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Abstract 
 

Extracting useful knowledge from data sets measuring in gigabytes and even terabytes is a 

challenging research area for the data mining community. Sequential approaches suffer from 

a performance problem due to the fact that they have to mine voluminous databases. 

Parallelism is introduced as an important solution that could improve the response time and 

the scalability of these approaches. However, parallelization process is not trivial and still 

facing many challenges including the workload balancing problem.  
In this paper, we propose a hierarchical dynamic load balancing strategy for parallel 

association rule mining algorithms in the context of a Grid computing environment. The 

French research grid “Grid’5000” is used as our experimental test-bed. Through a detailed 

experimental study, we show that our strategy improves the performance and helps the 

parallel algorithm to scale very well with the number of computational nodes available. 
 

Keywords: Sequential association rule mining, performance problem, parallelism, 

workload balancing 

 

1. Introduction 
 

Data mining is a natural evolution of information technology. This evolution could be 

witnessed in the following functionalities: data collection and storage, data retrieval and data 

processing. These functionalities served as a prerequisite for data analysis and understanding. 

Thus data mining is the knowledge mining from large amounts of data. Data mining involves 

an integration of techniques from multiple domains such as database technology, high-

performance computing, information retrieval, neural networks, statistics, machine learning 

and image and signal processing [4]. Association rule mining is one of the most important 

data mining techniques [4, 15]. The effectiveness of this technique is determined by quickly 

and correctly finding interesting correlation relationships between items in large databases. 

The discovered knowledge can be useful to decision making, information management and 

process control. The algorithms of this technique are computationally and input/output 

intensive. High performance parallel and distributed computing can relieve current 

association rule mining algorithms from the sequential bottleneck, providing scalability to 

massive data sets and improving response time. 

Grid computing is recently regarded as one of the most promising platform for data and 

computation-intensive applications like data mining. F. Magoulès et al. define a grid as a 

hardware and software infrastructure that provides transparent, dependable, pervasive and 

consistent access to large-scale distributed resources owned and shared by multiple 

administrative organizations in order to deliver support for a wide range of applications with 
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the desired qualities of service. These applications can perform high throughput computing, 

on-demand computing, data intensive computing, or collaborative computing [4]. Contrary to 

other systems where the focus is to achieve greater performance measured in terms of the 

number of floating point operations the system can perform per minute, the importance of 

grids is defined in terms of the amount of work they are able to deliver over a period of time 

[3]. In such computing environments, heterogeneity is inevitable due to their distributed 

nature.  

Parallel and distributed association rule mining algorithms suffer from a work load 

imbalance problem during execution time. This work load imbalance is caused by the 

dynamic nature of these algorithms and also by the heterogeneity of grid systems. Almost all 

current parallel/distributed algorithms assume the homogeneity and use static load balancing 

strategies. Thus, applying them to Grid systems will degrade their performance. New 

methodologies need to be developed to handle this problem, which is the focus of our 

research. 

In this paper, we develop and evaluate a hierarchical and dynamic load balancing strategy 

for mining association rule algorithms under a grid computing environment. Our major 

contributions can be summarized as follows: First, we constituted a hierarchical grid model 

suitable for association rule mining algorithms. Second, we proposed, on the basis of this 

model, a new dynamic load balancing strategy. Finally, we implemented our strategy and we 

imbedded it within several parallel association rule mining algorithms. Several tests were 

conducted using our grid testbed (the French research grid called: Grid5000) where 

experimental results showed the effectiveness of our approach. To the best of our knowledge, 

this work could be considered as one of the first attempts to run association rule mining on 

grids not only correctly but also efficiently. 

The rest of the paper is organized as follows: Section 2 introduces association rule mining 

technique and related work. Section 3 presents parallel/distributed algorithms for mining 

association rules. Section 4 describes the load balancing problem. Section 5 presents the 

hierarchical system model of a Grid. Section 6 states the characteristics of the proposed 

model. In section 7, we propose the dynamic load balancing strategy. Experimental results 

obtained from implementing this strategy are showed in section 8. Comparisons with existing 

works are established in section 9. Finally, the paper concludes with section 10. 
 

2. Mining Association Rules 
 

Association Rules Mining (ARM) finds interesting correlation relationships among a large 

set of data items. A typical example of this technique is market basket analysis. This process 

analyses customer buying habits by finding associations between different items that 

customers place in their “shopping baskets”. Such information may be used to plan marketing 

or advertising strategies, as well as catalog design [6]. Each basket represents a different 

transaction in the transactional database, associated to this transaction the items bought by a 

customer. Given a transactional database D, an association rule has the form A=>B, where A 

and B are two itemsets, and A∩B=∅. The rule’s support is the joint probability of a 

transaction containing both A and B at the same time, and is given as σ(AUB). The confidence 

of the rule is the conditional probability that a transaction contains B given that it contains A 

and is given as σ(AUB)/σ(A). A rule is frequent if its support is greater than or equal to a pre-

determined minimum support and strong if the confidence is more than or equal to a user 

specified minimum confidence. 

ARM technique is also widely used in genomics and computational biology. One of its 

major applications is the analysis of high dimension DNA or protein sequences [6]. 
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Many sequential algorithms for solving the frequent set counting problem have been 

proposed in the literature. We can define two main methods for determining frequent itemsets 

supports: with candidate itemsets generation [17, 21] and without candidate itemsets 

generation [9]. 

The Apriori algorithm [17] was the first effective algorithm proposed in the literature. This 

algorithm uses a generate-and-test approach which depends on generating candidate itemsets 

and testing if they are frequent. It uses an iterative approach known as a level-wise search, 

where k-itemsets are used to explore  (k+1)-itemsets. During the initial pass over the database 

the support of all 1-itemsets is counted. Frequent 1-itemsets are used to generate all possible 

candidate 2-itemsets. Then the database is scanned again to obtain the number of occurrences 

of these candidates, and the frequent 2-itemsets are selected for the next iteration.  

The DCI algorithm proposed by Orlando and others [21] is also based on candidate 

itemsets generation. It adopts a hybrid approach to compute itemsets supports, by exploiting a 

counting-based method (with a horizontal database layout) during its first iterations and an 

intersection-based technique (with a vertical database layout) when the pruned dataset can fit 

into the main memory.  

The FP-growth algorithm [9] allows frequent itemsets discovery without candidate 

itemsets generation. First it builds from the transactional database a compact data structure 

called the FP-tree then extracts frequent itemsets directly from the FP-tree. 
 

3. Parallel and Distributed Mining of Association Rules  
 

Sequential association rule mining algorithms suffer from a high computational complexity 

which derives from the size of its search space and the high demands of data access.  

Parallelism is expected to relieve these algorithms from the sequential bottleneck, providing 

the ability to scale the massive datasets, and improving the response time. 

There are three categories of parallel systems: 

1. Shared-memory systems, where all processors share together the system memory. 

Every processor has direct access to the entire dataset. Accessing the same data 

necessitates synchronization and sequential memory access. 

2. Distributed-memory systems. In such systems each processor has its own system 

memory that cannot be accessed by other processors. Shared data could be transferred 

by message passing.  

3. Hierarchical systems combines shared and distributed systems characteristics. They 

are constituted of multiprocessor nodes in which memory is shared by intra-node 

processors but distributed over inter-node processors. These systems use fast 

networks and can have shared disks. 

In order to exploit parallelism in association rule mining algorithms three main paradigms 

have been followed: data parallelism, task parallelism and hybrid parallelism [11].  

1. In data parallelism, the database is partitioned between available processors and each 

processor executes locally the same task on its local data portion. 

2. In task parallelism, different tasks are executed simultaneously and processors, in this 

case, need to have access to the entire database. If the memory is distributed then the 

database is replicated. The database is shared in the case where processors have a 

shared memory.  
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3. Hybrid parallelism is the combination of data and task parallelism. This type of 

parallelism is suitable for hierarchical systems (like grid systems).  

Data parallelism is used for voluminous databases where the entire database cannot fit in 

the main memory. When the search space is large (i.e. huge number of candidate itemsets), 

task parallelism is preferred. Hybrid parallelism is recommended in case we have both 

situations: a large-scale database and a huge search space. 

Many parallel algorithms for solving the frequent set counting problem have been 

proposed. Most of them use the Apriori algorithm as fundamental algorithm, because of its 

success on the sequential setting [11]. The Count Distribution (CD) algorithm is based on 

data parallelism. In this algorithm, the database is partitioned over multiple processors. Each 

processor executes locally the Apriori algorithm, and performs a global reduction of local 

candidate itemsets counts, by the end of each iteration, to obtain the global counts. CD 

presents a bottleneck when a large processors number is incorporated in execution. The Data 

Distribution (DD) algorithm is another example of Apriori parallelization. In this algorithm 

candidate itemsets are partitioned over processors. To calculate the global support, each 

processor needs to scan the entire database during each iteration. DD algorithm induces a 

communication overhead due to its need of exchanging fragments between processors. The 

Intelligent Data Distribution (IDD) algorithm proposes a ring-based, all-to-all broadcast 

mechanism to reduce the communication cost overhead. The entire database is also 

communicated [13]. The Fast Parallel Mining (FPM) algorithm outperforms the CD algorithm 

by the use of local and global pruning techniques. FPM algorithm needs only one round of 

messages exchange in order to broadcast local supports information to all processors which 

reduces the communication overhead [11]. The Common Candidate Partitioned Database 

(CCPD) algorithm was proposed by Zaki for distributed memory machines [12]. With this 

algorithm, candidate itemsets are generated in parallel. Although CCPD obtains reasonable 

speedup, the sequential I/O is detrimental to performance. The Hybrid Distribution (HD) 

algorithm combines CD and IDD algorithms. This algorithm is based on task parallelism. The 

processors are split into groups and the database is partitioned among these groups. Each 

group executes the CD algorithm and the nodes of each group (i.e. intra-group) execute the 

IDD algorithm. The HD algorithm succeeded in reducing the database communication costs. 

Experiments showed that HD algorithm has the same performance as CD, but can handle 

much larger databases [12]. 

Algorithms based on data parallelism require less communication overhead when 

compared with ones based on task parallelism. The hybrid approach reduces the 

communication overhead and offers better load balancing. All these approaches have been 

proposed for parallel machines with shared or distributed memory architecture and having 

fast interconnection networks. In case of relatively slow networks (like grid systems), the 

large number of frequent candidate itemsets will produce high communication cost.  

Association Rule Mining (ARM) on Grids is a very promising research area. Grid 

technology provides interesting solutions to data mining. This is due to three main reasons: 

1. Grid Platforms provides nontrivial qualities of service, such as security, response 

time, throughput and availability so that the utility of the combined systems is 

greater than the sum of its parts. 

2. Association rule mining technique is used on very large datasets and grid platforms 

can help in ameliorating the performances and reducing the execution time. 
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3. In many cases, association rule mining technique is executed on datasets residing 

on different geographical locations where a grid can be used to integrate the data 

sources into one virtual data set. 

 There exist many grid data mining projects that provide mechanisms for integration and 

deployment of classical ARM algorithms on grid. WekaG [14] is an application that performs 

data mining tasks on a grid by implementing a vertical architecture called Data                                                                                              

Mining Grid Architecture (DMGA), which is based on the data mining phases: pre-

processing, data mining and post-processing. The application implements client/server 

architecture. The server side is responsible of a set of grid services that implement the 

different data mining algorithms and data mining phases. A user interface is provided to allow 

the client to interact with the server.   

GridMiner [15] is a Service oriented grid application that integrates all aspects of the data 

mining process: data cleaning, data integration, data transformation, data mining, pattern 

evaluation, knowledge presentation and visualization. Currently implemented data mining 

services available in this tool are: sequential clustering service, sequential sequence service, 

parallel OLAP and sequential association rule mining in OLAP cubes.  

The focus of the previously mentioned grid data mining projects was to run data mining 

tasks correctly but not efficiently and there were no performance or efficiency issues 

available in the obtained results. 

C. Yang et al. proposed a heuristic data distribution scheme for data mining applications on 

grid environments [1]. The grid is represented in a master/slave model. This model is 

represented by a star graph G = {P0, P1,…, Pn} where P0 is the master node and the other n 

nodes, P1, …, Pn, are slave nodes. In addition, there is a virtual communication link Li 

connecting the master node and the slave node Pi. They proposed a performance based 

heuristic to solve the data partition problem for association rule mining applications. 

K. Yu et al. proposed a weighted distributed parallel Apriori algorithm [8] in which the 

transaction identifier of itemsets is stored in a table to compute their occurrence. The 

algorithm takes the factor of itemsets counts into consideration in order to balance workloads 

among processors and reduce processor’s idle time.   

These approaches succeeded in reducing the communication cost overheads between 

processors but suffer from a scalability problem due to the fact that they are centralized (i.e. 

only one master and several slaves). 
 

4. Load Balancing and Data Mining 
 

Parallelizing sequential ARM algorithms is not a trivial straightforward process. The 

parallelization of these algorithms introduces a plethora of new problems including the 

workload balancing problem.  

Work load balancing is the assignment of work to processors in a way that maximizes 

application performance [7]. The process of load balancing can be generalized into four basic 

steps:  

1. Monitoring processor load and state;  

2. Exchanging workload and state information between processors; 

3. Decision making;  

4. Data migration.  
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The decision phase is triggered when the load imbalance is detected to calculate optimal 

data redistribution. In the fourth and last phase, data migrates from overloaded processors to 

under-loaded ones.  

According to different policies used in the previously mentioned phases, Casavant and kuhl 

[22] classify workload balancing schemes into three major classes:  

1. Static versus dynamic load balancing;  

2. Centralized versus distributed  load balancing ;  

3. Application-level versus system-level load balancing. 

Static load balancing can be used in applications with constant workloads, as a pre-

processor to the computation [7]. Other applications require dynamic load balancers that 

adjust the decomposition as the computation proceeds [7, 10]. This is due to their nature 

which is characterized by workloads that are unpredictable and change during execution. Data 

mining is one of these applications.  

Parallel association rule mining algorithms have a dynamic nature because of their 

dependency on the degree of correlation between itemsets in the transactional database which 

cannot be predictable before execution.  

Although intensive works have been done in load balancing, the different nature of a Grid 

computing environment from the traditional distributed system, prevent existing static load 

balancing schemes from benefiting large-scale applications.  An excellent survey from Y. Li 

et al. [25], displays the existing solutions and the new efforts in dynamic load balancing that 

aim to address the new challenges in Grid. The work done so far to cope with one or more 

challenges brought by Grid: heterogeneity, resource sharing, high latency and dynamic 

system state, can be identified by three categories as mentioned in [25]: 

1. Repartition methods focus on calculating data distribution in a heterogeneous way, 

but do not pay much attention to the data movement in Grid; 

2. Divisible load theory based schemes well model both the computation and 

communication, but loose validity in case of adaptive application; 

3. Prediction based schemes need further investigation in case of long-term 

applications. 

C. Yang et al. proposed a heuristic data distribution scheme for data mining applications on 

grid environments [1]. They induced load balancing through a heuristic data partition 

technique that aims to reduce the total execution time of the program.  K. Yu et al. proposed a 

weighted distributed parallel Apriori algorithm [8] in which the transaction identifier of 

itemsets is stored in a table to compute their occurrence. The algorithm takes the factor of 

itemset counts into consideration in order to balance workloads among processors and reduce 

processor’s idle time.  
 

5. The Hierarchical Grid Model 
 

Our major contributions can be summarized as follows: First, we constituted a hierarchical 

grid model suitable for association rule mining algorithms. Second, we proposed, on the basis 

of this model, a new dynamic load balancing strategy. Finally, we implemented our strategy 

and we imbedded it within several parallel ARM algorithms.  

We first present the constitutive elements of a grid that we will use later to define our 

model. From a topological point of view, we consider that a grid, as illustrated in Figure1 is 
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consisted of a set of connected sites, in a star topology, through a global network WAN (Wide 

Area Network). Each site is composed of a set of clusters each of which is constituted of 

computing nodes communicating through a local network LAN (Local Area Network) and 

belonging to the same domain.  

The set of resources and the means of communications can be heterogeneous in terms of 

architectures, the capacity of processing and of storage and networks bandwidths. 

To represent a grid composed of the elements described above, we propose to transform it, 

univocally, in a ring of trees of virtual interconnection as shown in Figure1. This tree is 

generated according to the aggregation process described below: 

1. To each site is associated a tree with two levels: 

 The root level of this tree is a coordinator. Its role is to control and manage 

the load of the site; 

 The next level corresponds to clusters comprising the site. 

2. To each cluster is associated a tree with two levels: 

 The root level of this tree is a coordinator node. Its role is to 

control and manage the load of the cluster; 

 The next level, representing the leaves, corresponds to the computing nodes 

of the cluster. Their role is to execute in parallel the association rule mining 

algorithm. 

 

          

Figure 1. The Hierarchical System Model of a Grid 
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3. The ring is obtained by the aggregation of  the roots of the two-level trees  associated 

to different sites in order to represent the entire grid system: 

 A coordinator for each site. The coordinator may be a cluster with a size (i.e. 

number of physical nodes) relative to the number of computing nodes 

included in the execution of the distributed algorithm. The main function of 

the coordinator is to manage the load of the site. Different coordinators 

communicate with each other in unidirectional ring topology via a token 

passing mechanism. 

 Computational clusters with their tree of computational nodes defined 

previously. 

Each site can be instantiated in two configurations denoted respectively 1/N 

and C/N, where N is the number of nodes and C the number of clusters of a site. 
 

5.1. The 1/N Model 
 

This instance of the model represents the smallest possible site in a grid, i.e. a site with a 

single cluster consisting of N computing nodes. This model includes two levels defined as 

follows:  

1. The root level of this tree is the workload manager of the cluster called cluster 

coordinator. This coordinator has: 

a. A workload Balancing Task, consisting of: 

 Managing the load information of cluster’s nodes, which we call the state 

vector of the cluster; 

 Maintaining the charge status of the cluster; 

 Deciding to start a local load balancing (i.e. intra-site); 

 Informing the computing nodes, to execute the load balancing 

instructions decided by the cluster coordinator.  

b. A knowledge extraction task, constituted of : 

 Distributing candidate itemsets over different computing nodes. This distribution 

is dynamic and is intelligent in order to respond to the heterogeneity of  grid 

systems; 

 Receiving the local supports calculated by computing nodes to perform the 

global reduction operation; 

 Constructing the list of frequent itemsets; 

 Constructing the list of candidate itemsets of the next iteration. 

2. The leaves level of the tree, where each leaf corresponds to a computing node. The 

nodes of this level have: 

a. A workload Balancing Task, consisting of: 

 Updating their charge status (i.e. the status vector of a node); 

 Sending their status vector periodically to the coordinator of the cluster;  

 Executing the load balancing operations decided by the coordinator. 



International Journal of Advanced Science and Technology 

Vol. 39, February, 2012 

 

 

37 

 

b. A knowledge extraction task, constituted of : 

 Receiving candidate itemsets (from the coordinator); 

 Calculating their supports; 

 Sending local supports to the coordinator. 

 

5.2. The C/N Model 
 

This model represents an extension of the previous model in the sense that we 

move from one cluster to C clusters. We obtain the C/N defined  

by a ring of the roots of three-level trees representing the aggregation of C 

models of the type 1/N  that we can define as follows: 

1. The root level of this tree is the workload manager of the site called site coordinator. 

This coordinator has: 

a. A workload Balancing Task, consisting of: 

 Managing the load information of the site’s clusters (i.e. updating global 

state vector); 

 Maintaining the load status of the site; 

 Deciding to start an inter-sites load balancing; 

 Sending load balancing decisions to different cluster’s coordinators to 

start their execution. 

b. A knowledge extraction task, constituted of : 

 Allocating the appropriate portion of transactions to its clusters; 

 Performing the global reduction operation with the coordinators of other sites to 

obtain global supports; 

 Constructing the list of frequent itemsets; 

 Constructing the list of candidate itemsets of the next iteration. 

2. Every site coordinator is the root of the second level which is constituted of the 

coordinators of different clusters. These clusters coordinators play the same role as in 

the model 1/N. 

3. The third level corresponds to the physical nodes of the grid (i.e. computing nodes) as 

defined for the leaves in 1/N model. 
 

6. Characteristics of the Proposed Model 
 

The model of representation defined previously can be characterized by the following 

points: 

1. The modeling of a grid in a ring topology where each node is the root of a three-level 

tree is done by a univocal transformation. For every grid corresponds one and only 

one representing model and this regardless of the topological complexity of the grid. 

We can consider this ring of trees as a ring of recovery of a grid that will help us in 

defining the algorithm associated to the workload balancing strategy. 
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2. The hierarchical structure of the model facilitates the flows of information through 

different nodes. In terms of information flows, we distinguish four types of flows: 

 Circulating flow: This flow is for the circulation of load information between 

sites (i.e. global state vector). 

 Ascending flow: Related to the flow of load information at different higher 

levels (intra-site and intra-cluster). 

 Descending flow: This flow helps to convey the decisions of load balancing 

taken by the coordinators of different levels of the model. 

 Horizontal flow: It concerns the information necessary for the execution of 

load balancing operations and also for the execution of the association rule 

mining algorithm. 

3. The proposed model supports the heterogeneity and the dynamicity of the resources.  

The connection/disconnection of a resource corresponds to addition/deletion 

operations of a leaf in the relative tree and is regulated by a recovery procedure. 

4. The choice of the coordinator of each site and each cluster is governed by a well 

defined election policy 

5. Similarly, the failure/disconnection of one of the coordinators triggers a procedure of 

fault tolerance for its replacement in a timely within a reasonable period and without 

prejudice to ongoing treatment. 
 

7. The Hierarchical Workload Balancing Strategy 
 

The proposed modeling of the grid allowed us to define a hierarchical and distributed 

load balancing strategy. So we distinguish two levels of load balancing: Intra-site and 

inter-sites. 

1. Intra-site load balancing: At this first level, each site coordinator decides to initiate a 

load balancing operation based on the current load of the site that it manages. This 

charge is estimated from the different load information (state vectors) sent 

periodically by the coordinators of the clusters that compose the site. The site 

coordinator tries as a priority to balance the load by distributing locally between 

different clusters which are under its control. This approach to locality aims to reduce 

communication costs, by avoiding inter-sites communications which use the WAN. 

2. Inter-sites load balancing: The load balancing, at this second level, is triggered when 

some sites coordinators fail in their attempts to balance charges locally through their 

respective sites. The failure of local load balancing may be due to the saturation of 

the site, or to insufficient charge offer induced by the lightly-loaded cluster with 

respect to the request formulated by overloaded nodes. In this case, the site 

coordinator tries to find another site which is capable of accepting the current 

overload. This search is accomplished by negotiating the transfer of candidate 

itemsets, transactions or both from the overloaded site to the under-load site. 

Our strategy could be adopted by any association rule mining algorithm that depends on 

candidate itemsets generation. It combines between static and dynamic load balancing by 

interfering before execution (i.e. static) and during execution (i.e. dynamic). 
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To respond to the heterogeneity of the computing system we are using (i.e. grid systems), 

the database is not partitioned into equal partitions in a random manner. Rather than that, the 

transactional database is partitioned according to the characteristics of different sites, where 

the size of each partition is determined according to the site processing capacity (i.e. different 

architecture, operating system, CPU speed, etc.). It is the responsibility of the coordinator of 

the site Coord(Si) to allocate to its site the appropriate database portion according to the site 

processing capacity parameters stored in its information system. 

The following workload balancing process is invoked when needed. It is the responsibility 

of distributed coordinators to detect that need dynamically according to the charge status of 

their relative nodes: 

1. From the intra-site level, coordinators of each cluster update their global workload 

vector by acquiring workload information from their local nodes. From the Grid 

level, coordinators of different sites periodically calculate their average workload in 

order to detect their workload state (overloaded or under-loaded). If an imbalance is 

detected, coordinators proceed to the following steps. 

2. The coordinator of the overloaded cluster makes a plan for candidates migration 

intra-site (between nodes of the same site). If the imbalance still persists, it creates 

another plan for transactions migration inter-sites (between clusters of the Grid). 

3. The concerned coordinator (the coordinator of the overloaded cluster or the 

coordinator of the overloaded site) sends migration plan to all processing nodes and 

instructs them to reallocate the work load. 
 

7.1. The Workload Balancing Algorithms 
 

The two main advantages of the workload balancing strategy are: 

 The priority is given to local workload balancing (i.e. intra-cluster). The objective of 

that is to privilege local communications (LAN network) in order to reduce the 

overhead caused by the transfer of work or data.  

 The strategy is totally distributed but the decision is taken locally. Actually, we can 

execute in parallel as much intra-cluster load balancing as much we have clusters in 

the grid. 

Following is the dynamic load balancing algorithms: 

 

Module node : 

Loop : 

 Receives a group of candidates from the coordinator of the cluster. 

 Calculates their supports. 

 Sends local supports to cluster’s coordinator which performs the global supports 

reduction.  

 Every  n steps : 

o Updates NSV (Node State Vector) 

o Sends NSV to the Cluster 
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Module cluster coordinator  

 Init_Execution: Receive Partition of the DB. 

 Normal Execution: 

Loop : 

 Distributes candidate itemsets between nodes according to their capacities. 

Candidates are distributed by their (k-1) common prefix. 

 Performs the global reduction of supports to obtain global frequencies.   

 Constructs frequent itemsets (Lk step). 

 Constructs  candidates  itemsets of the following iteration (Ck+1 step). 

 Every n steps : 

o Saves the local state;  

o Updates if necessary Ck+1 step. 

 Monitoring : 

 Every n steps :  
o Receives NSV (Node State Vector) 

o Checks if any overload in nodes 

o Updates CSV (Cluster State Vector) 

o Sends CSV  

o Checks if an Overload is detected in some nodes 

 Load Balancing : 

 If an  Overload is detected:  

o Checks (CSV) 

o Searches_Candidate, in nodes, to balance the load  

o If Find then Start_load balance (intra-cluster) 

o Else asks Site to Start_load Balance (intra-Site) 
 

Module site coordinator  

Loop : 

 Updates the global state vector of the site: average(chi)). 

 Finds the Max overloaded cluster and the max under-loaded cluster: 

o Clijmax   
   
 

 (chij)  average(chi) 

o Clijmin   
   
 

 (chij)  average(chi) 

 Finds the Max  xc (with the same prefix) on clijmax  (intra-Site): 

1. Chijmin +  xc . ωijmin  average(chi)       

//To find the best number of candidates to migrate in order to not overload 

the destination cluster 

AND 

2. xc . ωijmax  - ( xc . ωijmin + long(xc).ζijmaxjmin ) > Seuilmc    

 If xc exists Then informs the overloaded clijmax and the underloaded clijmin and updates 

(chi). 

o Asks from the overloaded cluster to send the family of candidates having the same 

prefix. 

 Else asks other sites to balance the load (inter-Sites). 

 

Where: 
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ζijj’ 

ωijk 

chi 

chij  

ωij  

seuilmc 

 

seuilmt 

xc 

: 

: 

: 

: 

: 

: 

 

: 

: 

Transmission speed between clusters cl ij and clij’; 

Cycle time of  ndijk;  

Charge of Si;  

Charge of clij; 

Average( ωijk); 

Significant time limit to trigger candidate itemsets migration between 

clusters; 

Significant time limit to trigger task migration between sites; 

Number of candidates to migrate from one cluster to another . 

 

All load balancing algorithms are executed in parallel with the ARM algorithm without 

inducing an overhead in execution time. Computing nodes continue working even during 

work or data migration. 
 

8. Performance Evaluation 
 

A preliminary, partially distributed, version of our load balancing approach [18] was 

tested, via simulations, by using the GridSim toolkit developed by Buyya and Murshed [26]. 

A modified version of our approach [19] was tested under a real grid: Grid’5000. We will 

report in this section the tests of the last and final version of our hierarchical, dynamic and 

totally distributed load balancing strategy performed under Grid’5000. 
 

8.1. Parallelization Approach 
 

Our goal is to limit the number of communications and synchronizations, and to benefit as 

much as possible from the available computing power. This could be done by exploiting all 

possible ways of parallelism and if necessary by using a pipeline approach between 

dependent tasks in order to be able to parallelize the various stages of the ARM algorithm. 

In order to evaluate the performance of our workload balancing strategy we parallelized 

several ARM algorithms. We will report in what follows the results obtained from 

parallelizing the sequential Apriori [17] which is the fundamental algorithm for ARM 

algorithms with candidate itemsets generation.  

Data parallelism is not sufficient to improve the performance of association rule mining 

algorithms. Subsets of extremely large data sets may also be very large. So, in order to extract 

the maximum of parallelism, we applied a hybrid parallelisation technique (i.e. the 

combination of data and task parallelism). Where we aimed to study parallelism inside the 

program code. This could be done through searching inside the algorithm procedures for 

independent segments and analyzing the loops to detect tasks (or instructions) that could be 

executed simultaneously.   

A hybrid approach between candidate duplication and candidate partitioning is used. The 

candidate itemsets are duplicated all over the sites of the Grid, but they are partitioned 

between the nodes of each site. The reason for partitioning the candidate itemsets is that when 

the minimum support threshold is low they overflow the memory space and incur a lot of disk 

I/O. So, the candidate itemsets are partitioned into equivalence classes based on their 

common (k-2) length prefixes. A detailed explanation of candidate itemsets clustering could 

be found in [13]. 

We can resume the important basic concepts of our parallelization method in what follows:  
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 Site: The transactional database is partitioned between sites according to their 

capacity of treatment. Candidate itemsets are duplicated between sites (in order to 

reduce the communication cost between sites). 

 Cluster: Every database portion is shared between nodes of the same site if they have 

the same storage subsystem, otherwise it will be duplicated. Candidate itemsets are 

partitioned between site’s clusters according to their capacity of treatment.  

 Node : It receives a group of candidate itemsets from the coordinator of the cluster. It 

calculates their supports and sends local supports to cluster’s coordinator which 

performs the global supports reduction. 

 Cluster’s coordinator: Distributes candidate itemsets between nodes according to 

their capacities.  Candidates are distributed by their (k-1) common prefix. This 

coordinator performs the global reduction of supports to obtain global frequencies. It 

is also the responsible of workload balancing operations of its cluster 

 Site’s coordinator: Searches for the maximum loaded cluster (or site) and the 

minimum loaded cluster (or site). After that, it decides the migration of the necessary 

amount of work (candidates or transactions or both) from the maximum to the 

minimum loaded clusters or sites. 
 

8.2. Experimental Platform 
 

The experimental testbed for our tests is Grid’5000 [2], a dedicated reconfigurable and 

controllable experimental platform. The infrastructure of Grid'5000 is geographically 

distributed on different sites hosting the instrument, initially 9 sites in France (10 since 2011). 

It gathers roughly 5000 CPU cores featuring four architectures (Itanium, Xeon, G5 and 

Opteron) distributed into more than 13 clusters.  

Grid5000’s nodes are accessible through the OAR batch scheduler, from a central user 

interface shared by all the users of the cluster. The home directories of the users are mounted 

with NFS on each of the infrastructure’s clusters. Data can thus be directly accessed inside a 

cluster. Data transfers between clusters have to be handled by the users. The storage capacity 

inside each cluster is a couple of hundreds of gigabytes [2].  
 

8.3. Experiments 
 

The datasets used in tests are synthetically generated. Table 1 describes the datasets 

characteristics. 
 

Table 1. Transactional Databases Characteristics 

Database 
Number 

Items 

Avg. 

Transaction 

Length 

Number Database  

Transactions size 

DB300T39M 6000 30 3900000 300 Mb 

DB500T63M 7200 35 6300000 500 Mb 

DB900T132M 9500 47 13200000 900 Mb 

 

Table2 specifies the number of sites, clusters and nodes used to execute the ARM 

algorithm. In order to generate the maximum workload imbalance, we used heterogeneous 
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sites and clusters. Programs were realized using C++ and MPI on a linux heterogeneous 

environment. Pipeline mechanisms for the distinct phases were implemented.  
  

Table 2. Hardware Distribution 

 
Number 

of sites 

Number 

of clusters 

Maximal 

Number 

of Nodes 

Experiment 1 2 8 32 

Experiment 2 3 6 32 

 

For both experiments 1 and 2 the support value is fixed and the number of nodes 

incorporated in execution is varied from 1 to 32. Figure 2 plots the results of Experiment 1. It 

displays the execution time obtained from running the parallel version of Apriori algorithm 

without paying attention to the workload imbalance that occurs during execution and the time 

obtained when our hierarchical workload balancing strategy is embedded in the parallel 

implementation. 

Figure 3 shows the results of Experiment 2. It displays the execution time obtained when 

using three sites. Each site contains 2 clusters with different physical characteristics and 

having different number of computational nodes.  With 32 processors, our workload 

balancing strategy has reduced the execution time of about 70%. 

 

 

Figure 2.: Execution Time of Experiment 1 (Apriori with and without load balancing). 
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Figure 3. Execution Time of Experiment 2 (LB Apriori is the load balanced Apriori). 
 

 

 

 

Figure 4. Speed up of Experiment1 of Apriori with and without load balancing. 
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Figure 5. Speed up of Experiment 2. 
 

Figures 4 and 5 illustrate the speedup obtained, from experiments 1 and 2 respectively, as a 

function of the number of processors used in execution. We can clearly see that for the 

different datasets we achieved better speedup with the workload balancing approach. 
 

9. Discussion 
 

After parallelizing the Apriori algorithm, several tests were conducted where we varied the 

support threshold and the number of nodes incorporated in execution.  This was done with 

large size datasets. We noticed that the execution time increases instead of decreasing when 

we increase the number of computing nodes. We took detailed measurements of the execution 

time within each computing node. We remarked a big skew in the computing time between 

different nodes before reaching a barrier of synchronization in order to consolidate results (i.e. 

to calculate the global support from different local supports). This is due to two reasons. The 

first reason is the skew in heterogeneous system (i.e. computing nodes have different 

characteristics). The second reason is that the workload depends on the itemset. Some 

itemsets have higher support value, which means that they need more computing time. So 

after partitioning the database among different processors, the amount of work needed for 

different portions is not equal. This increases processors idle time behind each barrier of 

synchronization and thus the total execution time increases.  The problem is that the real 

support value is obtained only after the execution. So an appropriate partitioning that is based 

on the amount of work that should be done on each dataset portion is not possible before 

execution. In order to benefit from increasing the number of computing nodes, dynamic load 

balancers are needed to adjust the decomposition as the computation proceeds. In our 

dynamic load balancing approach, we exploit information from the previous iteration of the 

ARM algorithm. Our decision to establish a load balancing process at iteration k is based on 

the information on the support value of itemsets at iteration k-1. 
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The first iteration of the ARM algorithm is a phase of initiation for workload balancing. 

Different state vectors are created and time estimates are calculated for next iterations. For 

experiment 1 and for the first datasets (DB300T39M), the ARM algorithm performed 26 

iterations in order to generate all possible frequent itemsets. Candidate itemsets migration 

(intra-site) is initiated two times during the second iteration, two times during the fourth 

iteration and once during the seventh, tenth and the sixteenth iterations. Transactions 

migration  (intersites) is initiated once during iteration 12. 

There is not a fixed optimal number of processors that should be used for execution. The 

number of processors used must be proportional to the size of data sets to be mined. The 

easiest way to determine that optimal number is via experiments. 

We can notice that the execution time increases when 3 sites are incorporated in execution 

in experiment 2 instead of 2 sites in experiment 1. This is due to the fact that communication 

cost between clusters of different sites is high when compared with intra-site communication. 

Our strategy improves the performance and helps the parallel algorithm to scale very well 

with the number of computational nodes available. 

 We tested the scale-up behaviour of the workload balanced Apriori when the size of the 

dataset or of the computational nodes increased. We used the configuration of power of 2 

computational nodes and expanded the system from 1 node to 2, 4, 8, 16 and 32 nodes. The 

results presented in Figure 2 and 3 shows that the execution time of the workload balanced 

Apriori decreases remarkably as the number of nodes increases. Thus, the workload balanced 

Apriori scale much better than the classical parallel Apriori.  
 

Approaches Comparison 
 

Table 3 illustrates the differences between: our Hierarchical Dynamic Load Balancing 

Approach (HDLBA), the Weighted Distributed Parallel Apriori algorithm (WDPA) proposed 

in [8] and Heuristic Data Distribution Scheme (HDDS) introduced in [1].  
 

Table 3. Approaches Comparison 

Approach 

Name 

 

Approach used to 

Balance Load 

 

Characteristics 

 

Speed Up 

(using 9 processors) 

 

WDPA One Master/P Slaves Centralized 7.5 

HDDS One Master/P Slaves Centralized 5.5 

HDLBA Hierarchy of coordinators Distributed 8.95 
 

Both WDPA and HDDS are based on a centralized (master/slave) load balancing approach 

where there is one master responsible of data distribution and n computing slaves. This would 

cause a scalability problem as the number of computing nodes increases. Our approach is 

totally distributed in order to respond to the high level of distribution in grid systems. 
 

10. Conclusion 
 

Due to their dynamic nature, ARM algorithms require dynamic load balancing approaches 

capable of adjusting loads as the computation proceeds. In this paper we developed a dynamic 

load balancing strategy for ARM algorithms under a Grid computing environment. 

Experimentations showed that our strategy improves the performance and helps the parallel 

algorithm to scale very well with the number of computational nodes available. In the future, 

we aim to adopt our strategy to ARM algorithms without candidate itemsets generation.  
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