    If Regulatory function is defined as a polynomial  
          

 

    





p

n

n

jiij pxaxf
0

,, 41:)( ………………........(viii) 

 where iEx  denotes the concentration of gene i and Ra ji  , .then  

 

represents the k
th
 row  vector of the matrix kÊ and 

T

njjjj AAAA ])ˆ.....()ˆ()ˆ[(ˆ
321 is a 

column vector consisting of the coefficients of the polynomials for the regulating  functions. 

 

Case-II:    If Regulatory function is defined as a   
          

 

 

                   
xcxbaxf jijijiij cossin)( ,,,,  ………………................(ix)

 
where iEx  denotes the concentration of gene i and Rcba jijiji ,,, ,, .Then 

represents the k
th
 row  vector of the matrix kÊ and 

T

njjjj AAAA ])ˆ.....()ˆ()ˆ[(ˆ
321 is a 

column vector consisting of the coefficients of the polynomials for the regulating functions. 

 

Case-III: If Regulatory function is defined as a rational polynomial         





p

n
n

ji

ij p
x

a
xf

0

,

, 41:)( ………………..........(x)
 

where iEx  denotes the concentration of gene i and Rba jiji ,, , .Then 

 

represents the k
th
 row  vector of the matrix kÊ and 

T

njjjj AAAA ])ˆ.....()ˆ()ˆ[(ˆ
321 is a 

column vector consisting of the coefficients of the polynomials for the regulating functions.  

And error will we calculate by residual  

  1....2,1,0)ˆ(ˆ 
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 lk

dt

Ed
AER

j

k

jkj
………………..........(xi)
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 





1

1

2
m

j

jRErrorTotal
…………………………………..........(xii)

  

5.  Illustration using Yeast, E.coli Data, Drosophila, and Mycobacterium 

Data Set  

GENOWIZ software has been used for comparison. We study the E.coli data of 4224 on 22 

sample time point and Yeast data of 1056 on 16 time point , Drosophila data of 18208 on 16 

sample time point and mycobacterium data of 22283 on 50 sample time point . The data is 

first normalized by using min-max method, and then it is filtered for 10 most fluctuated genes. 

 

 

Figure 1. Image Data of 10 Fluctuating Genes of E.coli Dataset 
 

The image contains 10 most fluctuated genes on 22 samples from which a 35  matrix is 

extract which contain 3 genes on 5 sample point. 

 

Table 1. E.coli Data 

                                                         Gene1              Gene2         Gene3 























2800.1720.1160.

0100.0650.1520.

1070.0460.1440.

8060.1230.1190.

0220.1200.0860.

)(

)(

)(

)(

)(

0

0

0

1

0

tsample

tsample

tsample

tsample

tsample

        

 

Where Gene1, Gene2 and Gene3 are Mar1150, flgk1135 and fimI570 respectively and is 

represented by column vector. 
 

 

Figure 2. Image Data of 10 Fluctuating Genes of Yeast Dataset 
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The image contains 10 most fluctuated genes on 16 samples from which a 35  matrix is 

extract which contain 3 genes on 5 sample point.  

 

Table 2. Yeast Data Set 

                                                             Gene1           Gene2           Gene3 























0.5985   0.0925-0.4921-

0.51980.5761-0.3380-

0.06060.8973-0.4150-

0.6394-0.8275-0.5364-

0.7174-0.9799-0.8321-

)(

)(

)(

)(

)(

0

0

0

1

0

tsample

tsample

tsample

tsample

tsample

 
 

Where Gene1, Gene2 and Gene3 are YDR033W, YBR009C and YDL003W respectively 

and is represented by column vector.  

 

                       

Figure 3. Image of 10 Fluctuating Genes of Drosophila 
 

The image contains 10 most fluctuated genes on 16 samples from which a 35  matrix is 

extract which contain 3 genes on 5 sample point.  

 

Table 3. Drosophila Data Set 

                                                                  Gene1        Gene2     Gene3 























0.9017-   0.8913-   0.9068-   

0.9113-   0.9115-   0.5628-   

0.0255-   0.9132-   0.4680-   

0.1446    0.4270      0.8177    

0.7395    0.6562     0.9610

)(

)(

)(

)(

)(

0

0

0

1

0

tsample

tsample

tsample

tsample

tsample

 

 

Where Gene1, Gene2 and Gene3 are 147409, 147740 and 148711 respectively and is 

represented by column vector.       
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Figure 4. Image of 10 Fluctuating Genes of Mycobacterium 
 

The image contains 10 most fluctuated genes on 50 samples from which a 35  matrix is 

extract which contain 3 genes on 5 sample point.  

 

Table 4. Mycobacterium Data Set 

                                                                 Gene1        Gene2     Gene3 























1.0000-   0.8340-   0.5551-   

1.0000-   0.8278-   1.0000-   

0.3295-   0.9669-   0.6751    

1.0000-   1.0000-   1.0000-   

0.3170    0.9609-   1.0000

)(

)(

)(

)(

)(

0

0

0

1

0

tsample

tsample

tsample

tsample

tsample

 
 

Where Gene1, Gene2 and Gene3 are 208770, 220446 and 211047 respectively and is 

represented by column vector 

 

5.1. Discussion 

Residual norm is used to compare the predicted value with actual one further the 

comparison of numerical data and image is shown in Table 5, 6, 7, 8.    

                 

Table 5. E.coli Data Set 

Regulatory function    

                

 

Gene 1 

Mar 1150 

(Error) 

Gene2 

Fgk1135 

(Error) 

Gene3 

fimI 570 

Image of 

Sample Data set 

 Images 

through 

GENOWIZ 

for  said 

approximation  

Linear: bxa    













1;
0

, pxa
p

n

n

ji  

0.0001 0.0001 0.0228 

  

Quadratic :
2cxbxa   













2;
0

, pxa
p

n

n

ji  

0.3888 

* 1.0e-30 

0.8454 

* 1.0e-29 

0.34902 

* 1.0e-30 
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Cubic: 
32 dxcxbxa   













3;
0

, pxa
p

n

n

ji  

0.5030 

* 1.0e-31 

0.1403 

* 1.0e-29 

0.6500 

* 1.0e-31 

  

Biquadratic 
432 exdxcxbxa 













4;
0

, pxa
p

n

n

ji  

0.5030 

* 1.0e-31 

0.1403 

* 1.0e-29 

0.6500 

* 1.0e-31 

  

Circular:  

xcxba cossin 
 

 

 

0.3000 

* 1.0e-28 

0.1137 

*10-25 

0.1200 

* 1.0e-27 

  

Rational form: 
x

b
a   















1;
0

,
p

x

ap

n
n

ji
 

0.0016 0.0161 0.4608 

  

Rational form 

2x

c

x

b
a 

 















2;
0

,
p

x

ap

n
n

ji
 

0.1400 

*1.0e-29 

0.4230 

1.0e-29 

0.4296 

1.0e-28 

  

Rational form 

32 x

d

x

c

x

b
a 

 















3;
0

,
p

x

ap

n
n

ji
 

0.3000 

*1.0e-30 

0.3210 

*1.0e-29 

0.8060 

*1.0e-28 

  

Rational form 

432 x

e

x

d

x

c

x

b
a 

 















4;
0

,
p

x

ap

n
n

ji
 

0.1280 

*1.0e-28 

0.8670 

*1.0e-28 

0.2776 

*1.0e-27 
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 Table 6. Yeast Data Set 

Regulatory function    

                

Gene 1 

YDL033W 

(Error) 

Gene2 

YDL009C 

(Error) 

Gene3 

YDL003W 

(Error) 

Image of 

Sample Data set 

 Images 

through 

GENOWIZ 

for  said 

approximation  

Linear: bxa    













1;
0

, pxa
p

n

n

ji  

0.0037 0.0002 0.0404 

  

Quadratic :
2cxbxa   













2;
0

, pxa
p

n

n

ji  

0.7700 

*1.0e-33 

0.4333 

*1.0e-31 

0.1849 

*1.0e-31 

  

Cubic: 
32 dxcxbxa   













3;
0

, pxa
p

n

n

ji  

0.3640 

*1.0e-31 

0.8940 

*1.0e-31 

0.2743 

*1.0e-30 

  

Biquadatric
432 exdxcxbxa 













4;
0

, pxa
p

n

n

ji  

0.1560 

*1.0e-31 

0.8936 

*1.0e-31 

0.6779 

*1.0e-31 

  

Circular:  

xcxba cossin 
 

 

 

0.7610 

* 1.0e-30 

 

0.4200 

* 1.0e-31 

 

0.1359 

* 1.0e-29 

  

Rational form: 
x

b
a   















1;
0

,
p

x

ap

n
n

ji

 

0.0000014 0.0748 0.2626 

  

Rational form 

2x

c

x

b
a 

 















2;
0

,
p

x

ap

n
n

ji
 

0.2130 

* 1.0e-30 

 

0.1830 

* 1.0e-30 

0.4880 

* 1.0e-29 

  

Rational form 

32 x

d

x

c

x

b
a 

 















3;
0

,
p

x

ap

n
n

ji
 

0.8260 

*1.0e-27 

0.6979 

*1.0e-26 

0.4337 

1.0e-26 

  



International Journal of Advanced Science and Technology 

Vol. 42, May, 2012 

 

 

28 

 

Rational form 

432 x

e

x

d

x

c

x

b
a 

 















4;
0

,
p

x

ap

n
n

ji
 

0.5300 

*1.0e-25 

0.2250 

*1.0e-24 

0.1201 

*1.0e-23 

  

 

                   Table 7. Drosophila Data Set 

Regulatory function    

                

Gene 1 

147409 

(Error) 

Gene2 

147740 

(Error) 

Gene3 

148711 

(Error) 

Image of 

Sample Data set 

 Images 

through 

GENOWIZ 

for  said 

approximation  

Linear: bxa    













1;
0

, pxa
p

n

n

ji  

0.3720 0.4824 0.0002 

 

 

  

Quadratic :
2cxbxa   













2;
0

, pxa
p

n

n

ji  

0.1638 

* 1.0e-29 

0.8660 

* 1.0e-30 

0.252 

* 1.0e-30 

 

  

Cubic: 
32 dxcxbxa   













3;
0

, pxa
p

n

n

ji  

0.1638 

* 1.0e-29 

0.8660 

* 1.0e-30 

0.2520 

* 1.0e-30 

  

Biquadratic 
432 exdxcxbxa 

 

 











4;
0

, pxa
p

n

n

ji  

0.1898 

* 1.0e-29 

0.1409 

* 1.0e-29 

0.5170 

* 1.0e-30 

  

Circular 

xcxba cossin 
 

 

 

0.1146 

* 1.0e-29 

0.5080 

* 1.0e-30 

0.2910 

* 1.0e-30 

  

Rational form: 
x

b
a   















1;
0

,
p

x

ap

n
n

ji
 

0.2974 0.2334 0.0530 

  

Rational form 

2x

c

x

b
a 

 















2;
0

,
p

x

ap

n
n

ji
 

0.3300 

* 1.0e-30 

0.1049 

* 1.0e-29 

0.1002 

* 1.0e-29 
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Rational form 

32 x

d

x

c

x

b
a 

 















3;
0

,
p

x

ap

n
n

ji
 

0.2680 

*1.0e-28 

0.2380 

*1.0e-28 

0.1128 

*1.0e-27 

  

Rational form 

432 x

e

x

d

x

c

x

b
a 

 















4;
0

,
p

x

ap

n
n

ji
 

0.1030 

*1.0e-26 

0.9300 

*1.0e-27 

0.8621 

*1.0e-25 

  

    

Table 8. Mycobacterium Data Set 

Regulatory function    

                

Gene 1 

220770 

(Error) 

Gene2 

212446 

(Error) 

Gene3 

211047 

(Error) 

Image of 

Sample Data set 

 Images 

through 

GENOWIZ 

for  said 

approximation  

Linear: bxa    













1;
0

, pxa
p

n

n

ji  

0.3234 0.0041 0.0109 

  

Quadratic :
2cxbxa   













2;
0

, pxa
p

n

n

ji  

0.2564 

* 1.0e-028 

0.8000 

* 1.0e-31 

0.3900 

* 1.0e-29 

 
 

Cubic: 
32 dxcxbxa   













3;
0

, pxa
p

n

n

ji  

0.8875 

*1.0e-30 

0.6200 

*1.0e-32 

0.9368 

*1.0e-30 

  

Biquadratic 
432 exdxcxbxa 

 

 











4;
0

, pxa
p

n

n

ji  

0.1639 

*1.0e-29 

 

0.7000 

*1.0e-32 

 

0.4326 

*1.0e-29 

 

  

Circular:  

xcxba cossin 
 

 

 

0.1139 

*1.0e-28 

0.4000 

*1.0e-31 

 

0.253 

*1.0e-29 

  

Rational form: 
x

b
a   















1;
0

,
p

x

ap

n
n

ji
 

0.6217 0.0001 0.1246 
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Rational form 

2x

c

x

b
a 

 















2;
0

,
p

x

ap

n
n

ji
 

0.1787 

*1.0e-28 

0.1000 

*1.0e-31 

0.1630 

*1.0e-29 

  

Rational form 

32 x

d

x

c

x

b
a 

 















3;
0

,
p

x

ap

n
n

ji
 

0.1584 

*1.0e-029 

0.8000 

*1.0e-32 

0.1141 

*1.0e-29 

  

Rational form 

432 x

e

x

d

x

c

x

b
a 

 















4;
0

,
p

x

ap

n
n

ji
 

0.2638 

*1.0e-29 

0.4000 

*1.0e-32 

0.1630 

*1.0e-30 

 

  

 

In this research we have tried to establish and demonstrate patterns of gene regulatory 

expression which can be modelled using polynomial, rational and circular functions.  This 

phenomenon has been studied by different researchers to one extent or the other therefore in 

this paper a detailed comparison of these three approaches has been shown. The parameter of 

well established model [4] is optimized using least square method and then error is calculated 

by residual norm. The numerical value where calculated using MATLAB. 
 

6. Conclusion 

The degree of polynomial and rational polynomial is changed for performing different 

experiments. The comparative result indicates that when degree of polynomial is 1, prediction 

error is large but in case of degree 2, 3 and 4 prediction error is less for polynomial and 

rational polynomial. In case of E.coli , Yeast and Drosophila data sets, if degree of 

polynomial increased  from 2 to more, then efficacy remains same, but in case of rational 

form it is just opposite. In case of mycobacterium results are bit off the trend, that is when 

rational form is applied and degree of polynomial is increased, the error reduces. Initial 

increase in degree gives significant improvement in most of the cases i.e from degree one to 

two or more, but this nature varies from one organism to another.  
 

References 
 
[1] S. A. Kauffman, “Homeostasis and differentiation in random genetic control networks”, Nature, vol. 224, 

(1969), pp. 177-178.  

[2] T. Akutsu, S. Miyano and S. Kuhara, “Identification of genetic networks from a small number of gene 

expression patterns under the boolean network model”, Pacific Symposium on Biocomputing, vol. 4, (1999), 

pp. 17-28. 

[3] T. Chen and H. L. He, “Modeling gene expression with differential equations”, Pacific Symposium on 
Biocomputing, vol. 4, (1999), pp. 29-40. 

[4] F. B. Yilmaz, H. Öktem and G. -W. Weber, “Mathematical modeling and approximation of gene expression 

patterns and gene networks”, Operations Research Proceedings, International Conference on Operations 
Research 2004", (2005), pp. 280-287.  



International Journal of Advanced Science and Technology 

Vol. 42, May, 2012 

 

 

31 

 

[5] J. Gebert and N. Radde, “Modeling gene regulatory networks with piece-wise linear differential equations”, 

reprint Center of Applied Computer Science University of Cologne, and talks held at EURO Summer Institute 
Optimization and Data Mining, Ankara, Turkey, (2004). 

[6] F. X. Wu, W. J. Zhang and A. J. Kusalik, “State-space model with time delays for gene regulatory networks”, 

Journal of biological Systems, vol. 12, no. 4, (2004), pp. 483-500. 

[7] M. U. Akhmet, J. Gebert, H. Öktem, S. W. Pickl and G.-W. Weber, “An improved method for analytical 

modeling and anticipation of gene expression patterns”, Preprint, Middle East Technical University, Institute 
of Applied Mathematics, (2003).   

[8] H. D. Jong, “Modeling and simulation of genetic regulatory systems: A literature review”, Computational 
Biology, vol. 9, no. 1, (2002), pp. 67-103. 

[9] M. J. L. De Hoon, S. Imoto and S. Miyano, “Inferring gene regulatorynetworks from time-ordered gene 

expression data using differential equations”, Proceedings of the 5th International Conference on Discovery 

Sciences, Lecture Note in Artificial Intelligence, vol. 2534, (2002), pp. 267-274, Springer-Verlag. 

[10] B. Dutilh, “Analysis of data from microarray experiments, the state of the art in gene network reconstruction”, 

Literature thesis, Utrecht University,Utrecht, Nederlands, (1999). 

[11] E. Sakamoto and H. Iba, “Inferring a system of differential equations for a gene regulatory network by using 
genetic programming”, Proc. Congress on Evolutionary Computation, (2001), pp. 720-726. 

[12] L. I. U. Jing and W. U. Aiguo, “Modelling Gene Regulatory Network Based on Genetic Programming”, 2010 
International Conference on Electrical and Control Engineering, (2010). 

[13] F. –X. Wu, L. –Z. Liu and Z. –H. Xia, “Identification of gene regulatory networks from time course gene 

expression data”, 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, (2010) 
August 31 - September 4. 

[14] A. Darvish , K. Najarian, D. H. Jeong and W. Ribarsky, “System Identification and Nonlinear Factor Analysis 

for Discovery and Visualization of Dynamic Gene Regulatory Pathways”, 0-7803-9387-2/05/ 2005 IEEE, 
(2005). 

[15] Y. Mori, T. Kadowaki, Y. Kuroeand and T. Mori, “A synthesis method of gene regulatory networks by 

network learning extension to generalized models”, SICE annual conference 2008, (2008) August 20-22, 
Japan. 

[16] F. –X. Wu and L. Mu, “Parameter estimation in rational models of molecular biological systems”, 31st 
Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, (2009) September 2-6. 

[17] H. Wang, L. Qian and E. R. Dougherty, “Steady-state Analysis of Genetic Regulatory Networks Modeled by 
Nonlinear Ordinary Differential Equations”, 978-1-4244-2756-7 2009 IEEE, (2009). 

[18] C. K. Verma and N. Srivastava, “Solution of Differential Equation for Testing the Periodicity of Regulatory 

Gene Network using Transcendental Function”, International Journal of Mathematics Research, ISSN 0976-
5840, vol. 3, no. 2, (2011), pp. 159-168. 

[19] H. –C. Kuo, P. –C. Tsai and J. –P. Huang, “Finding Time-delayed Gene Regulation Patterns from Microarray 
Data”, 2009 Ninth International Conference on Hybrid Intelligent Systems, (2009),  pp. 117-122. 

[20] B. Ristevski and S. Loskovska, “Bayesian Networks Application for Representation and Structure Learning 

of Gene Regulatory Networks”, Proceedings of 2009 12th International Conference on Computer and 
Information Technology (ICCIT 2009), (2009). 

 

Authors 
 

C. K. Verma (8
th
 June 1975) has done Master of Science in 

Mathematics from Govt. Science College Jabalpur India in 1998 and has 

Qualified National Eligibility test (NET) in 2000. His area of research 

includes Computational Biology. 

He is having 10 years of teaching experience and is working as 

Assistant Professor in the Department of Mathematics at Maulana Azad 

National Institute Bhopal India. He is also a research scholar in the in the 

Department of Mathematics at Maulana Azad National Institute Bhopal 

India. C. K. Verma is a member of Indian Society of Technical Education 

(ISTE India). 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ristevski,%20B..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Loskovska,%20S..QT.&newsearch=partialPref


International Journal of Advanced Science and Technology 

Vol. 42, May, 2012 

 

 

32 

 

 

Dr. Namita Srivastava (9
th
 October 1965) has done her Bachelor of 

Science. in 1985, M.Sc. (Mathematics) in 1987 and Ph. D. in 

Mathematics from Barkatullaha University in 1992. Her research interest 

includes fracture mechanics, financial mathematics, parallel computing 

and parallel mining 

.She is having 20 years of experience and is working as Associate 

Professor in the Department of Mathematics at Maulana Azad National 

Institute of Technology, Bhopal India. She has published 27 papers in 

international journal, 22 papers in national journal and 20 papers in 

proceedings of international and national conference. She was organizing 

secretary of 4 national conferences. Namita Srivastava is a life member 

of National Academy of Sciences, Indian Society of   Technical 

Education and Gwalior Academy of Mathematical Science. 
 


